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Abstract: We discuss the third boundary-value optimal control problem governed by
a parabolic and hyperbolic coupled system. We establish the existence of the optimal
control and prove that the optimal control is bang-bang.

Key words: third boundary value; parablic-hyperbolic systemn; optimal control; bang-
bang.

Classification: AMS(2000) 35K99, 35M20, 93A30/CLC number: 0175.28
Document code: A Article ID: 1000-341X(2004)01-0029-08

1. Introduction

In this paper, we are concerned with the third boundary-value optimal control problem
governed by the following parabolic and hyperbolic coupled system

Ou. /Ot — Au, = 0, z = (z1,22) € N(2), (1.1)
0f. /0t = puc /{1 + [8(€f5)/321]2}1/2, on T'.(t), (1.2)

subject to the initial value conditions
ue(2,0) = 0, fe(21,0) = fo(z1,21/¢), (1.3)

and the boundary value conditions

Ou./0v + au, = g, on Ty = {(z1,b);—a < z; < a}, (1.4)
duc/0zy =0, on z; = *a, (1.5)
Ou. /v + p(z1,21/€)ue = 0, on I.(t), (1.6)
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where Q.(t) = {(z1,22) € Qo;efe(z1,t) < 22 < b}, Qo = {(21,22);—a < 21 < a,0< 23 <
b}, T.(t) = {z2 = efe(21,t),—a < 21 < a}, € is a small positive parameter of the same
order of magnitude as the feature size, v denotes the outward normal to the boundary
I'.(t), a is a coefficient. The basic assumptions on p and f; are

(H1) p(z1,&) and fo(z1, &) are smooth functions in (21,§1) € [—a,a] X R, 1-periodic
in &;

(H2) ps (£a,&1) = pe (£a,61) =0, (fo)o (£a,61) = (fo)ey (£a,6) = 0;

(H3) fo(z1,&1) > 0, there exists a pp > 0, such that p(z1,£1) > po.

The problem arises from a simple model of chemical vapor deposition on a silicon
wafer. In this model, v, and f., which represent the concentration of one active species
and the surface of the moving boundary respectirely, are all the condition variables. The
control variable g = g(z;,t), which can control both the concentration and the speed of
the flux, is defined in the rectangle @ = {(z;,t);—a < z; < a,0 <t < T}. We want to
choose the control variable g in the admissible control set U = {g € L*°(Q);0 < g < M},
so that the surface of the film will approximate a prescribed profile. For this reason, the
cost functional is chosen as

T fra
o) = [ [ w0felart) = ccler, ) dmat
where c.(z1,t) is the given profile. So the problem can be formulated as

(P) min{J(g);9 € U}, where (fe,uc) solves (1.1) — (1.6).

Optimal control problems for chemical vapor deposition reactors were considered by
several authors. The model in [6] is based on ODE and do not incorporate the moving
surface of the film. Belyaevl! investigated the model of stationary film surface z, =
ef(z1,21/€), by assuming that u satisfies the Poisson equation. More recently, Friedman,
Hu and Liul' extend the results of Belyaev to a more general three scales stationary
boundary, z; = fy(z1) + efi(z1,21/¢) + €* fo(21,21/€,21/€?). The matched asymptotic
expansion was employed in [7] and [8] to study the same problem. In [8] and [9] the
authors describe the physical aspects of the model. [11] and [12] provide the theoretical
framework for this work, which is meant as the first step towards a practical simulator for
chemical vapor deposition in the context of semiconductor manufacturing.

It was Friedman and Hul!! who first considered the optimal control problem by PDE
model with non-stationary moving boundary. They investigated the second boundary
value control problem, namely, the control variable is the flux of the chemical vapor.
Using a parabolic variational inequality they deduced that the optimal control is bang-
bang. Owur paper is concerned with the third boundary value optimal control problem.
This work can be regarded as a natural continuation of [1]. From the practical point of
view, it is natural to control both the flux and the concentration of the chemical vapor.
Moreover, from the mathematical point of view, the third boundary value problem differs
from the second boundary value problem in several aspects. So, for the treatment of the
current problem, we need not only to utilize the known technique, but also to tackle the
new aspect among the problem.
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The purpose of this paper is to prove the existence of the optimal control, and to
prove that the optimal control is bang-bang. In order to get the existence of the optimal
control, we should firstly consider the boundary value condition for fixed ¢ and establish
the existence and uniqueness of the corresponding problem. Due to the weakness of the
smoothness of the control g, the classical theory for parabolic equation cannot be used
directly. However, we may utilize the result about the second boundary value established
by Friedman and Hul?. In other words, we get the existence of solutions of (1.1)~(1.6),
based on the fixed-point theorem and the Schauder type estimates. In order to consider
the properties of the minimizers, the problem is formulated in terms of its homogenized
approximation. We establish the homogenized approximation of the system (1.1)-(1.6),
and then obtain an L™ estimate on the error between the free boundary and the homog-
enized boundary. Based on the estimate we prove the existence of the optimal control.
After that we use the method similar to Friedman and Hul! to discuss the properties of
the optimal control gg, and get that gy is bang-bang.

Our work is organized as follows. Section 2 collects the preliminaries and statements
of results. The proofs of theorems will be given subsequently in Section 3.

2. Preliminaries and main results

As a preliminary, we first have

Theorem 2.1 For any fixed g € U, there exists a unique solution (uc, f.) of the problem
(1.1)-(1.6).

Since the problem (1.1)—(1.6) relates a moving boundary, it is not so easy to show the
existence of the optimal control, so we consider the homogenized approximation as follows:

Ou/dt — Au =10, z €y, (2.1)
dufdv + au = g(z1,t), z €Ty = {es = b}, (2.2)
0u/dz, =0, z; = ta, (2.3)
du/0v + Pu=0, z €T = {z = 0}, (2.4)
w(z,0) =0, z €y, (2.5)
8 (21,1,8)/0t = p(z1, &1, u(zy, 0,041 + [0 (21,61, 0)/06 Y%, (26)
f(21,£1,0) = fo(z1,61), (2.7)
where L
P(ent) = [ plan&){1+ 0)(1,6,0)/06 1} dEr. (2.8)

The corresponding problem is then changed to

(P") min{J[g];g € U}, where (f,u) is the solution of (2.1) — —(2.8),
. T ra 1
Jai= [ [° [0t 6.0 - er,61,0) deadadt,
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where ¢(z1,£1,t) is a continuous positive function for 2; € [-a,a], & € R, 0 <t < T,
1-periodic in £;.
Similar to Theorem 2.1, we have

Theorem 2.2 For any fixed g € U, there exists a unique solution (u, f) of the problem

(2.1)-(2.8).

For the error estimate between (u,, f.) and (u, f), we have

Theorem 2.3 Let (uc, f.) be the solution of (1.1)-(1.6), and (u, f) be the solution of
(2.1)-(2.8). Then
— 2 <
orgntz;x:r”u‘ ullL2(q, 1) < Cé,

UfsntaSXTer(Zl»t) — flzr,z1/e, )| L2, ) < Ce.

Theorem 2.4 There exist at least one g* € U, which minimizes J(g).

Theorem 2.5 Let (gy,u’) be the solution of (P’), and assume

/a o*(zy,t)dzy #0 for ae te(0,T) (2.9)

—a

Then
go = Mxa, (2.10)

where A is the subset of , and

1 t ¢
U(Il,t) = ¢(t)/ [G(xl,gla'/(; uo(zl,O,T)dT)—C(QBI,El,t)}XGs(Il,El,[} uu(r1101r)d7-)d£1’

U
0G/0s = p(z1, &)L+ GE]'/2, 0<s< S,

G(£13€17 0) = f()(zl;EI)-

Theorem 2.6 Under the assumptions of Theorem 2.5, there is a A < 0, so that
go =M, ae on A= {(z1,t) € Q,W(z1,b,t) <A}, (2.11)
go =0, ae. on A={(z1,t) € Q,W(z1,b,t) > A}; (2.12)
and when A = 0, (P’) get the minimum.

3. Proofs of the main results

We are now in a position to prove our main results. Considering the limitation of
length of the paper, we give the proofs only on Theorem 2.1 and 2.4. The ideas of the
proofs Theorem 2.2, 2.3, 2.5 and 2.6 are similar to those in [1] and [2], and hence the
details are omitted.

Proof of Theorem 2.1 Based on the results established by Friedman and Hul?l, the
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proof can be processed by applying the fixed point theorem. For this purpose, we need
to construct an iterate sequence of solutions. Without loss of generality, we assume that
ab < 1,a < 1, otherwise, we may use the rescalling technique (replacing z by z/¢ and ¢t
by t/e?). Let g € U be fixed. First, we choose uy € L*(Q.7). By deduction, if for some
fixed n, u,_1 € L*®°(Qcr) is determined, then the result of Friedman and Hu [2] gives a
pair (un, fn) satisfying the following system

Ou, /0t — Au,, =0, z € 2.(t), (3.1)
0un,/Ov = g — auy,—y, z €Ty = {(21,b);~a < 2, < a}, (3.2)
Ou,/0z, =0, z; = ta, (3.3)
Oun/0v + pu, =0, z € (), (3.4)
u,(z,0) = 0, (3.5)
0fuf0t = puall + (3 fu) /0212, 2 € Tu(t), (3.6)
fn(:l:lao) = f()(zlvz1/€)> (37)
and the following estimates hold
Ifalloe <€, efu)ailix <O, (fa)illo < C, (38)
lunlloe < C*(lgllo + laun-1lloc), (3.9)

where C' and C* are two constants independent of n. Since ab < 1 and a < 1, we can
obtain C* < 1. Then

*

ol € =gl + ol < Clgllc + ool (3.10)

Now, we estimate the Holder norm of u,, and f,,. Let w; = du,, /02, and wy = Ju,,/0z,.
By the results above, we then find that |jw;]|s < C, |lwe|lx < C. It is clear that

[Vu,[|lx < C. (3.11)
Consequently, when n is large enough, we can derive that
[ (21, 22,t) — un(y1, y2,t)| < C(l21 — y1| + |22 — ¥2])- (3.12)

For all ¢,s € [0,T], we define |At| = |t — s|, and let 2, z; + (At)l/z, Zo, 27 + (At)l/2 €

[—a,a]. Integrating (3.1), we then have

t oAD' peat (B gy
deldyng
L L%

t z|+(At)‘;'~’ ca+(At)' 1T 524, 0%u,,
= t 4 ——2dy,dyqdr.
A /;“ /w2 [ 83‘12 + azg ] Y14y2
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By the estimate (3.11), it then follows that
o1 +H{A)Y? pm(AN?
|/ / (un(y1,¥2,t) = wnly1,¥2,5))dy1dys|

22+ (A2 gy Ouy,
/ / —u-(l'l +(A)Y? gy, 1) - 5;(21»%, 7))dy,dr+

1 +( At)ll2 9 " 8 .
[ G+ (4015,m) - ZE2an, 20
< 4C|AtY2.

Manipulating the integral mean value theorem, we can show that there are z] € [24,2; +
(At)}?) and z3 € [z9, 29 + (At)}/?], which satisfy

lun (25,25, t) — un(2], 23, 8)] < C|ALM2, (3.13)
We exploit (3.12) and (3.13), then know when n is large enough, there have
lu"(zlv 2, t) - u"(yl’ Y2, 5)'
< lu"(zlv Iz,t) - un(:c’{,:cg,t){ + ‘u“(r;v’”;vt) - un(m){sm;’ S)H'

lun(r;a 2;, 3) - un(y11y27 S)I
< C(lzy = y1] + |22 ~ ya| + |AL[M2).

So, there exists a subsequence of {u,}, denoted also by {u,.}, and u,, — u., Vu, v, Vu,.
Similarly, we see that for some subsequence of {f,}, denoted also by {f.},

0(5 n) w* a(sfe)
fn fe’ 81!1 (9131 ’

By using the fact that (u,, f,,) is the classical solution of (3.1)~(3.7), and taking n — oo,
we then assert that (u., f.) is the weak solution of (1.1)-(1.6).
Now we prove the uniqueness. Let u;, u; be two solutions of the problem. Then

/ [ (V1 - Vua)Vidadt - / /Q (41 — u)rdedi+
eT eT

/ plur — ug)pdsdt + afu; — ug)pdsdt
st(o T) I",X(U,T)

- /ﬂ (uz(2, T) - w(z,T))p(z, T)d.

&

Choosing ¢ = u; — us, we obtain

// V(u; — uy)|?dzdt + p(uy — uz)?dsdt + a(u; — uz)?dsdt
T, x(0.T) Tyx(0,T)

= //Q (=)o —w)ededt — [ (n(n,T) - e, 1)),

€

© 1995-2005 Tsinghua Tongfang Optical Disc Co., Ltd. All rights reserved.



and hence

/ (w1 — uz)?dsdt + g(u1 — up)*dsdt
T.x(0,T) Tyx(0,T)
< —%/ (ui(z,T) — us(z,T))*dz < 0, (3.14)

€

which implies that u;(z,t) = uy(z,t), a.e. on Q..
The proof of uniqueness of f, is similar to Friedman and Hul?. The existence and
uniqueness of solutions of (2.1)—(2.8) for fixed g can be discussed similarly.

Proof of Theorem 2.4 Let {g,} be a sequence in U, for which
lim J(g,) = inf J(g).
(g-) = inf J(g)

100

By the uniqueness result, for each n, we can define (uy,, f,,) as the solution of the problem
(2.1)-(2.8), with g = g,,. Then the following equality holds

1
~— [ Wi(z,T)dz + // |Vu,|*dzdt + Puldsdt+
2 Ja, Qr I'x(0,T)
/ auldsdt — / gnundsdt = 0. (3.15)
Tyx (0.T) Ty x(0,T)

Noticing that the first three terms in (3.15) are nonnegative, we can get

/ u,dsdt < C,
Ly x(0,T)

where C is a positive constant independent of n. Since g,, € U, we have

/ (2, T)dz < C, // Y (2, 8)|dzdt < C,
Qo QT

where C is a positive constant independent of n. From theorem 2.1, there exists a subse-
quence of {u, }, denoted also by {u,}, and u*, which satisfy

U, — u*, ae on Qr,; Vu, S Vu", on L*Qr).

Using Theorem 2.1, we make sure that ||f.|| < C. So f, =N f*. In view of the compact-
ness result in [3], we conclude that

gn — g, on L™((0,T) x 8Q%). (3.16)

For U is closed in this topology, ¢* € U. Letting n — oo, we see that (u*, f*) is the weak
solution of (2.1)—(2.8), corresponding to g~.

Now we prove g* is the optimal control. For (u,, f,,) is the solution, which is corre-
sponding g,,, we have

. T ra 1
J(g.) = / / a / D) (Fu(z1,60,8) — e(21, 61, 1))2d6rdzydt.

— 35 —

© 1995-2005 Tsinghua Tongfang Optical Disc Co., Ltd. All rights reserved.



Recalling (3.16), we can assert that
gn — g°, on L*((0,T) x 8Q0).

At last, by the lower semicontinuity of the cost functional and using the weak convergences
derived above, we see that g* is an optimal control. The proof is completed.
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