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1. Introduction

In recent years several authors!~5 have given considerable attention to Hilbert in-
equalities, Hilbert’s type inequalities and their various generalizations

Very recently, B.G.Pachpattel® proved some new inequalities similar to Hilbert in-
equality and gave two basic theorems as follows.

Theorem A Let p > 1,9 > 1, and let {a,,} and {b,} be two nonnegative sequences
of real numbers defined for m = 1,2,...,k and n = 1,2,...,r, where k,r are natural
numbers. Define A,, = Y.\~ a, and B, = Y ;_, b;. Then

. 1/2
ZZ At "<C (p,q,k, r)(Z(k—m+1)(Afn-1a1n)2) X

m=1n=1 m=1

; S\ 12
(Z(r-nu)(z;g;lbn)) , (1)

n=1

unless {a,,} or {b,} is null, where

Clp,q,k,7) —pQ\/— (2)
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Theorem B Let p > 1,9 > 1 and f(o) > 0,9(t) > 0 for o € (0,2),7 € (0,y), where
z,y are positive real numbers and define F(s) = [ f(o)do and G(t) = [y g(r)dr for
s €(0,z),t € (0,y). Then

Ir F—p(f—}?;(—tldsdt <D(pg,2.0) ([ (e - 3)(FP*1(s)f(s))2ds)l/2 x
(['w-oe@awya)”, )
unless f = 0 or g = 0, where
D(p,q,2,y) = %pq\/ﬁ- (4)

In the present article we establish some new strengthed and reversed inequalities of
the above inequalities. As applications, we generalize and strengthen some new Hilbert
type inequalities.

2. Lemmas
Lemma 1"T-%%) If 2 and y are positive and unequal, then
re" Nz —y)<ae" —y <ry Hz-y) (0<r<]), (5)
ra’ Mz —y)>2 -y >ry Nz —y) (r>1), (6)
Obviously, the inequalities (5) and (6) become itentities whenr = 0,7 = 1, orz = y.

Lemma 2 Let % +i=1,a> 0,a > 0 and b > 0. Then we have the following estimates.
(1) for0<p<1,

sup[la‘l/qa + lal/llb] — al/pbl/q; (7)
a>0 P q

(2) forp>1,
inf[lanl/qa + -1-al/"b] = q!/Ppl/e, (8)
a>0'p q

Lemma 3 If f(z) > 0,g(z) > 0, f(2) € L"[a,8],¢(z) € L%a,b] and 0 < p< 1,1 + 1 =1,
then for § > 0,

1 b b 1/p b 1/q
—_— f:cg:cda:z(/f”:cdz) </gq:cd:c> , 9
o5 ) @z ([ ) [ ¢(=) (9)

where C(p,f) = % bl +(1- %)ﬂl/”. The inequality is reversed if p > 1.

Proof Let us consider the following function
1 o1/e-1) (f7(2) 1 g'(z)
$(8) = —gV/(p-1) (____> 1 - =\gi/e ( ) 1
OREY: ) - e (L)), (10)
— 99 —
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where F = f: fP(z)dz, G = f: g%(z)d=
Only consider the case of 0 < p < 1. We obtain that

_ s (GfP(=) _ f(z)g(=)
max(2(p)) = (Fg‘I(w)) (R rree) " (R artera) o

and because

max[®(3)] > (8), (12)

integrating both sides of (12) over z form a to b and in view of (10) and (11), we can get

(9)-

Similarly, we can also get the following

Lemma 4 If:c,->0,yi>OandO<p<1,-11;+%:1, then for 8 > 0,

n i/p n 1/q
s () () &

where C(p,) is as in Lemma 3. The inequality is reversed if p > 1.
3. Main results

Our main results are given in the following theorems.

Theorem 1 Under the hypotheses of Theorem A, assume 0 < p < 1,0 < ¢ <1 and

71; + % =1,0< h< 1. Let ® ¥ be two real-valued nonnegative, concave and monotonely

increasing functions defined on R* = [0, 00). We denote integrated functions &(--- #(z))
N —r

M
and ¥(---¥(y)) by M(z) and ¥N(y), respectively, where M, N are natural numbers.
S e’

N
Then for a > 0,0; > 0 (i = 1,2,3,4),

hlA, B, - M(4il) gN(Bi)

inf,so(In - a=1/t 4 hm - a1/k)

ZZ

kl/l l/hHC h ,Bz

m=1n=1 i=1
k h 1/h r ; 1/1
(Z (am - @M (457)) " (k= m + 1)) (Z (b - ®N(BI)) (r—n+ 1)) (14)
m=1 n=1
L
where C(h, ;) = }17 F Ty (1- }1_1)51_1/}{
Proof From (5), we obtain that
k-1 k-1 k
S (AL~ AL = A2 Y G A = Y an AR
m=0 m=0 m=1

where 0 < p < 1.
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Hence . o .
- p—
Afn > Zs 1 aﬂA

P T Yiiia
From the hypotheses of Theorem 1 and in view of Jensen inequality®! and the special case
of Lemma 4, we have for 81 > 0

(15)

m

‘}M(A—) C(h, By (Z(aa"fM(A”'l))h)l/h' (16)
P /7 Anm ’

s=1

Similarly, for 0 < ¢ < 1 and 8, > 0

n

_ 1/1
g (Eﬁ) > 2 C(h, pnt/" (Z (b - €V (B~ 1))') : (17)
q B t=1

From (16),(17) and in view of (7), we obtain that

p-1 g-1
M, B, &M (T oV (B

infyso(ln- a1/t + hm - al/h)

m

2 1h / n 11
> l:IC(h,ﬂ,') (Z (as . <I>M(AI;‘1)>"') (Z (bt lIIN Bq 1))l> . (18)

s=1 t=1

Taking sum in both sides of (18) over n from 1 to r first and then taking the sum for the
resulting inequality over m from 1 to k, by using Lemma 4 and interchanging the order of
the summations®), we have for 83 > 0,84 > 0

p—1 -1
k r hlAﬂLBﬂ ’ QM( Am’ ) ‘I’N( )
p q
mZ__an:l infaso(ln - a~ 4+ hm - al/t)
2 k m A 1/},_ r n l 1/1 .
2 [Tewp) 2 (Z (as - 2(az7)) ) > (Z (b 9 (B )
=1 m=1 \s=1 n=1 \t=1
k m ‘ A 1/h r n l 11
2 kl/lrl/hHC(h,ﬂ, (Z 3 (as M (pr- 1)) ) (ZZ (bt ‘ WN(BE‘I)) )
=1 m=1s=1 n=1t=1

o B N 1/h
(am - @M(A27Y)) (h-m+1)]  x

™=

4
= k'] C(h, Bi) (

=1

r 1/1
(Z (bn . q/N(Bg;l))' (r—n+ 1)) :

n=1

n=1

This completes the proof.

Remark 1 By the same steps as in the proof of Theorem 1 with suitable modification,
and in view of inequalities (6) and (8) and the inverse inequality of (13), we can get the
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inverse inequality of (14) as follows:

Corollary 1 Under the hypotheses of Theorem 1, let h,p,q change to h > 1,p > 1,9 >
1 and let ® and ¥ be two real-valued nonnegative, convex and monotonely increasing
functions defined on R* = [0,00). Then for a > 0,3; > 0

1
hiAmB, @M(Ap ) (Ba
infaso(in - a~1/t + hm - al/h)

k h
(Z (am - @M (a2)" (k= m+ 1))

-

4
< kYT (R, B) %

=1

, 1/t
(Z (bn : ‘I'N(Bg‘l))l (r-n+ 1)) (19)

n=1

1/h

In (19), when M = N = 1L,h =1=26;, = 1(i = 1,2,3,4),®(z) = z,¥(y) = y, then
the inequality (19) reduces to the following inequality

” Af’nB
Z Z m1/2n1/2

m=1n=1

k /2 , . R 1/2
< pgVkr (}: (amaz; 1) (k—m+ 1)) (Z (bBI) (r—n+ 1)) . (20)

m=1 n=1

Since that m + n > 2m/2n*/%(m > 0,n > 0), inequality (20) is just a strengthened form
of inequality (1).

Theorem 2 Let p,q,h and | be as in Theorem 1, f(¢) > 0,g9(7) > 0 and F(s) =
Jo flo)de,G(t) = f(fg('r)dr, where g,s € (0,z), 7,t € (0,y) and z, y are two positive real
numbers. Let ® and ¥ are two real-valued nonnegative and concave functions defined on
Ry . Then for a > 0,8; >0

s (£52)e(250)

nfaso(lt - a1/ + hs - al/h)

. 1/h
> :cl/lyl/hHC(h,ﬁi)- (/0 (z - s)(f(s)-fI)(F”‘l(S))>hd3) X

=1

(/Uy(y - t)(g(t) : ‘I’(Gq—l(t)))ldt>1/l, (21)

1

1_
where C(h,5;) = 8 + (1 - %)53/"_

Proof From the hypotheses, it is easy to observe that

Fr=i(s) _ Jo FP~ (o) f(o)do
P Io flo)de

s €(0,z).
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On the other hand, in view of Jensen integral inequality and Lemma 3, it turns out that

Fp—l(s) 1 y p~1
q»( - ) > F(s)/o @(F (a)) - f(e)do
1/h

f%;jC(h,ﬂl)sl/l (/Os (f(a) : @(Fp—l(a))>hda) . (22)

I

and similarly,

Gy L 1 un ([ 1) Var )
\1:( ; )ZG(t)C(h,ﬂz)t/ (/0 (g(T)-‘I’(G (T))) dr) : (23)

From (22),(23) and in view of (7), we have

th(s)G(t)Q<F”:(S))‘I,(G"—ql(t)> fl .

infaso(lt - a~V + hs - al/h)

(/Os (f(a) - @(F”"l(o»)hda) " (/Ut (9(7') : ‘P(Gq—l(-r)))ldr) 1/1. (24)

Integrating both sides of (24) over t from 0 to y and then integrating the resulting inequality
over s from 0 to z, and using again Lemma 3, we observe that for 83 > 0,84 > 0

o (7514)  (279)

p

hiF(s ;
dsdt
/ / lnfa>0 It « 1/l+hs al/}e) $
1/h

> HC(h,ﬂi)/Oz (/0 (f(a') : @(Fv-l(a)))hda) dsx

4 P 1k
_ zl/lyl/hHC(h,ﬂi) (/0 (z - s)(f(s) . (I,(Fp—l(s)))hds> X

i=1

(/Oy(y - t)(g(t) : Q(G"“l(t))>ldt)

This completes the proof.

1/1
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Remark 2 From the proof of Theorem 2 and in view of inequalities (6) and (8) and the
inverse inequality of (9), we can get the inverse inequality of (21) as follows:

Corollary 2 Under the hypotheses of Theorem 2, if 0 < p<1,0<¢<1land0<h<1
change top > 1, > 1 and h > 1, & and ¥ are two real-valued nonnegative and convex
functions. Then

e () (E50)

mfa>g (It - a1t 4 hs - al/h)

. 1/h
< zl/’yl/hHC(h,ﬂi)' (/U (z - s)<f(s)-<I>(FP-1(s)))hds) X

i=1

(/ (y—t) ( 2 (Gt )))ldt>l/l. (25)

In (25),if h=1=2,a=1,08 =1 (i=1,2,3,4),%() = z and ¥(y) = y, then we
obtain that the inequality (25) reduces to a strengthened form of the inequality (3).

Similarly, by the same method, we can also establish strengthed and reversed inequal-
ities for other inequalities given by Pachpatte [6].

Finally, we give an example as follows:

Estimate the following double integration

= // s e (26)
where s € (0,1),t € (0,1).
In fact, we can change (26) to
1
L1/2- (1) = 1)(et 1) - @(ﬁe’_—ll)l;l) _\I,(get_l)H)
/0/0 (=1)-¢-16-D/=1) 4 1/2.5.12 dsdt. (27)

Let f(o) =€¢”,9(r)=€¢",h=1/2,p=¢gq=1,a=1,and z =y = 1, Then
ot ¢ (5] v (C50)
H = dsdt.
./u / mf(,>0(lt a4 hs- al/h) 8

By using the inequality (21), we have for 3; = 1(¢ = 1,2, 3,4)

H> W (/01(1—5)(66 3(1) 1/2d5> (/ (- t)(e ))”ldt)_l
= (/01(1 — s)e‘/zds>2 X </01(1 ~t)e” ) ds = 46(261/2 - 3)%
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—X£E Pachpatte NFEXIIR SR @K

ié ‘& ﬁg 1.2
(1 EMREEER,  L¥ 200436; 2. mMNPEESHEREER,  WHE BM 256604)

B B AXHEVT B MNEMKZE Pachpatte NER. {EHRN A, #STMMERT —
HF R Hilbert A%,

XEiE): ROARL; FAR%ER; Jensen RER.
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