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Abstract: For aset of i.i.d.r.v. indexed by positive integer d-dimensional lattice points,
and for some general normalizing sequence, we determine necessary and sufficient con-
ditions for the law of iterated logarithm. As its application, we give conditions for the
existence of moments of the supremmum of normed partial sums.
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1. Introduction

Let (2, F, P) be a probability space, and suppose all random variables are defined on
this space.

Let d > 1 be an integer and N? denote the positive integer d-dimensional lattice
points with coordinate-wise partial ordering, <, i.e. for every WM = (my,---,my), 7 =
(ny,---,nq) € Nim <mifand only f m; < m;, i = 1,---,d. For m € N9, define
the product |7 = [[%, n;. As we know, in the case d > 1 the term @ — oo could be
understood by some different meaning. In some papers the limit # — oo means that
n; —» oo forall e =1,.--,d (or equivalently min; n; — oo). In this paper the limit 7 — oo
is interpreted or || — oo (or equivalently max;n; — o). By the way, we remark that
the limit max; n; — oo induces a finer topology then the limit min; n; — oo.

Let {X,X,,Xz,n > 1,7 € N‘i} be a family of independent identically distributed
random variables(ii.d.r.v.). For n > 1 and € N9, define

n ny d
Sn: Z Xﬂla S‘TI—: Z Xﬁf: Z Z X(mlﬁ""md)‘

m=1 m<n mp=1 my=1
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In order to bring into focus the essentials of this paper, we begin with a description
Wichura’s work(! i.e.

: | 5%
lim sup —=——=———— < 00 a.s. (1.1)
min;—o0 V/ 2{7| L2(|7])
if and only if
EX =0, EX? < 00 and EX(L(|X))*}(L2(1X])) 7! < oo, (1.2)

here and throughtout this paper L(z) = log(max{e,z}) and Ly(z) = L(L(z)), = > 0. By
the results of Li and Wul? for d-dimensional(d > 1), B-valued i.i.d.r.v., result (1.1) can
be strenghtened to

lim sup L < 00 a.s. (1.3)

imoo V2[R La(|7)

We shall consider the constant sequence {az, 7 € N4} of the type
ar=n't . nlM 10,2, i=1,--,d. (1.4)

One of the main results of the paper deals with the law of the iterated logarithm for
the normalizing sequence /2a2L; (a2),7 € N¢. On the Marcinkiewicz-Zugmund strong
law of large number for the normalizing sequence a;,7 € N¢ of the type (1.4) one can see
(3], [4] and [5] etc.

The others give necessary and sufficient conditions for the existence of moments of the
supremum of normed partial sums sup;cy« ( aZL, (aZ) ' |S7| as the application of the
law of the iterated logarithm , i.e. the first main result.

The simplest case d = 1, a, = /n has been investigated fisrt by Siegmund[6] and
Teicher!”). They proved that if EX = 0 and p > 2, then the following statement are
equivalent:

EX(L(XD)(L2(X]) " < o0 if p =2, w5

E|XP < 0 if p> 2, ’

X

E ———|P < 0, 1.6
Rl ey < (16)
E su {——————Sn [P < (L.7)

nZIl) AV Tng(n) ' ’

Siegmund/®) proving it for integers 2, (3,4,---) and Teicher(" for p > 2.
For the case d > 1, let az = /7|, EX = 0 and p > 2, Gutl® established that

EX*(L(XNYU(L(]X )™ < o0 if p =2, (1.8)

E|XP <0 if p>2, )
E sup |——E ¥ < (1.9)

SUp | ————= o0, .

mend /[l La([n])
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E sup | P < oo (1.10)

Sw
mene  [n|La([n])
are all equivalent.

The key to the proof of Gut’s result(8] is the law of the iterated logarithm(see [1]).

The results of the moments of the supremum of normed partial sums related to the
Marcinkiewicz-Zygmund strong law of large numbers for the multidimensional parameters
can be found in (8], [9] etc.

The proof of the main results of this paper will be based on the following lemmas.

Lemma 1.1 (see[4] Lemma 1.1 or [9] Lemma 1.1) Let ay,- -,y be real numbers, a =
max{a;,t = 1,---,d}, t1,---,tg > 0. Put p = max{a;ty, - -,aq4tq}, ¢ = card{i : a;t; =
pi=1,---,d}, r = card{i,a; = 0,4 = 1,---,d}. For each z > 0, put

fle)=" 3 mfTheengeh
nl/l'---n;/'ds:c

Then there exist constants cy,cy > 0 such that for every ¢ > zq:
(i) If a <0, then
(L(@)) < f(2) < e L{2))"-
(ii) If a > 0, then

e1z?(L{z))" 71 < f(z) < eazP(L(z))?H .
Lemrnalz Let 0 < tq,---,tg < 2, max{¢;,i = 1,- }—2 r=card{? : ¢; = 2,i =

-,d}. Let az be of the type (1.4), d; = card{m : ¢ < a2 < i+ 1} and p > 0. Then for
some c3 > 0,

i ta < | 0 E UG O 4,
Somrta s oo itp=2

=1

Proof By Abel method and Lemma 1.1, we have

1L2

Mu

=1

7-1 H

= (iL2(4) 5Zd1+2((w2( (4 DI+ 1)) Y

< e(5La(7)) " FA(LGG)) T + 28 sz ) (iLa(4)) 7

<{ e TS (L) T (LalG)E i p £ 2,
e3(L(5)) (L2(3) 7 ifp=2.
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Lemma 1.3 (see9] Lemma 1.2) Let B be a Banach space with norm ||-|| and {¥,7 € N9}
be independent B-valued random variables. Further let {az,7@ € N} be a set of positive
real numbers such that a7 < ai if m < 7. Set

Uz = ;1 Z Y, V = sup ||Us|, W = sup ||a%1Yﬁ||
m<n neNd RENd

and suppose that V < 0o a.s.. Then W < oo a.s. and if EW? < oo, then FV? < o0,

Lemma 1.4 Let 0 < t1,---,tg < 2, max{t;;i = 1,---,d} = 2, r = card{i : t; = 2,1 =
1,---,d}.Let X be a real valued with EX?(L(|X|))""(L2(]X|))™! < 00,and az be of the
type (1.4). Then for some c4,c5 > 0

es 3o P (1X1 2 VaiLaal)) < BXPL(XDY (Ea(1X]))

AnENA
<o 3 P (112 a2la(ed)

RENT
Proof By Lemma 1.1 directly, we have the desired result.
2. Results and proofs

In this section we state and prove the main results of this paper.

Theorem 2.1 Let {X, X5,7 € N%} be a family of iid.r.v., 0 < ty,---,ty < 2, max{t;,i =
1,---,d} =2, r=card{i:t; = 2,i = 1,---,d}. Let az be of the type (1.4). Then

lim sup |5

7imoo /202 loglog al

< 00 a.s. (2.1)

if and only if
EX =0, EX? < 0o and EX?(log |X]|)" Y(loglog | X|)™! < o0. (2.2)

Proof (sufficiency) It is easy to show that (y/2aZL,(a2))~*|S%| — 0 in probability, so
by the standard symmetrization procedure, it suffices to prove the theorem under the
assumption that X is symmetric.

Let 7 > 0, and define Z = X7I(|Xz| > 7\/ak/Ly(a2)). First we show that

— _Zﬁf
lim sup ‘ ET!LS" |

=0 a.s. (2.3)
o’ o Ls (@)

When 7 = 1, by the same argument as [10], it is enough to prove that

BlZal_ . (2.4)

meNt \/az Lz (af)
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To prove (2.4), let b; = \/i/Ly(i + 1), d; = card{@ : i < a2 < i+ 1}. We have by

Lemma 1.2

-1
> ( all, (a%)) E|Zz|
neNd

< Y (ViLe(i)) ' EIX (|1 X]| > Tb;)

ingl

.P”ﬁg

(v/iL2(3)) ld; ZE|X|I Tb; < |X| < Tbj11)

E|X|I(rb; < |X]| < Tbm)z (v/iLa(3)) " d;

E|X|I(b; < |X| < 7bj41)5"*(L2(5))7/?

-
Il
)

il
K

.,

—

J

g

<e) EXI(th; < |X| < Tbjy1)
i=1
< cEX? < .

When r > 1, proceeding as Lemma 5 and Lemma 6 in [2], we have (2.3).
The remaining of the proof is similar to Theorem 1 of [2], so we omit it.
(necessity)Suppose first that » = 1. Without loss of generality, set t; = 2. Obviously

-1 X(my 1, =
limsup'zm‘ 1 Xm0 <ljmsup——|—£—|~—-< o0 a.s.

ny— 00 ,/2n1L2(n1) T Ao 20%L2(a%)

Then By the result of Strassen[11], we have EX = 0 and EX? < co.

Forr>1. Wealsosett; =ty =---=t, =2. Then
_ . SR T
lim sup | Xz Lt =1 X S L11)l < limsup —~—————|S ‘ < 00 as.
I, ni—oo V2 Iy i La(ITi= 1 i) i—oo | [2aZL4(a2)

By the result of Wichura[l], EX = 0 and EX?(L(|X1))""}(L2(]X[))™? < oo hold.

Remark 2.1 When r = 1, the sufficiency can also be obtained by Theorem 1 of [12]
directly.

Theorem 2.2 Let {X, X5 7 € N%} be a family of iid.r.v., 0 < ty,---,tg < 2, max{t;,i =
-,d}y =2, r=card{i:t; = 2,i=1,---,d}. Let az be of the type (1.4). Let EX =0
and p > 2,then the following statements are equivalent:

{ EX(L(X])) (L2(1X]))* < o0 if p = 2, (2.5)

E|X|P < o0 ifp>2,
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E sup | ——==|F < 00, (2.6)
meNt \/a%Ls(al)
S
E sup l——————!” < oo. (2.7)

Proof (2.5) = (2.6) Define
Xy = Xal(Xa| < \J@ALs(a)), XL =Xn - XL

It is evident that

X XL Xz
E sup |———==|P < F sup |—=—=|" + F sup |—F=—|". (2.8)
RENd af—le(a%) 7eN? /aZLy(ak) 7eN? y/alLy(al)
Obviously,

/

X
E sup | —=_—=P < 1.

AeN? | /alLy(a2)

We estimate now the second term on the right-hand side of (2.8). Let b; = /iLs(%)
and d; = card{m : i < a2 < i+ 1}. We have by Lemma 1.2

X/I
E sup |[——2—=IFP < E|——F—— I”
neNd Va 2L2 a2 ngd a——L2

< Zd bTPEIXIPI(JX| > bi)

i=1
=Y dib;] ”ZE|X|”I(b < |X] < bj)
i=1 j=t

EIXPT(b; < |X] < bjn) 3 b

=1
e SRy BIXPI(5; < 1X] < b02) (L) (La())™ if p=2
S, E|XPPI (b < |X| < bjy1) if p>2

EX(L(X)Y (LX) if p=2
cE|X|P if p>2

il
8

oy

A

A
g —— —— 7

A

This terminates the first step of the proof.
(2.6) = (2.5) Sett; =---=t, = 2. Since

Xn M, Xﬁ
E sup S B ’1) P < E sup |——=—F < o0

(ny eimp1, - 1) EN \/H,_l ":Lz =1 M) 7eN4 \[aZL,(a2)
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when r = 1, by the results of Siegmund[1] and Teicher[2], we have EX2L(| X |)(L2(|X]))?
< 00. When r > 1, by Theorem 3.1 of Gut[3], EX?(L(1X]))"(L2(]X[))~! < oo holds.
The proof of (2.6) < (2.7) is an appropriate modification of that given in [8] for
Theorem 3.1.
(2.6) = (2.7) Because of (2.5) the law of the iterated logarithm is true by Theorem

2.1 . It follows that V' = supg(y/a2_y.L2(a2)) 87| < oo a.s. since (2.6) holds, that is

EWP? < oo, where W = supgcna(y/a2L2(a2)) | X5, An application of Lemma 1.3 yields
EV?P < 0, ie. (2.7).
(2.7) = (2.6). Immediate, because W < 29V, The theorem is completely proved.

Theorem 2.3 Let {X, Xz,7 € N?} be a family ofi.id.r.v.,0 < ty,---,tg < 2, max{t;,i =
1,--+,d} =2, r=card{i: t; = 2,i=1,---,d}. Let aiz be of the type (1.4). Let EX =0
and 0 < p < 2.
(i) If r = 1, then
EX?(L()X))7! < o0, (2.9)

Xw
E sup |————=|7 < o0, (2.10)
neNd | /alL,(aZ)

are equivalent, and
EX? < o, (2.11)

S_
E sup |—22 [P < o0, (2.12)
ReNt y/aZLy(a?)

are eqivalent.
(ii}) Ifr > 1, then the following statements are eqivalent:

EXH(L(| X)) (Lo(|X])) 7" < oo, (2.13)

E sup (—ﬁ——(p < 00, (2.14)
REN' /a2 Ly(aZ)

E sup I——S'i——]p < 0. (2.15)

neNd a%Lz(af—L)

Proof Define
XL = Xal (|xﬁ| < af_le(af_l)) X = Xe— XL

Firat we prove that

X!
@& L2(a2)

In fact, by Lemma 1.2 and by the same argument as Theorem 2.2, (2.16) holds.

E sup
neNd

< eBXHL(XN)) M LX) (1.16)
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(2.9) = (2.10) It is evident by (2.16) that

! II

E sup | Xz |P < E sup | Xa [P+ E sup |

sup |—orm ks __r

AeN? | [alLy(al) AeN® | /a2 L,(al) ANt | [aZLy(aZ)
< 00

<1+ cEXHL(X)) (LX)

‘P

(2.10) = (2.9) I EXZ%(Ly(|X|))"! = oo, then by Lemma 1.4

3" P(X| > MyJa2Ly(1X])) = > P(| mv’ > MP)
2 aZ

neNd "eENd
= oo for any M > 0.

The Borel-Cantelli lemma implies that sups;, |—X—E——-—|” > MP as., thus
n /ai_Lz (a% ) ’

Xw

sup l—w—-—” =00 a.s.
neNd (I—Lg( )

(2.11) = (2.12) If EX? < oo, then we have (2.10) by (2.9)=>(2.10) and

S
SUp |—————| < 0 a.s.
neN? | /aZLy(aZ)

by Theorem 2.1, hence by Lemma 1.3, (2.12) holds.
(2.12) = (2.11) If EX? = oo, then by Theorem 2.1 supz¢pa [ﬁ{

(2.13) & (2.14) and (2.13) & (2.15) are similar to (2.9) & (2.10) and (2.11) & (2.12)
respectively.

oo a.s.

Remark 2.2 Theorem 2.3 generalizes the results of [13] partially. In fact, when r > 1,
replacing [fi| by a2, and by the same argument as [13], the corresponding results (i.e.
Theorem 2 and 4) of [13] also hold.
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