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Abstract: For a path algebra A = kQ with Q an arbitrary quiver, consider the
Hochschild homology groups H,(A) and the homology groups Tor2"(A, A), where A°
is the enveloping algebra of A. In this paper the groups are explicitly given.
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1. Introduction

The theory of Hochschild (co)homology has been used in several branches of math-
ematics. It is well-known that it has a close relation with the representation theory of
finite-dimensional algebras.

Given a quiver @ and a field k, consider the path algebra A = kQ. It is clear that 4
is finite-dimensional if and only if @ is finite and has no oriented cycles. The algebra A4,
as well as its admissible quotient, plays an important role in the representation theory of
finite-dimensional algebras.

On the other hand, in recent years, infinite-dimensional algebras and infinite-dimensional
modules have aroused more and more interest. Quite naturally, we obtain an infinite-
dimensional path algebra A = kQ when @ is infinite, or contains oriented cycles. Note
that A has a unit if and only if @ has only finitely many vertices.

We should be aware that in standard literatures (see e.g. [1], [2]), the Hochschild
(co)homology was defined for associative algebras with unit. In this case, Cartan-Eilenberg
had an important observation that the Hochschild cohomology group H™(A) coincides
with the cohomology group Ext". (A, A), and the Hochschild homology group H,, (A) with
the homology group Tor’;. (A, A). This coincidence makes possible that some methods in
representation theory provide useful information for computing these groups.

Unfortunately, this Cartan-Eilenberg coincidence fails for algebras without unit. This
is the very reason why we have to deal with the Hochschild cohomology H™(A) and
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Ext%. (A, A) (resp. H,(A) and Tor’;. (A4, A)) separately. In recent papers (3] and [4], P.
Zhang proved that Extl. (4, 4) = 0 if and only if Q is a tree; and H'(A) = 0 if and only
if Q is a finite tree; for a monomial algebra A = kQ/I with Q connected, H' (A) = 0 if
and only if Q is a finite tree.

The aim of this paper is to compute the Hochschild homology groups H,(A) and
Tor2°(A, A) for A = kQ with Q an arbitrary quiver. In particular, we prove that the
following three statements are equivalent:

(i) Torf"(4,4)=0.

(iii) @ contains no oriented cycles.

This generalizes the corresponding result in [5].

Throughout, k is a field, and we denote ®; by ®.

2. Quivers

2.1. A quiver Q@ = (Qo, Q1) is an oriented graph, where Qo is the set of vertices and Q,
the set of arrows between vertices. We denote by h: Q; — Qo and t : @; — Qo the maps
where h(a) = 7 and t(a) = j when a : 7 — j is an arrow from the vertex i to the vertex
j. A path in the quiver Q is either an ordered sequence of arrows p = a; -+- a, with
t(as) = h(asy1) for 1< s < n, or the symbol ¢; for i € Qp. We call the paths e; trivial
paths and we define h(e;) = t(e;) = 7. For a nontrivial path p = a; --- a, we define
h(p) = h(a1), t(p) = t(ay) and I(p) = n, which are respectively called the head, the tail,
and the length of p. A nontrivial path p is said to be an oriented cycle if h(p) = t(p). An
oriented cycle p = a3 -+ a, is said to be basic if h(ay), h(az), --- , h(an) are distinct
from each other.

We emphasize that the quivers @ = (Qo, Q1) considered in this paper are arbitrary,
i.e., @ can be infinite, namely, at least one of Qy and @, is'an infinite set.

2.2. For a field k£ and a quiver @, let A = kQ be the k-vector space with the paths of Q
as basis. For p = a; -+ am, ¢ = 1+ Bn, define the multiplication

_ ay-amfy - Be, Hp) = h(g),
Pa= { 0, t(p) # t(q)-

In this way, A = kQ becomes a k-algebra, which is called the path algebra of Q. Note
that A has the unit if and only if @ is a finite set, and in this case 1 = > ieqQ, & ; and
that A is finite-dimensional if and only if @ is a finite quiver (i.e., both Qo and Q; are
finite sets) and @ contains no oriented cycles. As the title indicates, we are interested in
infinite quivers,

Note that A = kQ has a set of orthogonal idempotents {e;|i € Qo} and A = Bicg,eiA
= @icQ,Ae;. Consider the category A-Mod of all left A-modules X with X = @®;¢¢,e:X.
Clearly, Ae;, A € A-Mod; and A-Mod is an extension closed abelian category.

Note that most part of the standard results in homological algebra for a ring with unit
is still valid in this category. In particular, we can consider the homology of A which is
the main purpose of this article.
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2.3. Recall that aring R is said to be hereditary provided every submodule of a projective
module is also projective. Here, we do not insist that R have a unit, but assume that R
has a set of orthogonal idempotents {e;|¢ € I} such that R = &;c;Re; = ®icreiR . In
the following, we will show that A = kQ is hereditary where @ = (Qo, Q1) is an arbitrary
quiver. For X € A-Mod, the following construction of a projective resolution of X is the
explicit form of Happel’s resolution in [6], which was stated for A being finite-dimensional.
In [2], P. Zhang pointed out that the resolution still holds for infinite quivers.

Lemma 2.1 We have the short exact sequence of A-modules

0— @ (Aeh(a) ® et(a)X) —fb @ (Ae; ® e;X) 45X 0, (1)
a€Q) 1€Qo

where g and f are homomorphisms defined by
gla®z)=axr for ac Ae; and z € ¢X;

fla®z)=aa®z—-a®az for a€ Aep,) and z € eyy)X.

For the proof, see [2]. The following corollary is a direct consequence of the lemma.

Corollary 2.2 For A = kQ, we have the following
(i) For X € A-Mod, the projective dimension p.d.X < 1;
(ii) A is hereditary.

3. Homology groups Tor#"(4, A)

3.1. Let A = kQ with Q@ = (Qo,Q1) a quiver. Consider A = A® A", the enveloping algebra
of A, where A* is the opposite algebra of A. In A° we have (a ® b')(c ® d') = ac ® (db)’
and A° = @; jeq, A°(&i ® €}) = Bijeqo Aei ® (¢;4)". Any A-bimodule X can be regarded
as a right A°-module in a natural way: z - (a® ') = bzafor a® ' € A°, z € X. In
this section, we will consider the homology groups Tor2°(4, A). The following lemma will
give an explicit form of projective resolution of A over A°, and this is the key to compute
homology groups. The proof is an easy consequence of Lemma 2.1.

Lemma 3.1 We have the following projective resolution of A over A®

0 @ (Aen) ® eywA)) L D (4e: ® e:4)) 5 A0, (2)
a€Q, 1€Qo

where g and f are A°-homomorphisms defined by
g(a®b)=ab for ac Ae; and b€ e;A4;
fla@b)=aa®b—a®ab for ac Aey,) and b€ eyq)A.

3.2. With the projective resolution in Lemma 3.1, we can now compute the homology
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groups Tor#“(A4, A).

Theorem 3.2 Let A = kQ with § an arbitrary quiver. Then

(i) TorA“(A,A)=10forn>2.

(i) If Q contains oriented cycles, then Tor{"(A, A) is an infinite-dimensional k-vector
space.

(iii) Tor{“(A, A) = 0 if and only if Q contains no oriented cycles.

(iv) If Q contains no oriented cycles, then Tory (A, A) = k9, where ¢ = |Qol; If Q
contains oriented cycles, then Torj (A, A) is a infinite-dimensional k-vector space.

Proof The assertion (i) follows directly from Lemma 3.1.
In order to compute the homology groups, first apply A ® 4« — to the exact sequence
(2) in Lemma 3.1. Then we have the following exact sequence

0 — Torf" (A, 4) — P A @ac (Aena) ® (eya)4))

a€Q,
L P A®4 (Aei® (e;4)) 225 A@ac A —s 0. (3)
1€Qo

Now let @ be a quiver that contains oriented cycles. In the following we will show
that ker(1 ® f) is an infinite-dimensional k-vector space. Without loss of generality, let
a basic cycle Q' = (Qf,Q}) of length m be a subquiver of Q, where Q) = {1,2,---,m},
Qi ={a;:i > i+ 1, fori=1,---,m—1; o : m — 1}. Denote p; = az---amn,
P2 = Q3 0pQy, -+, P = Q1 -0y and ¢; = a;p; for ¢ = 1,2,--- m. For integer
t > 0, we have

m~1
(1® ) Z p;cf Qac (& ® e:'+1) + PmcChy, ®ac (em ® €1))

=1

= Z pict @ac (0 ® i1~ €; ® ;) + Pmcly, B ac (m ® €1 — € @ )
i=1

= D (e - ) ®ac (& ® eigr) + (! — ) @ 4 (em ® €1)
=1
[

1 m-—1
=D (i -t + (T = M@ (D] ei®eir1 +em @ er)
i=1 i=1
=0.

This shows that ker(1 ® f) contains the linearly independent infinite set

m—1

{D° pict ®ac (€: ® €iy1) + Pmcly ®ac (em @ €})), t > 0}

i=1

This proves the assertion (ii) since by (3) we have Tor{* (4, A) = ker (1 ® f).
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For (iii), it remains to prove Tor{"(4,A) = 0 when Q has no oriented cycles. Note
that when @ has no oriented cycles, we have

A Qe (Aeh(a) ® (Ct(a)A)/) = AQ4e Ae(eh(a) ® et/(a))
= A(en(a) ® er(a)) ®ac (ena) ® €v(a))
= et(a)Aeh(a) ®ac (n(a) ® e;(a)) =0
for any a € Q;. It follows that Tor{"(4, A) = 0 by (3).

Finally, we prove (iv). First, by the definition of homology groups, we have Tord" (A, A) =
A ®4c A. Note that A = P, jcq, eidej = B, jeq, Ale; ® €), so we have

A@aA= P Ale;®e)@ac A= P Ale;®€l)’ @ac A

£,J€Qo 1,7€Q0
= @ Alej ®€)) ®ac (e; @ €l)A = EB e;Aej @ pe €jAe;.
L.JEQo +,7€Qo

If @ has no oriented cycles, then for i # j, either e;Ae; = 0, or ejAe; = 0; for i = j,
e;Ae; = k, as k-spaces. Hence, in this case Tor{ (A4, 4) = k9, where ¢ = |Qo|. If Q
contains oriented cycles, then when i and j are vertices in the same cycles, both e; Ae;
and e;Ae; are infinite-dimensional vector spaces. Now it is easy to know that in this case
Torf"(A, A) is an infinite-dimensional k-vector space (no matter |Qo| is infinite or not).

4. Hochschild homology

4.1. The Hochschild homology of a k-algebra A is the homology of the complex (A®", d)
with
n-1

da1® - ®ay)=az® - ®au1Qanar+ Y (-1) (210 ® Gaiy1® @ an). (4)

i=1

We denote the n-th homology group by H,(A), for n > 0. Note that in standard
literatures (see e.g. [2]), the Hochschild (co)homology was defined for algebras with unit
and in that case we have the following Cartan-Eilenberg identities:

Lemma 4.1 For an algebra A with unit, H, (A) = Tor2" (A, A) and H" (A) = Ext2 (4, A)
for any integer n > 0 as k-vector spaces.

Here we have a remark that when the algebra A has no unit, Lemma 4.1 is no longer
valid. For example, when @ is an infinite tree, Extl.(A4, A) = 0, but H'(A) is not zero.
For detail, see [3] and [4]. For the case of homology groups, we conjecture that the identity
also fails.

4.2. The Hochschild homology of an algebra whose quiver is finite and has no oriented
cycles was explicitly given by Cibils in [5]. In this subsection we will show that the
corresponding result is still valid when we make no restriction on finiteness.

Let @ = (Qo,Q1) be a quiver, A = kQ the path algebra and F the two-sided ideal
generated by the arrows of Q. Let I be some two-sided ideal of kQ such that I C F.
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Denote by A the quotient algebra A/I with @ an arbitrary quiver which contains no
oriented cycles.

Theorem 4.2 The Hochschild homology of A vanishes in positive degrees and is k7 in
degree zero, where ¢ = |Qo|.

To prove the theorem we need the following notations and facts. It is clear that we
can choose B from the set of oriented paths in @ such that B is a basis of A. Then
for each n, we have that B™ is a k-basis of A®". From now on, we write the element
a=a,® --®a, € A as (a;,--+,a,). Let A} be the k-subspace of A®" with basis
AQ} = {(=, =, -+, )|z € Qo}, L™ the k-subspace with basis D" = B"\AQj . Now
we have defined two subcomplexes of the Hochschild complex of A. Moreover, we have
(A%, d) = (A3, d)® (L™, d). It is obvious that the complex (A§, d) is isomorphic to the
direct sum of ¢ copies of the Hochschild complex of k. It is easy to check that Ho(k) = k
and H;(k) = 0 for ¢ > 0. This together with the following lemma proves the theorem.

Lemma 4.3 The complex (L™, d) is acyclic.

Proof Let a = (a4, -+, a,) € D™. The composition is not an oriented cycle. This means
exactly that t(a,) # h(a;) (we say that a is of type I) or there exist i € {1, --- , n ~ 1}
such that t(a;) # h(ai4+1) (ais of type II). The lemma is proved using an explicit homotopy
contraction.

Type I If t(a,) # h(ay), we define s(a;, -+, an) = —(h(a1), a1, -+, aq).
Type IL. If t(a,) = h(a1) , let » be the smallest integer in {1, 2, --- , n— 1} such that
t(a,) # h(ar41). Wedefine s(ay, -+, a,,) = (=1)"*Yay, -+ , ar, h(@r41), Grp1s "+, Gn)-

We want to check sd + ds = 1.
Let a = (a1, --,a,) € D™ with t(a,) # h(a1) (type I). Then

n-1
ds(a) =0 + (ala v 'aan) + Z(—l)t(h(al):alv IR/ 47 PR I 1an)7
1=1

n—1
d(a‘) :O + Z(—l)t(a], M ,a;’ai+1, Tt aa'n)-
i=1
Let a;a;11 = > .cp Acc. We have
s(ali"'aaiai—%l,"',an) = Z AcS(al,"',C,"‘,an).

cEB
Each summand is of type I. Then we have

s(al,"‘,aiai+1y"',an) - -(h(al),al,"',c,"'yan)
and sd + ds = 1.
Let a = (a;,-:-,a,) € D™ be a vector of type II and suppose » = 1. Then
ds(a) =d(ay, h(az),as, -, a,)
=(h(az),az,---,ana1) — 0+ (a1,as, -+ ,an)+

n-1

Z(_l)i-{-l(al’ h((lz), Az, QG541 aan)-
1=2
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The first summand of d(a) is of type I. The other summand are of type IT with the

same r = 1.
n-—1
sd(a) = —(h(az),az,--+,ana1) + 0 + Z (a1, h(az),az, -, ai0i41, - -, ap).
=2

Then ds + sd = 1 when a is of type Il and r = 1.
Let a = (a1, -, a,) € D™ be a vector of type II with » > 2. Then

ds(a‘) :(_1)r+1(a2, Ty Gy, h(ar+1)a Qriy1y° 0, aﬂal)+

[

(_1)T+1(_1)i(a1, ERIEN ¢ P ¢ P AL/ PO h(ar+1),ar+17 T 1an)+
—

0+ (_1)2(r+1)(a1’ T van)+

Z (___1)1'+1(__1)i+1(a1,, ..’ar,h(ar+l),ar+1’. ..’aiai+l,...’an)' .
i=r+1

To compute sd note that each summand of d(a) is of type II with » > 2. Then

sd(a) = (=1)"(az, -, ar, h(ars1), Gry1, -+, anar )+
r—-1

Z 1) ( 1 al,"',aiai+1,"',ar,h(ar+1),ar+1,'",an)+
=1

n—1 )

Z ( 1)1‘+1( 1)1(0’17'")arah(ar-{-l)’ar-{-l)'.'7aia‘i+11"'1an)-
i=r+1

This proves that sd + ds = 1 when a is of type II with r > 2.
Now for all the basis vectors of L™ we obtain sd 4+ ds = 1. Thus we have sd 4+ ds = 1.

4.3. In this subsection, we will consider the Hochschild homology of a path algebra whose
quiver may have oriented cycles. We need the following lemma, which is a simple case of
Theorem 2 in [7] when @ is a finite quiver.

Lemma 4.4 Let A = kQ be a path algebra. Assume that Q' is a connected subquiver of
Q and B = kQ’. Then H,(B) is a direct summand of H,(A).

Proof Let (I be a k-basis of A which consists of oriented paths in @, and I be the
ideal in A generated by Q¢\Q{ and @1\@]. It is clear that 2 is the disjoint union of
BnQand INQ,so A= B& I as k-vector spaces. By definition, the Hochschild complex
of Ais C(A) = (A®",d), where d is defined as (4). Then for every n > 0, C,,(4) =
Cn(B) ® C.(B,I), where C,,(B,I) is a finite direct sum of some k-spaces of the form
Vi® -- @V, withV; = B or V; = I such that there is at least one V; = I. Observe that
(B®",d) is a subcomplex of (A®™,d); since I is an ideal in A, we also see that d maps
Cn(B,I) into C,,_1(B,I) by (4). So C(A) is a direct sum of subcomplexes C (B) and
(C.(B,I),d), hence H, (*B) is a direct summand of H,, (4). O

Combining (ii) of Theorem 3.2, Lemma 4.1, Theorem 4.2, and Lemma 4.4, we obtain
the following theorem which is the main result on Hochschild homology of a path algebra.
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Theorem 4.5 Let A = kQ with Q an arbitrary quiver.
(i) Hno(A) =0 for n > 1 if Q contains no oriented cycles.
(ii) Hy(A) is an infinite-dimensional k-vector space if Q contains oriented cycles.

4.4. We conclude with an interesting consequence of Theorem 3.2 and Theorem 4.5.

Theorem 4.6 Let A = kQ with Q an arbitrary quiver. Then the following three state-
ments are equivalent.

(i) H.(A)=0.

(ii) Torf*(4,A4) = 0.

(iii) Q contains no oriented cycles.
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