On the Aleksandrov Problem of Isometric Mapping *

MA Yu-mei¹, WANG Jian-yong²

- (1. Dept. of Computer Sci. & Tech., Dalian National University, Liaoning 116600, China;
- 2. Dept. of Math., Changshu College, Jiangsu 215500, China)

Abstract: This paper deals with some problems of isometry to extend Aleksandrov problem, Benz's result and Mazur-Ulam theorem.

Key words: isometry; k-isometry; (F)-space; DOPP; SDOPP.

Classification: AMS(2000) 46B04, 51K05/CLC number: O177.3

Document code: A Article ID: 1000-341X(2003)04-0623-08

1. Introduction

The beginning of the study of linear extension of isometric mapping is due to Mazur-Ulam's famous theorem gotten in 1932. The main goal of the study is to answer the following question:

If X, Y are two real normed linear spaces, $U: X \to Y$ is an isometry, is the U an affine?

For more than 70 years, many mathematicians have studied this problem in different aspects.

Mazur-Ulam's theorem^[1] gave the question a positive answer for surjective mapping, i.e. if X, Y are two real normed linear spaces and $f: X \to Y$ is an surjective isometry, then f is affine.

In 1968, T.Figiel^[2] considered the "into mapping", and gave the following famous result that took the condition "onto" out: Let X, Y be two real Banach spaces. If $F: X \to Y$ is a injective isometric mapping and F(0) = 0, then there exists a continuous linear mapping $f: \overline{\operatorname{span}\{F(X)\}} \to X$ such that $f \circ F$ is an identify and $||f|_{\operatorname{span}\{F(X)\}}|| = 1$.

In 1971, Baker^[3] proved that if Y is strictly convex, the answer is also positive even if the condition "onto" was taken out.

In 1982, Rolewicz^[4] extended Mazur-Ulam's theorem to quasi-normed space (F-space). Another correlative problem is "one distance preserving mapping" (Aleksandrove problem). Suppose (X,d),(Y,d) are two metric linear spaces. A mapping $f:X\to Y$ is said to

^{*}Received date: 2001-06-22

Foundation item: Supported by NNSF of China (19971046)

Biography: MA Yu-mei (1962-), female, Ph.D., Associate Professor.

have one distance preserving property (DOPP), if for any $x, y \in X$, the equality d(x, y) = 1 implies the equality d(f(x), f(y)) = 1.

Mapping $f: X \to Y$ is said to have strong one distance preserving property(SDOPP), if for any $x, y \in X$, d(x, y) = 1 if and only if d(f(x), f(y)) = 1.

In 1970^[5], Aleksandrove proposed the following problem: If one distance preserving mapping is an isometry?

In 1993, Benz^[7], Mielnik and Rassias³ got some results. We have obtain some results on this problem^[8]. In the next two sections of this paper, we will do further research on Aleksandrove'problem and Rolewicz'theorem.

2. Aleksandrove problem

Lemma 2.1^[5] Let X and Y be real normed vector spaces such that one of them has dimension greater than one. Suppose $f: X \to Y$ is a surjective mapping which satisfies (SDOPP). Then, f preserves distance n in both directions for any positive integer n.

Theorem 2.2^[5] Let X and Y be real normed vector spaces such that one of them has dimension greater than one. Suppose $f: X \to Y$ is a Lipschitz mapping with K = 1, i.e. $||f(x) - f(y)|| \le ||x - y||$ for all $x, y \in X$. Assume f is also a surjective mapping satisfying (SDOPP). Then f is an isometry. Thus f is a linear isometry to translation.

Remark 2.3 In the above theorem, the condition of $||f(x) - f(y)|| \le ||x - y||$ for all $x, y \in X$ can be substituted by $||f(x) - f(y)|| \le ||x - y||$ for $x, y \in X$ with $||x - y|| \le 1$.

Proof Assume ||x - y|| > 1. Then there exists $n_0 \in \mathbb{N}$ such that $n_0 \le ||x - y|| \le n_0 + 1$, so

$$||x-y||-n_0\leq 1.$$

Let

$$z=x+\frac{n_0}{||x-y||}(y-x),$$

then $||z-x||=n_0$ and

$$||z-y|| = ||(x-y) + \frac{n_0}{||y-x||}(y-x)|| = ||x-y|| - n_0 \le 1.$$

By the Lemma and the condition we know $||f(z)-f(x)|| = n_0$ and $||f(z)-f(y)|| \le ||z-y||$, thus

$$||f(x) - f(y)|| \le ||f(x) - f(z)|| + ||f(z) - f(y)||$$

 $\le n_0 + ||z - y|| = n_0 + ||x - y|| - n_0 = ||x - y||.$

Here we use the original condition that f satisfies (DOPP), more, preserving n for any positive integer, but we can easily find that the condition is important only for the proof that f is an isometry. Moreover, we have following Theorem:

Theorem 2.4 Let X,Y be two normed spaces and $f:X\to Y$ satisfy (DOPP). If $||f(x)-f(y)|| \le ||x-y||$ for $x,y\in X$ with $||x-y|| \le 1$, then

$$||f(x) - f(y)|| \le ||x - y|| \text{ for all } x, y \in X,$$

and especially

$$||f(x)-f(y)|| = ||x-y||$$
, for all $||x-y|| \le 1$.

Proof Firstly, we prove that if $||x-y|| \le 1$ then ||f(x)-f(y)|| = ||x-y||. Assume

$$||f(x)-f(y)|| < ||x-y||$$

and let

$$z=x+\frac{1}{\|y-x\|}(y-x).$$

It is clear that

$$||z-x||=1$$
 and $||z-y||=1-||x-y||\leq 1$.

Then

$$||f(z) - f(x)|| = 1$$
 and $||f(z) - f(y)|| \le 1 - ||x - y||$.

On the other hand, we have

$$||f(z) - f(x)|| \le ||f(z) - f(y)|| + ||f(y) - f(x)|| < 1 - ||x - y|| + ||x - y|| = 1.$$

This contradicts the equality ||f(z) - f(x)|| = 1, hence ||f(x) - f(y)|| = ||x - y||. Secondly, we prove

$$||f(x)-f(y)|| \leq ||x-y||, \quad \forall x,y \in X.$$

For $x, y \in X$, we can find two positive integers m, n with $||x - y|| \le \frac{m}{n}$. If m = 1, the result is obvious, so we suppose $m \ge 2$. We can find a finite sequence of vectors $x = z_0, z_1, \dots, z_m = y$ such that $||z_i - z_{i+1}|| \le \frac{1}{n}$. It follows that

$$||f(x)-f(y)|| \leq \sum_{i=0}^{m-1} ||f(z_i)-f(z_{i+1})|| \leq \sum_{i=0}^{m-1} ||z_i-z_{i+1}|| = \frac{m}{n}.$$

Thus

$$||f(x)-f(y)|| \leq \frac{m}{n},$$

and

$$||f(x) - f(y)|| \le ||x - y||, \ \forall x, y \in X.$$

Walter Benz Theorem^[7] Let X, Y be two real normed linear space, $\dim X \geq 2$ and Y be a strictly convex. If there exist $\rho \in R$ with $\rho > 0$, and $n \in N$ with n > 1 and there exists a mapping $f: X \to Y$ satisfying the following conditions:

- (1) for any $a \in X$ with ||a|| < 1, there exists some $b \in X$ such that ||a-b|| = 1 = ||a+b||;
- (2) $||x-y|| = \rho \Rightarrow ||f(x)-f(y)|| \leq \rho$;
- (3) $||x-y|| = n\rho \Rightarrow ||f(x)-f(y)|| \geq n\rho$,

then f is an affine mapping.

Now we give next theorem:

Theorem 2.5 Suppose X, Y are two real normed linear spaces and Y is strictly convex. If there exists $n \in N, n > 1$ and a mapping $f: X \to Y$ such that for any $x, y \in X$ we have

- $(1) ||x-y|| \leq 1 \Rightarrow ||f(x)-f(y)|| \leq ||x-y||;$
- (2) $||x-y|| = n \Rightarrow ||f(x)-f(y)|| \geq n$,

then f is an affine isometry.

We need the following lemma:

Lemma 2.6^[8] Let X, Y be two real normed linear spaces and Y is strictly convex. If

- (1) $f: X \to Y$ satisfies (DOPP);
- (2) $||x-y|| \le 1 \Rightarrow ||f(x)-f(y)|| \le ||x-y||$,

then f is an affine isometry.

Proof of Theorem 2.5 We need only to prove f satisfies (DOPP). Let ||x-y|| = 1 and $p_i = y + i(x-y), i = 0, 1, 2, \dots, n$, $p_0 = y, p_1 = x$. Then $||p_n - y|| = n$ and $||p_i - p_{i-1}|| = 1$, $i = 0, 1, 2, \dots, n$, so by the conditions of the theorem we have $||f(p_n) - f(y)|| \ge n$ and $||f(p_i) - f(p_{i-1})|| \le 1$ for $i = 0, 1, 2, \dots, n$, thus

$$n \leq ||f(p_n) - f(y)|| \leq \sum_{i=1}^n ||f(p_{n+1-i}) - f(p_{n-i})|| \leq n.$$

So

$$\sum_{i=1}^{n} ||f(p_{n+1-i}) - f(p_{n-i})|| = n,$$

and hence

$$||f(p_{n+1-i}) - f(p_{n-i})|| = 1.$$

This implies ||f(x) - f(y)|| = 1, or f satisfies (DOPP).

According to the proof given by T.M.Rassias we have next result 3:

Corollary 2.7^[5] Let X, Y be two real normed linear spaces, $\dim X > 1$ and Y is strictly convex. Suppose $f: X \to Y$ preserve n for any positive integer $n \in \mathbb{N}$. Then

$$||f(x) - f(y)|| \le ||x - y||, \forall x, y \in X.$$

Moreover we obtain next result:

Corollary 2.8 Let X, Y be two real normed linear spaces, Y is strictly convex and the mapping $f: X \to Y$ satisfies thes following conditions:

- (1) f satisfies (DOPP);
- (2) $||x-y|| \le ||f(x)-f(y)||$ for any $x, y \in X$,

then f is an isometry.

Proof For any $n \in \mathbb{N}$, assume ||x - y|| = n, we can find a finite sequence of vectors $x = z_0, z_1, ..., z_n = y$ such that $||z_i - z_{i+i}|| = 1$. It follows that

$$||f(x)-f(y)|| \leq \sum_{i=0}^{n-1} ||f(z_i)-f(z_{i+1})|| = n.$$

Thus $n = ||x - y|| \le ||f(x) - f(y)|| \le n$, so f preserve n for any positive integer. Moreover, by the above Corollary, we have

$$||f(x)-f(y)|| \leq ||x-y||$$
 for any $x,y \in X$,

thus

$$||f(x) - f(y)|| = ||x - y||$$
 for any $x, y \in X$.

3. Rolewicz problem

Next, one of Rolewicz Theorems^[4] will be extended. We use Mazur-Ulam method to obtain the main result: Let X and Y be two real locally bounded linear spaces, and $U: X \to Y$ be a surjective map satisfying $||k(U(x)-U(y))|| = ||k(x-y)|| \ (k=\frac{1}{2^n}, n \in \{0\} \cup N)$. Then U is an affine mapping from X to Y.

A function $\|.\|$ on a linear space X is called a F-norm if

- (1) ||x|| = 0 if and only if x = 0;
- (2) ||ax|| = ||x|| for all a with |a| = 1;
- (3) $||x+y|| \leq ||x|| + ||y||$;
- (4) $||a_nx|| \to 0$ provided $a_n \to 0$;
- (5) $||ax_n|| \to 0$ provided $x_n \to 0$.

A linear space equipped with an F-norm $\|.\|$ is called an F^* -space (see Banach, 1932.) An F^* -space X is said to be locally bounded if it has a bounded neighborhood of zero. It is well known that X is locally bounded if and only if X has an equivalent β -norm².

Let X and Y be two real F^* -spaces. $U: X \to Y$ is called k- isometry if ||k(Ux - Uy)|| = ||k(x - y)|| for all $x, y \in X$.

Let X and Y be two real normed linear spaces. If $U: X \to Y$ is an isometry, is U an affine? Mazur and $U[am^{[1]}]$ proved that as U is a surjection, it is necessarily an affine. Baker^[5] proved that as Y is a strictly convex space, U is necessarily an affine. Rolewicz obtained the following theorem^[2]:

Theorem 3.1 Let (X, ||.||) and (Y, ||.||) be two real locally bounded spaces. If $U: X \to Y$ is a surjective map satisfying ||k(U(x) - U(y))|| = ||k(x - y)|| for all $x, y \in X$ and $k \in R^+$, then U is an affine.

Now we use Mazur-Ulam's method to give an extended proposition.

Theorem 3.2 Let (X, ||.||) and (Y, ||.||) be two real locally bounded spaces. If $U: X \to Y$ is a surjective map satisfying ||k(U(x) - U(y))|| = ||k(x - y)|| for all $x, y \in X$ and $k = \frac{1}{2^n}$, $(n \in \{0\} \cup N)$, then U is an affine.

Proof Let x_1 and $x_2 \in (X, ||.||)$ and

$$H_1 = \{x \in X | \|x - x_1\| = \|x - x_2\| = \|\frac{x_1 - x_2}{2}\|\},$$

and for each n > 1, define

$$H_n = \{x \in H_{n-1} \mid ||\frac{x-z}{2^{k-1}}|| \leq d(\frac{H^{n-1}}{2^k}), \ \forall k \in N, z \in H_{n-1}\},$$

here $d(A) = \sup\{||x-y|| \mid \forall x, y \in A\}$ denotes the diameter of A. We show $\lim_{n\to\infty} d(H_n) = 0$ now. Assume $H_n \neq \emptyset$ for all $n \in N$.

For any $x_1, x_2 \in H_n \subset H_{n-1}$, we have $\|\frac{x_1-x_2}{2^{k-1}}\| \leq d(\frac{H_{n-1}}{2^k})(k \in N)$, it follows that $d(\frac{H_n}{2^{k-1}}) \leq d(\frac{H_{n-1}}{2^k})(k \in N)$, thus

$$d(H_n) \leq d(\frac{H_{n-1}}{2}) \leq \ldots \leq d(\frac{H_1}{2^{n-1}}).$$

For $x, y \in H_1$, it follows that $||x - y|| \le ||x - x_1|| + ||y - x_1|| = 2||\frac{x_1 - x_2}{2}||$ and $d(H_1) \le 2||\frac{x_1 - x_2}{2}||$.

Since X is locally bounded and has an equivalent β -norm, it follows that

$$\lim_{n\to\infty} d(\frac{H_1}{2^{n-1}}) = 0 \text{ and } \lim_{n\to\infty} d(H_n) = 0.$$

Next we show $\bigcap_{n=1}^{\infty} H_n \neq \emptyset$, thus $\bigcap H_n$ contains a unique element.

1. For any $x \in X$, let $\bar{x} = x_1 + x_2 - x$. Suppose $x \in H_n$, then $\bar{x} \in H_n$, which follows by induction on n. In fact, when n = 1, if $x \in H_1$, then

$$\|\bar{x}-x_1\|=\|\bar{x}-x_2\|=\|\frac{x_1-x_2}{2}\|,$$

this implies $\bar{x} \in H_1$. Assume n > 1 and the conclusion is testified for n - 1. Let for any $x \in H_n$, then for any $z \in H_{n-1}$, by the inductive hypothesis we have $\bar{z} \in H_{n-1}$, and by the definition of H_n we have

$$\|\frac{\bar{x}-z}{2^{k-1}}\| = \|\frac{x_1+x_2-x-z}{2^{k-1}}\| = \|\frac{x-\tilde{z}}{2^{k-1}}\| \le d(\frac{H_{n-1}}{2^k}), \quad \forall k \in \mathbb{N}.$$

It follows that $\bar{x} \in H_n$. This completes the inductive step.

2. Our next goal is to show $\xi = \frac{1}{2}(x_1 + x_2) \in \bigcap H_n$ by induction. Since $\xi \in H_1$, assume $\xi \in H_{n-1}$. Then for any $x \in H_{n-1}$, from above step we have $\bar{x} \in H_{n-1}$ and

$$\|\frac{\xi-x}{2^{k-1}}\| = \|\frac{x_1+x_2-x-x}{2^k}\| \le d(\frac{H_{n-1}}{2^k}), \ \ \forall k \in N.$$

It follows that $\xi \in H_n$. This completes the induction, and we have shown $\xi \in \bigcap H_n$. We called ξ the center of x_1 and x_2 . Similarly $\frac{1}{2}(Ux_1 + Ux_2)$ is the center of Ux_1 and Ux_2 .

Now we show $U(\frac{x_1+x_2}{2})$ is the center of Ux_1 and Ux_2 , and then by the uniqueness we know $\frac{1}{2}(Ux_1+Ux_2)=U(\frac{x_1+x_2}{2})$. In fact, let \bar{H}_n be a subset in Y being similar to H_n , then

$$\bar{H}_1 = \{ y \in Y | \|y - Ux_1\| = \|y - Ux_2\| = \|\frac{Ux_1 - Ux_2}{2}\| \},$$

$$ar{H}_n = \{ y \in ar{H}_{n-1} \mid \| rac{y-z}{2^{k-1}} \| \le d(rac{ar{H}_{n-1}}{2^k}), \forall z \in ar{H}_{n-1}, k \in N \}.$$

We want to show $U(H_n) = \bar{H}_n$ by induction.

When n=1, for any $y\in \bar{H}_1$, since U is a surjection and satisfies

$$||k(Ux-Uy)|| = ||k(x-y)|| \ (k = \frac{1}{2^n}, n \in \{0\} \cup N),$$

there exists $x \in X$ such that U(x) = y and

$$||y - Ux_1|| = ||y - Ux_2|| = ||\frac{Ux_1 - Ux_2}{2}|| = ||\frac{1}{2}(x_1 - x_2)||.$$

Thus $||x-x_1|| = ||x-x_2|| = ||\frac{x_1-x_2}{2}||$ and hence $x \in H_1$. We have gotten $\bar{H}_1 \subseteq U(H_1)$. Conversely, for any $x \in H_1$, we have

$$||Ux - Ux_1|| = ||x - x_1|| = ||\frac{x_1 - x_2}{2}|| = ||\frac{Ux_1 - Ux_2}{2}||.$$

Thus by $||Ux - Ux_2|| = ||\frac{Ux_1 - Ux_2}{2}||$, we have $Ux \in \bar{H}_1$ and $\bar{H}_1 = U(H_1)$. From the fact that U is $\frac{1}{2^n}$ -isometry $(n \in \{0\} \cup N)$, we have $d(\frac{\bar{H}_1}{2^k}) = d(\frac{H_1}{2^k})$ $(k \in \{0\} \cup N)$.

Assume $\bar{H}_{n-1} = U(H_{n-1})$. Then it is obvious that $d(\frac{\bar{H}_{n-1}}{2^k}) = d(\frac{H_{n-1}}{2^k}) \forall k \in \{0\} \cup N$. Let $y \in \bar{H}_n$, then for any $\tilde{z} \in \bar{H}_{n-1}$, we have

$$\|\frac{y-\tilde{z}}{2^{k-1}}\| \le d(\frac{\bar{H}_{n-1}}{2^k}) = d(\frac{H_{n-1}}{2^k}) \forall k \in N.$$

By the inductive hypothesis and $y \in \bar{H}_n \subset \bar{H}_{n-1}$, there exists $x \in H_{n-1}$ such that Ux = y. For any $z \in H_{n-1}$, we have $Uz \in \bar{H}_{n-1}$ and

$$\left\|\frac{x-z}{2^{k-1}}\right\| = \left\|\frac{Ux-Uz}{2^{k-1}}\right\| = \left\|\frac{y-Uz}{2^{k-1}}\right\| \le d\left(\frac{H_{n-1}}{2^k}\right).$$

This implies $x \in H_n$ and $\bar{H}_n \subset U(H_n)$. Conversely, for $y \in U(H_n)$, there exists $x \in H_n$ such that y = Ux. From $x \in H_n \subset H_{n-1}$ and the inductive hypothesis we know $y \in \bar{H}_{n-1}$. For any $\tilde{z} \in \bar{H}_{n-1}$, there exists $z \in H_{n-1}$ such that $Uz = \tilde{z}$ and

$$\left\|\frac{y-\tilde{z}}{2^{k-1}}\right\| = \left\|\frac{x-z}{2^{k-1}}\right\| \le d\left(\frac{H_{n-1}}{2^k}\right) = d\left(\frac{\tilde{H}_{n-1}}{2^k}\right) \ \forall k \in N.$$

Thus $y \in \bar{H}_n$ and $\bar{H}_n = U(H_n)$. This is to say that $U(H_n) = \bar{H}_n$ for all $n \in N$.

Because $\frac{x_1+x_2}{2} \in H_n$, we have $U(\frac{x_1+x_2}{2}) \in \bar{H}_n$ for each $n \in N$. Thus we have that $U(\frac{x_1+x_2}{2}) = \frac{1}{2}(Ux_1 + Ux_2)$, and furthermore U is an affine. This completes the proof of the theorem.

Obviously, we have the following corollary:

Corollary 3.3 If X and Y are same as above, and $U: X \to Y$ is a surjective isometry with $U(\frac{1}{2}x) = \frac{1}{2}Ux$ for any $x \in X$, then U is a linear map.

Acknowledgement The authors would like to thank Professor Ding Guanggui for his useful suggestions.

References:

[1] MAZUR S, ULAM S. Sur les transformations isomé trique s d'espaces vectorielsnormé [J]. Comp. Rend. Paris, 1932, 194: 946-948.

- [2] FIGIEL T. On nonlinear isometric embeddings of normed linear spaces [J]. Bull. Acad. Polon. Sci. Ser. Math. Astronom. Phys., 1968, 316: 185-188.
- [3] BAKER J A. Isometries in normed spaces [J]. Amer. Math. Monthly, 1971, 78: 655-658.
- [4] ROLEWICZ S. Metric Linear Spaces [M]. Polish Sci. Publ., Warsaw, 1972.
- [5] RASSIAS T M, ŠEMRL P. On the Mazur-Ulam theorem and the Aleksan drov problem for unit distance preserving mappings [J]. Proc. Amer. Math. Soc., 1993, 118: 919-925.
- [6] MIELNIK B, RASSIAS T M. On the Aleksandrov problem of conservative distance [J]. Proc. Amer. Math. Soc., 1992, 116: 1115-1118.
- [7] BENZ W. Isometrien in normierten Raumen [J]. Aequationes Mathematicae, 1993, 29: 919– 925.
- [8] MA Yu-mei. The Aleksandrove problem for unit distance preserving mapping [J]. Acta. Math. Scientia, Ser.B, 2000, 20: 359-364.

关于等距映射的Aleksandrov问题

马玉梅1、王见勇2

(1. 大连民族学院计算机科学系, 辽宁 大连 116600; 2. 常熟高等专科学校数学系, 江苏 常熟 215500)

摘 要: 本文推广了保 1 映射的 Aleksandrov 问题,同时推广了 Benz 定理和 Mazur-Ulam 定理.

关键词: 等距; k- 等距; (F)- 空间; DOPP; SDOPP.