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Abstract: In the paper we consider a wide class of slow-fast second order systems and
give sufficient conditions for the existence of a singular limit cycle related to a homoclinic
orbit.
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1. Introduction and notion

A homoclinic orbit of a continuous time autonomous dynamical system is an orbit
tending to an equilibrium in both time direction. Homoclinic orbits play an important
role in the analysis of dynamical systems depending upon a parameter a. They are
intersection of the stable (incoming) and the unstable (outgoing) invariant manifold of
a saddle equilibrium point. Even in the second order case, where the saddle invariant
manifolds are one-dimensional, to prove the existence of homoclinic orbits is extremely
difficult. Analytical solutions are only available in very special cases (see [1,2]).

At the present time, there is considerable interest in the theory of singular perturbation.
Szmolyan has studied the existence of “slow” homoclinic orbits in n-dimensional slow-fast
systems. However, these orbits are very special since they do not involve the fast dynamics
of the system (see [3]). Kuznetsov, Murator and Rinaldr have discussed the existence of
singular homoclinic orbit at ag, which implies the existence of a singular limit cycle in
H.1 systems for a > agora < ag(see [1]), but they have not had a discussion on existence
conditions of a singular homoclinic orbit and a singular limit cycle for the slow-fast systems.

In the next two sections we extend the above related problems and give existence
conditions of a singular limit cycle and a singular homoclinic orbit to a class of positive
second order slow-fast systems. As its application, in Section 4 we analyse a special second
order dynamical system modeling a three stage food chain (see [1]).
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2. Preliminaries

Consider a positive second order slow-fast dynamical system

ez = zF(z,y,a),
{ y= yf(z,y,a), (1)

where ¢ is a small positive parameter, =z and y are the fast and slow variables, respectively,
a € J = (aj,az) is a parameter, and the functions F and G are sufficiently smooth.
Systems of this type frequently appear in population dynamics and chemical kinetics. We
restrict our attention to the positive octant.

There are two dynamical systems associated with (1).

(I) Fast system

z==zF(z,y,a) (2)

with 2 € Ry, and y € R} as a parameter. Nontrivial orbits of system (2) become parallel
lines y = const if imbedded in the plane (z,y).

The equilibria of the fast system (2) for a given value of a are the union of trivial and
nontrivial branches

M. = {(=,9)lz = 0} U {(z,)|F(z,9,a) = 0}. (3)

The trivial and nontrivial branches of M,can intersect at some points with z = 0 (self-
crossing points). The y-axis is invariant for each a € J.
(II) Slow system

y=yG(z,y,a), (z,y) € My (4)
with z € R, as a parameter, and y € R;. The z-axis is invariant for each a € J.

Definition 1 A singular orbit of (1) is an oriented curve formed by the concatenation of
alternate orbits of the slow and fast system.

Definition 2 A singular limit cycle is a closed isolated singular orbit.

Definition 3 A linearly unstable equilibrium point of the slow system (4) on the stable
branch of the slow manifold (3) is called a singular saddle of system (1).

Denote stable and unstable manifolds of system (1) by Wi(a),i = 1,2, that is the two
singular orbits W, () and W, (a) coming out from the saddle form its unstable manifold
and the ones W, (a) and W, (a) coming into the saddle form its stable manifold.

Hereafter, we shall consider slow-fast systems (1) which have a slow manifold M, with
a finite number of critical points P(a;(a), az(a)) in positive octant for each a € J and a
finite number of points S(b(a),0) such that & > a; and F(,0,a) = 0 for a € J. Define

a; = min{a|P(a;(a),az(a))} and b; = min{b|F(b,0,a) = 0,b > a1 }.

Suppose the following conditions hold:

(Ay) Fyz # 0 and G > 0 at the critical points;

(Az) Fy <0,F, >0resp. F, <0on F(z,y,a) =0for 0 <z < a; (resp. a; < z < by)
and F(0,0,a) > 0;
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(As) Gy, >0for 0 <z <b;,G(0,y,a) <0 for y € R, and let the set
S ={(z,y)|F(z,y,a) = G(z,y,a) =0, for a; < z < b}
be empty set or a singleton.

Lemma 1 Assume that system (1) has a singular saddle S(ag) for a« = ag € J. Then
(i) the system has a saddle S(a) for all aclose to ag and all sufficiently small € > 0;
(ii) there is a neighborhood of the saddle in which the distance between its stable and

unstable manifolds Wi(a) and the corresponding manifolds Wi:i)(a),i = 1,2, measured

along any local transversal cross-section is a differentiable function of (¢, a) defined for all

aclose to ag and all sufficiently small € > 0 and vanishing for ¢ — 0.

Proof To prove Lemma 1, we need only checking system (1) is an H.1 system (see [1}).

Condition (A;) implies each critical point is a quadratic fold and not an equilibrium of
(1). Condition (A.) implies that the coordinates of such folds are differential with respect
to a, meanwhile the curve N = {(z,y)|F(z,y,a) = 0,(z,y) € R%} can be expressed
as y = ¢(z,y) for (z,y) € R%, and all values of « € J. Hence system (1) satisfies H.1
conditions. The Lemma follows immediately from Lemma 1 of {1].

3. Existence theorems of a singular limit cycle and a singular homoclinic
orbit

Let U be any neighborhood of the set {(z,4)|0 < z < 41,0 <y < az}. We shall prove

Theorem 1 In the above situation, if system (1) has a singular saddle S(ay) for a =
ag € J, with S(ag) = (b;,0), then

(1) U contains a unique asymptotic stable singular limit cycle of system (1);

(2) in U, the system has a unique asymptotic stable singular limit cycle for a > ay
or a < ag with a close to ay and all sufficiently small € > 0.

Proof (1) Under condition {A4z), the system (1) has a unique self-crossing point R(0, c(a))
with 0 < ¢ < a5 for each a € J. We define

Q = {(=,9)|F(z,y,a) = G(z,y,a) =0, a€J,0<z<a},

hence the set is nonempty and bounded. Let Qs = max{(z,y)|(z,y) € @} and Q,, =
min{(z,y)|(z,y) € @}. Then we have R < Q,, < Qar < P ( see Fig 1.).

In the sequel, PS5 denotes the segment P from to §. For small ¢ > 0 the following is
true. For 0 < z < z,,(resp. 2pr < @ < by) the curve F(z,y,09) = 0 lies below { resp.
above ) the curveG(z,y,ay) = 0. Along F(z,y,ay) = 0,2 =0,and y > 0if zpr < 2 < by,
y<0if0 < z < z,,. The curve PS and the y-axis for y > ¢ are the stable branches of
the slow manifold M,,, the curve PR and y-axis for y < ¢ are the unstable branches of
the slow manifold M,,, and points @ lie on the unstable branch of the same manifold.

For § > 0 sufficiently small, the orbit of system (1) starting from D, (8, c) follows the
line y = ¢ to the right until it meets the curve F(z,y,ay) = 0; follows F(z,y,a9) = 0
to the vertex P(a;(ap),az(ay)). Since this point is a quadratic fold of the slow manifold
M, , the singular orbit continues horizontally from P to P’(0,az(ag)) on the y-axis and
then follows the y-axis to point P”(0, asz(ay)) with P” on the unstable branch of the slow
manifoldM,,. The point satisfies the following properties:
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(i) [ nLakdy = 0 (see [1] );

a2 yG(0y.ae)

(11) as < c.

We shall prove (ii). If not, then a3 = ¢. A simple similar analysis shows that the
self-crossing point R(0, ¢) is an equilibrium point. According to (As), the point is not an
equilibrium point, a contradiction. This prove (ii). The orbit follows the line y = a3 to
point (4, ag).

Similarly, the unstable separatrix Wl“; of the singular saddle S{ay) intersects the line
z = § at point D,(6,d) with az > d.

Therefore, there exists a continuous function H(e, ag) : D1 Dy — D1 D,. Since H (e, ap)
maps Dj D, to itself| it has a fixed point. This proves that the system has a closed singular
orbit I'. (See Fig 2)

Ay Ay
P p
QA P‘(Ov aZ)
R(0,¢) R
T D"
» y PM0a) ~N 7,
0 8(b,,0) 0 S(b,,0)
Fig 1 Fig 2

We compute

1
1:/ div(z F,yG)dt = g/ (F+ze)dt+/ (G + yG,)dt
r r r
1

=(f  (FeeR)ts [ (Frabydes [ (Faeb)dis [ (F+z)ad
e Jppr PT TP PP

/ (G + yG,)dt
r

1
:;(Il + Iz + I;; + I4) + /[‘ (G + yGy)dt,

F+azF, as F(0,y,
+z dy'&«’/ ( yaU) = (.

I :/ F+2F, dt:/
! P'P“( ) ppr yG , ¥G(0,y,a0) 0

Since the functions F' and F), are continuous functions and ¢ is sufficiently small on P"T,
we have I, ~ 0. Similarly Iy ~ 0, and

F+zF zF,
1:/ F+:cF,,.dt:/ D2l "z/ 72 4y < 0,
° TP( ) p  yG Y Tr yG Y
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hence I < 0. This proves that the closed orbit I' is asymptotic stable (see [4,5]).

We shall show that system (1) has a unique limit cycle. If not, let I'; and I'; be
two closed orbits such that D(I'y) C D(I';). Let D(I';)\D(T'1) be the region bounded
by I'y and I';. Then the system has not equilibria in D(I';)\D(T';). On the other hand,
I';(i = 1,2), is an asymptotic stable closed orbit, a contradiction (see [4,5]) ). This proves
that T' is a unique asymptotic stable singular limit cycle, and is in U.

To prove (2) of theorem 1, we shall use the Lemma 1. The Lemma shows that the
system has a saddle S(a) for all a close to ay and all sufficiently small ¢ > 0. Further
there is a neighborhood of the saddle in which the distance between its stable and unstable
manifold Wi,it(a) and the corresponding manifold Wi’io(a),i = 1,2, measured along any
local transversal cross-section is a differentiable function of (¢, a) defined for all a close
to ap and all sufficiently small ¢ > 0 and vanishing for ¢ — 0. Hence a similar analysis
proves (2) of Theorem 1.

For § > 0 sufficiently small, denote the first intersection of Wlfe with the line z = §
by W(6,d(a)) and a saddle S(a) by (Z(a),y(a)), and the self-crossing point R(0,c) by
(0,c(a)). We shall prove the following Theorem 2.

Theorem 2 In the above Theorem 1 situation, if there is a value of & = &y € J such
that c(ao) < §(&o), then the system has a singular homoclinic orbit.

Proof Define a function A(a, §) = §(a) — d(a), then it is independent on §. By Theorem
1, we have
A(aOya) = g(ao) - d(ao) =0- d(a()) <0,
A(d(),ﬁ) = g(do) - d(do) > C(&o) - d(&o) > 0.
On the other hand, the function F and G are sufficiently and the coordinates of these
orbits of system (1) are continuous with respect to a, then A(a, §) is a continuous function.

Hence there exists a value of @ = & € J such that A(&,§) = 0. This proves that the system
has a singular homoclinic orbit.

4. Applications

Hereafter we consider the following predator-prey system

{ £k =z [TS - %)~ a%] = zF(z,y), (5)

y =Y [b+¢ -—m- a_:—ﬁ} = yG(mvyaa)a

where z and y are densities of prey and predator populations, respectively, ¢,7, K,a,b,d,e,m
are positive parameters and « is the density of the super predator measured in suitable
units. These parameters are of biological significance [1].

Ifae—m > 0,K > (%) b and [(“C—"‘)Ii;l(;e[&?_)%%‘;?iﬁj;]r(b”()21 > 1, then the system

has a unique asymptotic stable singular limit cycle. In order to deal with system (5), we
have to check the assumptions of Theorem 1. The conditions (A1)-(A3) in Section 2 are
satisfied by the system.

The condition (A;) holds, since the critical point P(a;,az) = (5—2‘—(3,'—(%%)—2), the
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self-crossing point R(0,¢) = (0, '—’al), Feo(P) = b+K) < 0 and

(ae —m)K — (ae+ m)b 40K
bt K 4adK 1 r(b+ K)?

G(P) = > 0.

The condition (A;) holds, since S(K,0) is a singular saddle point for a = ag with ag =
ae—m 3 r(K—-b—2x
dlloemmft=tml 5 0,F, = 5% < 0for (2,y) € R3,F(0,0,a) = r > 0and F, = =)
O(resp. < 0) for 0 < z < £t E=b(resp.E=t < 2 < K) on F(z,y,a0) = 0. The condition (Aj3)
holds, since Gy = (Tf‘ny > 0 for (z,y) € R2, G(0,y,a) = —m — 1 <0, meanwhile the

curve G(z,y,a) = 0 can be expressed as
a(b+z)
ae — m)(b + z) — abe

V=1 —d for (z,y) € R}

and with

dy —abea

de = [(ae — m)(b+ z) — abe]?
hence the set {(z,y)|F(z,y) = G(:c y,a) = 0,0 < & < £} is a singleton and the set
{(z,9)|F(z,y) = G(z,y,a) = 0, X7t < 2 < K} is empty or a singleton. This shows that

the system has a unique asymptgtlc stable singular limit cycle.
Further with the addition of the following condition

[(ae — m)K — (ae + m)b] - [4adK + r(b + K)?|
4(b+ K)(br + ad)[(ae — m)K — abe]

< 0,

> 1,

hence there exists a = dy = (b'+“d)[(‘“K"’)K ] such that ¢(ép) = §(&o), which implies

Theorem 2 holds. The system has a singular homoclinic orbit. This result coincides with
Theorem 3 of [1].
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