On a Question of Matveev *

SONG Yan-kui¹, LI Rui²

- (1. Dept. of Math., Nanjing Normal University, Jiangsu 210097, China;
- 2. Suzhou Industrial Parkinstitute of Vocatonal Technology, Jiangsu 215021, China)

Abstract: In this paper, we give an example of a Hausdorff star-Lindelöf space X having property (a) such that $e(X) = 2^c$. This is a partial answer to a question of Matveev.

Key words: Hausdorff star-Lindeöf space; extent.

Classification: AMS(2000) 54B05/CLC number: O189.1

Document code: A Article ID: 1000-341X(2003)04-0631-04

1. Introduction

By a space, we mean a topological space. The purpose of this paper to give a Hasudorff star-Lindelöf space X having property (a) such that $e(X) = 2^c$. Let X be a space and \mathcal{U} a collection of subsets of X. For $B \subset X$, let $St(B,\mathcal{U}) = \bigcup \{U \in \mathcal{U} : U \cap B \neq \emptyset\}$. As usual, we write $St(x,\mathcal{U})$ for $St(\{x\},\mathcal{U})$.

Definition 1^[1] A space X is star-Lindelöf if for every open cover \mathcal{U} of X, there exists a countable subset $B \subset X$ such that $St(B,\mathcal{U}) = X$.

Clearly, all Lindeöf spaces and all separable spaces are Lindelöf.

Definition 2^[2] A space X has the property (a) if for every open cover \mathcal{U} of X and every dense D of X, there exists $F \subset D$ such that F is discrete closed in X and $St(F,\mathcal{U}) = X$.

Moreover, the extent e(X) of a space X is the smallest infinite cardinal κ such that every discrete closed subset of X has cardinality at most κ . The cardinality of a set A is denoted by |A|. For a cardinal κ, κ^+ denotes the smallest cardinal greater than κ . Let ω denote the first infinite cardinal and c the cardinality of the continuum. As usual, a cardinal is the initial ordinal and an ordinal is the set of smaller ordinals. When viewed as a space, every cardinal has the usual order topology. Other terms and symbols that we do not define will be used as in [3].

2. An example on star-Lindelöf spaces

*Received date: 2001-05-11

Foundation item: Supported by NNSF of China (10271056)

Biography: SONG Yan-kui (1966-), male, Ph.D., Assistant Professor.

In [4], Song gave an example that the extent of a Tychonoff star-Lindelöf space having the property (a) with e(X) = c which answered Question 4.5 from [5]. Further, Matveev asked if there exists of a star-Lindelöf space X having the property (a) such that $e(X) \ge c$. The purpose of this section is to answer the former questions positively in the sphere of Hausdorff.

Next, we give a machine that produces star-Lindelöf space having the property (a). In the following, we state the definition of the machine. For a separable space X and its a countable dense subset D, we define

$$S(X,D) = X \cup (D \times \kappa^+)$$
, where $\kappa = |X|$,

and topogize S(X,D) as follows: A basic neighborhood of $x \in X$ in S(X,D) is a set of the form

$$G_{U,\alpha}(x) = \{x\} \cup ((U \cap D) \times \{\beta : \alpha < \beta < \kappa^+\})$$

for a neighborhood U of x in X and for $\alpha < \kappa^+$, and a basic neighborhood of $\langle x, \alpha \rangle \in D \times \kappa^+$ in S(X, D) is a set of the form

$$G_V(\langle x, \alpha \rangle) = \{x\} \times V$$

for a neighborhood V of α in κ^+ . When it is not necessary to specify D, we simply write S(X) instead of S(X, D).

Recall from [6] that a space X is absolutely countably compact (=acc) if for every open cover \mathcal{U} of X and every dense D of X, there exists a finite subset $F \subset D$ such that $St(F,\mathcal{U}) = X$. It is known that every T_2 absolutely countably compact space is countably compact space having the property (a) (see [2,6]). Moreover, Vaughan^[7] proved that every countably compact GO-space is absolutely countably compact. Thus, every cardinal with uncountable cofinality is absolutely countably compact. By a Tychonoff space, we mean a completely regular T_1 -space.

Theorem 2.1 Let X be a separable space with a countable dense set D. Then, S(X, D) is star-Lindelöf space having the property (a).

- (1) If X is a T_2 -space, so is S(X, D);
- (2) If X is a regular space, so is S(X, D);
- (3) If X is a normal space, so is S(X, D).

Proof Put S = S(X, D). Now, we show that S is a star-Lindelöf space having the property (a) simultaneously. For this end, let \mathcal{U} be an open cover of S. Let T be the set of all isolated point of κ^+ and let $F = D \times T$. Then, F is dense in S and every dense subspace of S includes F. Thus, it suffices to show that there exists a countable subset $B \subset F$ such that B is discrete closed in S and $St(B,\mathcal{U}) = S$. For each $d \in D$, $\{d\} \times \kappa^+$ is acc, there exists a finite subset $B_d \subset \{d\} \times T$ such that $\{d\} \times \kappa^+ \subset St(B_d,\mathcal{U})$. Let $B' = \bigcup \{B_d : d \in D\}$. Then, $D \times \kappa^+ \subset St(B',\mathcal{U})$. For each $x \in X$, take $U_x \in \mathcal{U}$ with $x \in U_x$ and fix $\alpha_x < \kappa^+$ and $\alpha_x \in D$ such that $\{\langle d_x, \alpha \rangle : \alpha_x < \alpha < \kappa^+\} \subset U$. For each $\alpha_x \in C$ and $\alpha_x \in C$ and $\alpha_x \in C$ and choose $\alpha_x \in C$ and $\alpha_x \in C$ are $\alpha_x \in C$ and $\alpha_x \in C$ and $\alpha_x \in C$ and $\alpha_x \in C$ and $\alpha_x \in C$ are $\alpha_x \in C$ and $\alpha_x \in C$ and $\alpha_x \in C$ and $\alpha_x \in C$ are $\alpha_x \in C$ and $\alpha_x \in C$ and $\alpha_x \in C$ are $\alpha_x \in C$ and $\alpha_x \in C$ and $\alpha_x \in C$ are $\alpha_x \in C$ and $\alpha_x \in C$ and $\alpha_x \in C$ and $\alpha_x \in C$ are $\alpha_x \in C$ and $\alpha_x \in C$ and $\alpha_x \in C$ are $\alpha_x \in C$ and $\alpha_x \in C$ and $\alpha_x \in C$ are $\alpha_x \in C$ and $\alpha_x \in C$ and $\alpha_x \in C$ are $\alpha_x \in C$ and $\alpha_x \in C$ are $\alpha_x \in C$ and $\alpha_x \in C$ and $\alpha_x \in C$ are $\alpha_x \in C$ and $\alpha_x \in C$ and $\alpha_x \in C$ are $\alpha_x \in C$ and $\alpha_x \in C$ and $\alpha_x \in C$ are α

Let $B = B' \cup B''$. Then B is a countable subset of F such that $S = St(B, \mathcal{U})$. Since $B \cap (\{d\} \times \kappa^+)$ is finite for each $d \in D$, B is discrete and closed in S, which proves that S is a star-Lindelöf space having the property (a).

The proof of the statements (1) and (2) is obvious. We omit it here.

Finally, to prove the statement (3), assume that X is normal. Let A_0 and A_1 be disjoint closed subsets of S(X, D). Since X is normal and $\kappa^+ > |X|$, we can find disjoint open subsets U_0, U_1 of X and $\alpha < \kappa^+$ such that $A_i \cap X \subset U_i$ and

$$(U_i \cup ((U_i \cap D) \times (\alpha, \kappa^+)) \cap A_{1-i} = \emptyset$$

for each i = 0, 1. Let $X_0 = D \times \kappa^+$ and put

$$B_i = ((U_i \cap D) \times (\alpha, \kappa^+)) \cup (A_i \cap X_0)$$
 for $i = 0, 1$.

Then, B_0 and B_1 are disjoint closed in X_0 . Since X_0 is normal, there exist disjoint open sets V_0 and V_1 in X_0 such that $B_i \subset V_i$ for each i = 0, 1. Let $G_i = U_i \cup V_i$ for i = 0, 1. Then, G_0 and G_1 are disjoint open sets in S(X, D), $A_i \subset G_i$ for each i = 0, 1. The proof is complete. \square

For a Tychonoff space X, let $\beta(X)$ denote the Čench-Stone compactification of X.

Example 2.2 (Arhangel'skii and Gordienko^[8]) There exists a separable T_2 -space X such that $e(X) = 2^c$.

Proof Let $X = \beta(\omega)$. We define another topology on X as follows: every point of ω is isolated and a basic neighbourhood of a point $x \in \beta(\omega) \setminus \omega$ takes the form $\{x\} \cup (U_x \cap \omega)$, where U_x is a neighbourhood of x in $\beta(\omega)$. Clearly, X is T_2 and separable, since ω is a countable dense subspace of X. Since $\beta(\omega) \setminus \omega$ is discrete and closed in X with $|\beta(\omega) \setminus \omega| = 2^c$, we have $e(X) = 2^c$, which completes the proof. \square

Remark 1 Arkhangel'skii and Gordienko^[8] called the topology of Example 2.2 to be strong topology of $\beta(\omega)$.

Remark 2 Recall from [6] that a space X is absolutely star-Lindelöf if for every open cover \mathcal{U} of X and every dense D of X, there exists a countable subset $F \subset D$ such that $St(F,\mathcal{U}) = X$. Bonanzinga^[5] constructed an example having same properties as example 2.2.

It is open whether the extent of a Tychonoff star-Lindel" of space having the property (a) is greater than c. Now, we give a Hausdorff example.

Example 2.3 There exists a T_2 star-Lindelöf space S having the property (a) such that $e(S) = 2^c$.

Proof Let X be the same as in the proof of Example 2.2, $S = S(X, \omega)$. Then, S is a T_2 star-Lindelöf space having the property (a) by Theorem 2.1. Since $\beta(\omega)\backslash \omega$ is discrete closed in S and $|\beta(\omega)\backslash \omega| = 2^c$, we know $e(S) = 2^c$. \square

Remark 3 Song^[4] constructed that the extent of a T_1 star-Lindelöf space having the property (a) can be arbitrarily large.

Acknowledgment The authors are most grateful to Prof. W.X.Shi for his helpful comments.

References:

- [1] VAN DOUWEN E K, REED G M A, ROSCOE A W, et al. Star covering properties [J]. Topology Appl., 1991, 39: 71-103.
- [2] MATVEEV M V. Some questions on property (a) [J]. Questions Answers Gen. Topology, 1997, 15: 103-111.
- [3] ENGELKING R. General Topology [M]. Revised and completed edition, Heldermann Verlag, Berlin, 1989.
- [4] SONG Y K. On some questions on star covering properties [J]. Questions Answers Gen. Topology, 2000, 18: 87-92.
- [5] BONANZINGA M. Star-Lindelöf and absolutely star-Lindelöf spaces [J]. Questions Answers Gen. Topology, 1998, 16: 79-104.
- [6] MATVEEV M V. Absolutely countably compact spaces [J]. Topology Appl., 1994, 58: 81-92.
- [7] VAUGHAN J E. On the producy of a compact space and an absoluted countably compact space [J]. Ann. New York Acad. Sci., 1996, 788: 203-205.
- [8] ARHANGEL'SKII A V, GORDIENKO I Y. Relatively locally finite Hausdorff spaces [J]. Questions Answers Gen. Topology, 1994, 12: 15-25.

关于 Matveev 的一个问题

宋延奎1,李瑞2

- (1. 南京师范大学数学系, 江苏 南京 210097;
- 2. 苏州工业园区职业技术学院公共学科部, 江苏 苏州 215021)

摘 要: 在这篇文章里,我们给出了一个具有性质 (a) Hausdorff star-Lindelöf 空间 X 使 得 $e(X) = 2^c$, 这个例子部分地回答了 Matveev 的一个问题.

关键词: Hasudorff star-Lindelöf 空间;密度.