On Minus Domination and Signed Domination in Graphs *

XU Bao-gen

(Dept. of Math., East China Jiaotong University, Nanchang 330013, China)

Abstract: In this paper we obtain some lower bounds for minus and signed domination numbers. We also prove and generalize a conjecture on the minus domination number for bipartite graph of order n, which was proposed by Jean Dunbar et al [1].

Key words: minus dominating function; minus domination number; signed dominating function; signed domination number.

Classification: AMS(2000) 05C/CLC number: O157.5

Document code: A Article ID: 1000-341X(2003)04-0586-05

1. Introduction

We use Bondy and Murty^[2] for terminology and notation not defined here and consider simple graphs only.

Let G be a graph, V(G) and E(G) be the set of vertices and the set of edges in G, respectively. For a vertex $v \in V(G), N_G(v) = \{u \in V(G) | uv \in E(G)\}$ and $N_G[v] = N_G(v) \cup \{v\}$ are the open and the closed neighborhood of v in G. For simplicity, we sometimes write N(v) and N[v] for $N_G(v)$ and $N_G[v]$ respectively. For a subset $S \subseteq V(G)$, denote by G[S] the subgraph of G induced by S, and $G - S = G[V(G) \setminus S]$. If $A, B \subseteq V(G)$ and $A \cap B = \emptyset$, then $E(A, B) = \{uv \in E(G) | u \in A \text{ and } v \in B\}$. If H is a subgraph of G, we write $H \subseteq G$; If H is an induced subgraph of G, we write $H \subseteq G$.

For a graph G = (V, E), a subset $S \subseteq V$ is said to be a dominating set of G if for all $v \in V - S$, V is adjacent to some vertex of S. The domination number of G, denoted by $\gamma(G)$, is defined as the minimum cardinality of a dominating set of G.

There are many variations for the concept of domination in graphs. We are interested in the signed domination and minus domination in graphs.

Definition 1 Given a graph G = (V, E) and a subset $D \subseteq R$, a real-valued function $f: V \to D$ is said to be a D-domination function of G if $\sum_{u \in N[v]} f(u) \ge 1$ for every

^{*}Received date: 2001-02-22

Foundation item: Supported by the National Science Foundation of Jiangxi province (9911020). Biography: XU Bao-gen (1963-), male, Professor.

 $v \in V$. The D-domination number of G is defined as $\gamma_D(G) = \{\sum_{v \in V(G)} f(v) | f \text{ is a } D\text{-domination function of } G\}$.

From the above definition we can easily see the following facts:

- (i) If $D_1 = \{0,1\}$, then a D_1 -domination function is a dominating function and $\gamma_{D_1}(G) = \gamma(G)$ is the domination number of G.
- (ii) If $D_2 = \{-1, 1\}$, then a D_2 -domination function is a signed dominating function and $\gamma_{D_2}(G) = \gamma_s(G)$ is the signed domination number of G.
- (iii) If $D_3 = \{-1, 0, 1\}$, then a D_3 -domination function is a minus dominating function and $\gamma_{D_3}(G) = \gamma^-(G)$ is the minus domination number of G.

For convenience, a signed (minus, resp.) dominating function f of G is called a γ_s -function (γ^- -function) of G if $\sum_{v \in V(G)} f(v) = \gamma_s(G)(\gamma^-(G))$.

Obviously, a signed dominating function is also a minus dominating function. Thus, we have the following

Lemma 2 For any graph $G, \gamma_s(G) \geq \gamma^-(G)$.

In [3] we obtained some lower bounds for signed domination number of graphs, one of which was stated as follows:

Lemma 3^[3] For any graph G of order n, we have

$$\gamma_s(G) \geq 2\lceil \frac{-1+\sqrt{1+8n}}{2} \rceil - n$$

and this bound is sharp.

For the minus domination number of a graph, J.Dunbar et al.^[1] obtained some results for several classes of graphs. They asked if there exists a graph G with girth m and $\gamma^-(G) \leq k$ for every negative integer k and positive integer m? J.Lee et al.^[4] gave a positive answer to this problem. In addition, a conjecture was posed in [1] as follows:

Conjecture $4^{[1]}$ If G is a bipartite graph of order n, then $\gamma^-(G) \geq 4(\sqrt{n+1}-1)-n$.

In this note, we prove and generalize this conjecture, and obtain some new lower bounds for minus (signed) domination numbers of graphs. In addition, we also give a method to find the lower bounds of $\gamma_s(G)$ and $\gamma^-(G)$ for all graphs G.

2. Main results

We first give a method to find the lower bound of $\gamma_s(G)$ for every graph G.

Theorem 5 For any graph G of order n, let

$$\varphi_s(G) = \max\{|E(H)||H \subseteq G \text{ and } |V(H)| = s\} \text{ and } (G) = \min\{s|s + \varphi_s(G) \ge n\}.$$

Then $\gamma_s(G) \geq 2S(G) - n$.

Proof Let f be a γ_s -function of G. Define

$$A = \{v \in V(G) | f(v) = 1\}, B = \{v \in V(G) | f(v) = -1\}.$$

Obviously, $V(G) = A \cup B$ and $A \cap B = \emptyset$. Let |A| = s. Then |B| = n - s and then $\gamma_s(G) = |A| - |B| = 2s - n$.

By the definition of a signed dominating function, it is clear that $|N_G(v) \cap A| \ge 2$ for each $v \in B$. So, we have

$$|E(A,B)| \ge 2|B| = 2(n-s).$$
 (1)

Let $G_1 = G[A]$, and $d_{G_1}(v)$ be the degree of v in G_1 (if $v \in V(G_1)$). For each $v \in A$, v is adjacent to at most $d_{G_1}(v)$ vertices of B. That is, $|N_G(v) \cap B| \leq d_{G_1}(v)$ for every $v \in A$.

From the definition of $\varphi_s(G)$, we see that $|E(G_1)| \leq \varphi_s(G)$. Thus we have

$$|E(A,B)| \leq \sum_{v \in A} d_{G_1}(v) = 2|E(G_1)| \leq 2\varphi_s(G).$$

Together with (1), we have

$$s + \varphi_s(G) \ge n. \tag{2}$$

Since S(G) is defined as the minimum integer s satisfying (2). Thus $s \geq S(G)$. We have $\gamma_s(G) = 2s - n \geq 2S(G) - n$. The proof is complete.

Remark For any graph G of order n, since $\varphi_s(G) \leq \binom{s}{2}$ holds for every integer $s(1 \leq s \leq n)$, if $s + \varphi_s(G) \geq n$, then $s + \binom{s}{2} \geq n$, namely, $s \geq \frac{-1 + \sqrt{1 + 8n}}{2}$, which implies $S(G) \geq \frac{-1 + \sqrt{1 + 8n}}{2}$. Note that S(G) is an integer, we see the result of Lemma 3.

Using Theorem 5, we can easily obtain the lower bounds of $\gamma_s(G)$ for some special graphs G, such as trees, planar graphs, triangle-free graphs, etc. \triangleright

A graph G is called triangle-free if $K_3 \not\subset G$.

Lemma 6^[5] For any triangle-free graph G of order $n, |E(G)| \leq \frac{n^2}{4}$.

Lemma 7^[5] For any planar graph G of order $n(n \ge 3)$, $|E(G)| \le 3n - 6$.

Corollary 8 For any triangle-free graph G of order n, then $\gamma_s(G) \geq 2\lceil 2(\sqrt{n+1}-1)\rceil - n$ and this bound is sharp.

Proof Since any subgraph of G is also triangle-free, by Lemma 6, we have $\varphi_s(G) \leq \frac{s^2}{4}$.

For any positive integer s satisfying that $s + \varphi_s(G) \ge n$, then $s + \frac{s^2}{4} \ge n$, namely. $s \ge 2(\sqrt{n+1}-1)$. By the definition of S(G) in Theorem 5, and note that S(G) is an integer, we have $S(G) \ge \lceil 2(\sqrt{n+1}-1) \rceil$. By Theorem 5, $\gamma_s(G) \ge 2S(G) - n \ge 2\lceil 2(\sqrt{n+1}-1) \rceil - n$. And this bound is sharp (see [1], page 46), we have completed the proof of Corollary 8.

Corollary 9 For any planar graph G of order $n(n \ge 4)$, then $\gamma_s(G) \ge 2\lceil \frac{n+6}{4} \rceil - n$.

Proof By Lemma 7, for any integer $s \ge 1$, we have

$$\varphi_s(G) \leq \left\{ \begin{array}{l} s-1, \text{ when } s=1 \text{ or } 2; \\ 3s-6, \text{ when } s \geq 3. \end{array} \right.$$

If $s + \varphi_s(G) \ge n$, note that $n \ge 4$ and then $s \ge 3$, we have $s + 3s - 6 \ge n$, namely, $s \ge \lceil \frac{n+6}{4} \rceil$.

From the definition of S(G) in Theorem 5, we see that $S(G) \ge \lceil \frac{n+6}{4} \rceil$, by Theorem 5, we have completed the proof of Corollary 9.

Next we consider the lower bounds of minus domination numbers in graphs.

Theorem 10 For any graph G of order n, Let $\pi(G) = \min\{\gamma_s(H)|H \leq G\}$, then $\gamma^-(G) \geq \pi(G)$.

Proof Let f be a γ^- -function of G, and then $\gamma^-(G) = \sum_{v \in V(G)} f(v)$. Let

$$X_0 = \{v \in V(G) | f(v) = 0\}$$
 and $G_1 = G - X_0$.

It is easy to see that $f_1 = f|_{G_1}$ is a signed dominating function of G_1 . Thus we have $\gamma^-(G) = \sum_{v \in V(G)} f(v) = \sum_{v \in V(G_1)} f_1(v) \ge \min\{\gamma_s(H)|H \le G\} = \pi(G)$. This proof is complete.

The above theorem give a method to find the lower bound of $\gamma^{-}(G)$.

Corollary 11 For any graph G of order $n(n \ge 3), \gamma^-(G) \ge \lceil \sqrt{1+8n} - 1 \rceil - n$.

Proof By Lemma 3, for any induced subgraph H of G, let $|V(H)| = s(1 \le s \le n)$, $\gamma_s(H) \ge 2\lceil \frac{-1+\sqrt{1+8s}}{2} \rceil - s \ge \sqrt{1+8s} - 1 - s$.

By Theorem 10, and note that $n \geq 3$, then $\gamma^-(G) \geq \min\{\gamma_s(H)|H \leq G\} \geq \min\{\sqrt{1+8s}-1-s|1\leq s\leq n\} = \sqrt{1+8s}-1-n$. Hence, we have

$$\gamma^{-}(G) \geq \lceil \sqrt{1+8n} - 1 \rceil - n,$$

this proof is complete.

Corollary 12 For any triangle-free graph G of order n, then

$$\gamma^-(G) \geq 4(\sqrt{n+1}-1)-n$$

and this bound is sharp.

Proof By Theorem 10 and Corollary 8, we have

$$\gamma^{-}(G) \ge \pi(G) = \min\{\gamma_{s}(H)|H \le G\} \ge \min\{2\lceil 2(\sqrt{s+1}-1)\rceil - s|1 \le s \le n\} \\
\ge \min\{4(\sqrt{s+1}-1) - s|1 \le s \le n\}$$

Note that $\gamma^{-}(G)$ is an integer, thus we have

$$\gamma^{-}(G) \geq \min\{4(\sqrt{s+1}-1) - s | 1 \leq s \leq n\} = \lceil 4(\sqrt{n+1}-1) - n \rceil \geq 4(\sqrt{n+1}-1) - n$$

and this bound is sharp (see [1]). We have completed the proof of Corollary 12.

From Corollary 12 we see that $\gamma^-(G) \geq 4(\sqrt{n+1}-1)-n$ holds for all bipartite graphs G of order n. Thus we have proved and generalized Conjecture 4.

Corollary 13 For any planar graph G of order $n(n \ge 4)$, then $\gamma^-(G) \ge \lceil \frac{n+6}{2} \rceil - n$.

Proof By Theorem 10, we have

$$\gamma^-(G) \geq \pi(G) = \min\{\gamma_s(H)|H \leq G\}.$$

Choose such an induced subgraph $H_0 \leq G$ that $\gamma_s(H_0) = \min\{\gamma_s(H)|H \leq G\}$.

If $1 \le |V(H_0)| \le 3$; Obviously, $\gamma^-(G) \ge \gamma_s(H_0) \ge 1 \ge \lceil \frac{n+6}{2} \rceil - n$ (note that $n \ge 4$). If $|V(H_0)| \ge 4$; Since H_0 is a planar graph with at least four vertices, by Corollary 9, we have

 $\gamma^-(G) \geq \gamma_s(H_0) \geq 2\lceil \frac{n+6}{2} \rceil - n \geq \frac{n+6}{2} - n.$

Note that $\gamma^-(G)$ is an integer, we have completed the proof of Corollary 13. Finally, we end this note with the following

Problem Determine $B(n,g) = \min\{\gamma^-(G)|G \text{ is a graph with } n \text{ vertices and girth } g(G) \ge g\}$ for all integers n and $g(3 \le g \le n)$.

References:

- [1] DUNBAR J, HEDETNIEMI S, HENNING M A. et al. Minus dominationin graphs [J]. Discrete Math., 1999, 199: 35-47.
- [2] BONDY J A, MURTY V S R. Graph Theory with Applications [M]. Elsevier, Amsterdam, 1976.
- [3] ZHANG Zhong-fu, XU Bao-gen, LI Yin-zhen. et al. A note on the lower bounds of signed domination number of a graph [J]. Discrete Math., 1999, 195: 295-298.
- [4] LEE J, SOHN MY, KIM HK. A note on graphs with large girth and small minus domination number [J]. Discrete Applied Math., 1999, 91: 299-303.
- [5] CHARTRAND G, LESNIAK L. Graphs & Digraphs [M]. Second ed. Wadsworth & Brooks/Cole, Monterey, 1986.
- [6] XU Bao-gen, COCKAYNE E J, HAYNES T W. et al. Exteremal graphs for inequalities involving domination parameters [J]. Discrete Math., 2000, 216: 1-10.
- [7] XU Bao-gen, ZHOU Shang-chao. Characterization of connected graphs with maximum domination number [J]. J. Math. Res. Exposition, 2000, 4: 523-528.
- [8] XU Bao-gen. On signed edge domination numbers of graphs [J]. Discrete Math., 2001, 239: 179-189.

关于图的减控制与符号控制

徐保根

(华东交通大学数学系, 江西 南昌 330013)

关键词:减控制函数;减控制数;符号控制函数;符号控制数.