A Note on the Paper "Matrix Valued Rational Interpolants and Its Error Formula" *

CHEN Zhi-bing

(Dept. of Math., Normal College, Shenzhen University, Guangdong 518060, China)

Abstract: The error formula in the paper [1] is found to be not correct, and its right verson is established and proven.

Key words: matrix; rational interpolants; error formula.

Classification: AMS(2000) 65D05/CLC number: O241

Document code: A Article ID: 1000-341X(2003)03-0459-02

Given a set of distinct real points $\{x_i : i = 0, 1, \dots, x_i \in R\}$ and a set of real matrix data $\{A_i : i = 0, 1, \dots, A_i = A(x_i) \in R^{d \times d}\}$. By using of the Samelson inverse for matrices and inverse differences, Gu and Chen constructed the following branched continued fraction ([1])

$$R_n(x) = \frac{P_n(x)}{q_n(x)} = B_0 + \frac{x - x_0}{B_1} + \dots + \frac{x - x_n}{B_n}, \tag{1}$$

where

$$B_0 := B_0(x_0), B_0(x_i) = A_i, i = 1, 2, \dots n,$$

$$B_{\ell} := B_{\ell}(x_0x_1 \dots x_{\ell}) = \frac{x_{\ell} - x_{\ell-1}}{B_{\ell-1}(x_0x_1 \dots x_{\ell-2}x_{\ell}) - B_{\ell-1}(x_0x_1 \dots x_{\ell-1})}, \ell \geq 2,$$

 $q_n(x)$ is a real scalar positive polynomial, $P_n(x)$ is a $d \times d$ matrix-valued polynomial, both of whose degrees do not exceed n, $q_n(x)||P_n(x)||^2$, and (1) serves $R_n(x_i) = A_i$, $i = 0, 1, \dots, n$. $R_n(x)$ was called generalized Samelson inverse matrix valued rational interpolants (GMRI), and the error formula of $R_n(x)$ was given by the following theorem.

Theorem 1^[1] Suppose A(x) has an (n+1)-st derivatives in (a,b), $x_i \in (a,b)$ for $i = 0,1,\dots n$, and $R_n(x) = P_n(x)/q_n(x), (q_n(x)>0)$ is GMRI. Then for any $x \in (a,b)$, there is some $\xi \in (a,b)$, with

$$A(x) - R_n(x) = \frac{w_n(x)}{(n+1)!q_n(x)} \frac{\mathrm{d}^{n+1}}{\mathrm{d}x^{n+1}} [q_n(x)A(x)]_{x=\xi}, \tag{2}$$

Biography: CHEN Zhi-bing (1968-), male, PH.D., Associate Professor.

^{*}Received date: 1999-08-24

where

$$w_n(x) = (x - x_0)(x - x_1) \cdots (x - x_n). \tag{3}$$

But (2) is not correct. Suppose f(x) and g(x) both serve Rolle's theorem on [a,b], then, there exist some two points $\xi, \eta \in (a,b)$, such that $f'(\xi) = g'(\eta) = 0$, but in general, $\xi \neq \eta$. For example, $f(x) = \sqrt{1 - (x-1)^2}$, $g(x) = \sin \pi x$, [a,b] = [0,2]. It is easy to see that f'(x) has only one zero point x = 1 in (0,2), rather g'(x) has two zero points $x = \frac{1}{2}$ and $x = \frac{3}{2}$ in (0,2). If $A(x) = (a_{ij}(x))$, $R_n(x) = (r_{ij}(x))$, under the condition of theorem 1, there should exist $\xi_{ij} \in (a,b)$, such that

$$a_{ij}(x) - r_{ij}(x) = \frac{w_n(x)}{(n+1)!q_n(x)} \frac{\mathrm{d}^{n+1}}{\mathrm{d}x^{n+1}} [q_n(x)a_{ij}(x)]_{x=\xi},$$

and again in general, $\xi_{ij} \neq \xi_{i'j'}$, when $(i,j) \neq (i',j'), \xi_{ij} \neq \xi_{i'j'}$.

Theorem 2 Suppose A(x) has an (n+1) st derivatives in (a,b), $x_i \in (a,b)$ for $i = 0, 1, \dots, n$, and $R_n(x) = P_n(x)/q_n(x), (q_n(x) > 0)$ is GMRI. Then for $x \in (a,b)$, there exists a matrix $(\xi_{ij})_{d\times d}, \xi_{ij} \in (a,b)$, with

$$A(x) - R_n(x) = \frac{w_n(x)}{(n+1)!q_n(x)} (\xi_{ij})_{d \times d}.$$
 (4)

Proof Without losing generality, one only need to prove that

$$a_{ij}(x) - r_{ij}(x) = \frac{w_n(x)}{(n+1)!q_n(x)} \xi_{ij}, \text{ for } x \in x_i (i=0,1,\cdots,n).$$
 (5)

Let $f(u) = q_n(u)[a_{ij}(u) - r_{ij}(u)] - \frac{w_n(u)}{w_n(x)}q_n(x)[a_{ij}(x) - r_{ij}(x)]$, obviously, f(x) = 0, $f(x_i) = 0$, $i = 0, 1, \dots, n$, By using of Rolle's theorem n + 1 times and noticing that $q_n(u)r_{ij}(u)$ is a polynomial whose degree does not exceed n, we derive that there exists $\eta_{ij} \in (a, b)$, such that

$$f^{(n+1)}(\eta_{ij}) = \frac{\mathrm{d}^{n+1}}{\mathrm{d}x^{n+1}}[q_n(x)a_{ij}(x)]_{x=\eta_{ij}} - \frac{(n+1)!}{w_n(x)}q_n(x)[a_{ij}(x) - r_{ij}(x)] = 0,$$

hence $a_{ij}(x)-r_{ij}(x)=\frac{w_n(x)}{(n+1)!q_n(x)}\frac{\mathrm{d}^{n+1}}{\mathrm{d}x^{n+1}}[q_n(x)a_{ij}(x)]_{x=\eta_{ij}}$, and denote $\frac{\mathrm{d}^{n+1}}{\mathrm{d}x^{n+1}}[q_n(x)a_{ij}(x)]_{x=\eta_{ij}}$ by ξ_{ij} , one finally get (5), and the theorem is proven.

References:

[1] GU Chuan-qing, CHEN Zhi-bing. Matrix valued rational interpolants and their error formula [J]. Math. Numer. Sinica, 1995, 17(1): 73-77.

"矩阵有理插值及其误差公式"一文的注

陈之兵

(深圳大学师范学院数学系,广东 深圳 518060)

摘 要: 本文对文 [1] 中所给出的错误的误差公式做了修订,并给出了相应的证明.

关键词:矩阵,有理插值,误差公式.