A Refinement of the Weighted Hilbert Inequality *

GAO Ming-zhe

(Dept. of Math. & Comp. Sci., Normal College, Jishou University, Hunan 416000, China)

Abstract: In this paper it is shown that a refinement on the weighted Hilbert inequality for double series can be established by introducing a proper non-zero real number R_{ω} . The expression of R_{ω} is given by means of the positive definiteness of a Gram matrix.

Key words: double series; quadratic form; weighted Hilbert's inequality; weight function.

Classification: AMS(2000) 26D15/CLC number: O178

Document code: A Article ID: 1000-341X(2004)02-0209-05

1. Introduction

The inequality of the form

$$\left(\sum_{m=1}^{\infty}\sum_{n=1}^{\infty}\frac{a_{m}b_{n}}{m+n}\right)^{2} \leq \pi^{2}\left(\sum_{n=1}^{\infty}a_{n}^{2}\right)\left(\sum_{n=1}^{\infty}b_{n}^{2}\right) \tag{1}$$

is called Hilbert's double series theorem^[1]. The equality contained in (1) holds if and only if $\{a_n\}$, or $\{b_n\}$, is a zero-sequence. In our previous paper^[2] the weighted Hilbert inequality was established. To be specific, the inequality (1) can be generalized into the following form:

$$\left(\sum_{m=1}^{\infty}\sum_{n=1}^{\infty}\frac{a_{m}b_{n}}{m+n}\right)^{2} \leq \left(\sum_{n=1}^{\infty}\omega(n)a_{n}^{2}\right)\left(\sum_{n=1}^{\infty}\omega(n)b_{n}^{2}\right),\tag{1'}$$

where $\omega(n) = \pi - \frac{\theta(n)}{\sqrt{n}}$ (with $\theta(n) > 0$). Gao and Yang^[3] proved that an infimum of $\theta(n)$ is $\theta(1) = \frac{\pi}{2} - \frac{7}{24} + \frac{\xi}{320}(0 < \xi < 1)$. However, if we select a proper non-zero real number R_{ω} , such that the right-hand side of (1') is replaced by $(\sum_{n=1}^{\infty} \omega(n)a_n^2)(\sum_{n=1}^{\infty} \omega(n)b_n^2) - R_{\omega}^2$, then some further results of the papers [2] and [3] will be obtained. The main purpose of the present paper is to prove the existence of the non-zero real number R_{ω} and to find an expression for it.

*Received date: 2002-01-29

Biography: GAO Ming-zhe (1940-), Professor.

For convenience, we first introduce some notations and define some functions.

The inner product of two vectors α and β in an inner space E is denoted by (α, β) , and the norm of α is denoted by $\|\alpha\| = \sqrt{(\alpha, \alpha)}$. We next introduce a binary quadratic form defined by

 $F(x,y) = \|\alpha\|^2 x^2 - 2(\alpha,\beta)xy + \|\beta\|^2 y^2, \tag{2}$

where $x = (\beta, \gamma)$ and $y = (\alpha, \gamma)$.

We further define

$$R = ||\alpha||(\beta, \gamma)| - ||\beta||(\alpha, \gamma)|. \tag{3}$$

The results involve R with α and β specified beforehand, and γ to be chosen for maximum felicity. It is obvious that, if $||\alpha|| |(\beta, \gamma)| = ||\beta|| |(\alpha, \gamma)|$, then R = 0. Therefore, it is shrewd in every case to choose γ such that $||\alpha|| |(\beta, \gamma)| \neq ||\beta|| |(\alpha, \gamma)|$.

2. Lemmas

In order to prove our assertions, we need the following lemmas.

Lemma 1 Let F(x,y) and R be functions defined respectively by (2) and (3). If $\|\alpha\| \|(\beta,\gamma)\| \neq \|\beta\| \|(\alpha,\gamma)\|$, then $F(x,y) \geq R^2 > 0$, and the equality holds if and only if xy = 0.

Proof Applying Cauchy-Schwarz's inequality to estimate the right-hand side of (2) as follows:

$$F(x,y) = \|\alpha\|^2 x^2 - 2(\alpha,\beta)xy + \|\beta\|^2 y^2$$

$$> \|\alpha\|^2 x^2 - 2|(\alpha,\beta)xy| + \|\beta\|^2 y^2 > (\|\alpha\||x| - \|\beta\||y|)^2.$$

Since $\|\alpha\| |(\beta, \gamma)| \neq \|\beta\| |(\alpha, \gamma)|$, it follows that

$$F(x,y) \geq R^2 > 0. \tag{4}$$

Clearly, the equality in (4) holds if and only if xy = 0.

Lemma 2 Let α, β and γ be three arbitrary vectors of the space E. If $||\gamma|| = 1$ and $||\alpha|| |(\beta, \gamma)| \neq ||\beta|| |(\alpha, \gamma)|$, then

$$(\alpha, \beta)^2 \le ||\alpha||^2 ||\beta||^2 - R^2,$$
 (5)

where R is a function defined by (3). And the equality contained in (5) holds if and only if the vector γ is a linear combination of α and β , and xy = 0.

Proof Consider the Gram determinant constructed by the vectors α, β and γ . According to the paper [4] we have

$$\begin{vmatrix} (\alpha, \alpha) & (\alpha, \beta) & (\alpha, \gamma) \\ (\beta, \alpha) & (\beta, \beta) & (\beta, \gamma) \\ (\gamma, \alpha) & (\gamma, \beta) & (\gamma, \gamma) \end{vmatrix} \ge 0.$$
 (6)

The equality contained in (6) holds if and only if the vectors α, β and γ are linearly dependent. Since $||\alpha|| |(\beta, \gamma)| \neq ||\beta|| |(\alpha, \gamma)|$, the vectors α and β are linearly independent.

As a result, the equality (6) holds if and only if the vector γ is a linear combination of the vectors α and β .

Expanding this determinant and using the condition $||\gamma|| = 1$, we obtain from (6) that

$$||\alpha||^2||\beta||^2-(\alpha,\beta)^2-F(x,y)\geq 0,$$

where F(x, y) is a binary function defined by (2). And then using the inequality (4), the result follows at once.

Actually, the inequality (5) is a refinement of Cauchy-Schwarz's inequality.

3. Theorem and its corollaries

Now let us come to our main results.

Theorem If $0 < \sum_{n=1}^{\infty} a_n^2 < +\infty$ and $0 < \sum_{n=1}^{\infty} b_n^2 < +\infty$, then

$$\left(\sum_{m=1}^{\infty}\sum_{n=1}^{\infty}\frac{a_{m}b_{n}}{m+n}\right)^{2}<\left(\sum_{n=1}^{\infty}\omega(n)a_{n}^{2}\right)\left(\sum_{n=1}^{\infty}\omega(n)b_{n}^{2}\right)-R_{\omega}^{2},\tag{7}$$

where $\omega(n) = \pi - \frac{\theta(n)}{\sqrt{n}}$, $\theta(n) > 0$, and $R_{\omega}^2 > 0$.

Proof Define two double-sequences by

$$\alpha_{mn} = \frac{a_m}{(m+n)^{1/2}} \left(\frac{m}{n}\right)^{1/4}, \quad \beta_{nm} = \frac{b_n}{(m+n)^{1/2}} \left(\frac{n}{m}\right)^{1/4}, \tag{8}$$

and let $\alpha = (\alpha_{mn}), \beta = (\beta_{nm})$. An inner product of the vector α and β is defined by

$$(\alpha,\beta) = \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} \alpha_{mn} \beta_{nm}. \tag{9}$$

Applying the inequality (5) to estimate the right-hand side of (9) we obtain

$$\left(\sum_{m=1}^{\infty}\sum_{n=1}^{\infty}\frac{a_{m}b_{n}}{m+n}\right)^{2} = \left(\sum_{m=1}^{\infty}\sum_{n=1}^{\infty}\alpha_{mn}\beta_{nm}\right)^{2} \le \left(\sum_{m=1}^{\infty}\sum_{n=1}^{\infty}\alpha_{mn}^{2}\right)\left(\sum_{m=1}^{\infty}\sum_{n=1}^{\infty}\beta_{nm}^{2}\right) - R^{2}, \quad (10)$$

where R is defined by (3).

Notice that

$$\sum_{m=1}^{\infty} \sum_{n=1}^{\infty} \alpha_{mn}^2 = \sum_{n=1}^{\infty} \omega(n) a_n^2, \quad \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} \beta_{nm}^2 = \sum_{n=1}^{\infty} \omega(n) b_n^2,$$

where $\omega(n) = \sum_{m=1}^{\infty} \frac{1}{m+n} (\frac{n}{m})^{1/2}$. According to the paper [2] we have

$$\omega(n) = \pi - \frac{\theta(n)}{\sqrt{n}},$$

where $\theta(n) > 0$ for all $n \in N$.

The norm of the vector x with weight $\omega(n)$ is denoted by

$$||x||_{\omega} = \left(\sum_{n=1}^{\infty} \left(\pi - \frac{\theta(n)}{\sqrt{n}}\right) x_n^2\right)^{1/2}.$$
 (11)

We write R in (10) in the form

$$R_{\omega} = ||a||_{\omega} |(\beta, \gamma)| - ||b||_{\omega} |(\alpha, \gamma)|, \tag{12}$$

where α and β are given by (8), and γ is chosen by

$$\gamma = \frac{6}{mn\pi^2}. (13)$$

It is easy to deduce that $\|\gamma\| = \left(\sum_{m=1}^{\infty} \sum_{n=1}^{\infty} \left(\frac{6}{mn\pi^2}\right)^2\right)^{1/2} = \left(\frac{36}{\pi^4} \sum_{m=1}^{\infty} \frac{1}{m^2} \sum_{n=1}^{\infty} \frac{1}{n^2}\right)^{1/2} = 1$. Hence the vector γ satisfies the condition of Lemma 2, and it is obvious that $\|a\|_{\omega} |(\beta, \gamma)| \neq \|b\|_{\omega} |(\alpha, \gamma)|$. Whence the inequality (10) can be written as

$$\left(\sum_{m=1}^{\infty}\sum_{n=1}^{\infty}\frac{a_{m}b_{n}}{m+n}\right)^{2} \leq \|a\|_{\omega}^{2}\|b\|_{\omega}^{2} - R_{\omega}^{2},\tag{14}$$

where R_{ω} is given by (12).

Evidently, the vectors α, β and γ defined respectively by (8) and (13) are linearly independent, it is impossible to take the equality in (14). And owing to the fact that the conditions of Lemma 1 are satisfied, we have $R_{\omega}^2 > 0$.

Thus the proof of the theorem is completed.

Note According to the paper [2], the expression of $\theta(n)$ contained in (7) is given as follows:

$$\theta(n) = A_2(n) + C_2(n) - \frac{n}{2(n+1)},$$

where $A_2(n) = 2\sqrt{n} \arctan \frac{1}{\sqrt{n}}$ and $C_2(n) = -\sum_{k=1}^{s-1} \frac{\sqrt{n}B_{2k}}{(2k)!} (\frac{1}{n})^{2k} f^{(2k-1)}(\frac{1}{n}) + \rho_s$, $f(t) = \frac{1}{1+t} (\frac{1}{t})^{1/2}$, $t \in (0,1]$, $B_{j's}$ are Bernoulli numbers, viz. $B_2 = \frac{1}{6}$, $B_4 = -\frac{1}{30}$, $B_6 = \frac{1}{42}$, $B_8 = -\frac{1}{30}$, etc., ρ_s is the remainder having the same sign as that of the first to be dropped, and having smaller absolute value in comparison.

Corollary 1 If $0 < \sum_{n=1}^{\infty} a_n^2 < +\infty$, then

$$(\sum_{m=1}^{\infty}\sum_{n=1}^{\infty}\frac{a_mb_n}{m+n})^2<(\sum_{n=1}^{\infty}(\pi-\frac{\theta(n)}{\sqrt{n}})a_n^2)^2-\tilde{R}_{\omega}^2,$$

where $\theta(n) > 0$ and $\tilde{R}_{\omega}^2 > 0$.

Proof We need only to show that $\tilde{R}^2_{\omega} > 0$. We obtain from (12) that

$$\tilde{R}_{\omega}^{2} = ||a||_{\omega}^{2} (|(\beta, \gamma)| - |(\alpha, \gamma)|)^{2}, \tag{15}$$

where α and γ are given respectively by (8) and (13), and β_{nm} is defined by

$$\beta_{nm} = \left(\frac{a_n}{(m+n)^{1/2}} \left(\frac{n}{m}\right)^{1/4}\right).$$

Notice that $\beta_{nm}/\alpha_{mn}=(\sqrt{n}a_n)/(\sqrt{m}a_m)\neq k$, for all $m,n\in N$, where k is a constant. Hence \tilde{R}^2_{ω} in (15) is not equal to zero. In other words, we have $\tilde{R}^2_{\omega}>0$. Consequently, the corollary is proved.

Corollary 2 With the assumptions as the theorem, we have

$$\left(\sum_{m=1}^{\infty}\sum_{n=1}^{\infty}\frac{a_mb_n}{m+n}\right)^2 < \left(\sum_{n=1}^{\infty}(\pi-\frac{\xi}{\sqrt{n}})a_n^2\right)\left(\sum_{n=1}^{\infty}(\pi-\frac{\xi}{\sqrt{n}})b_n^2\right) - R_{\omega}^2,\tag{16}$$

where $\xi = \frac{\pi}{2} - \frac{7}{24} + \frac{\zeta}{320} (0 < \zeta < 1)$ and R_{ω} is given by (12).

Proof In the paper [3], it was shown that $\omega(n) \leq \pi - \frac{\xi}{\sqrt{n}}$, where $\omega(n)$ is a weight function of the form $\omega(n) = \sum_{m=1}^{\infty} \frac{1}{m+n} (\frac{n}{m})^{1/2}$ and $\xi = \frac{\pi}{2} - \frac{7}{24} + \frac{\zeta}{320} (0 < \zeta < 1)$.

Thus the corollary follows.

If R_{ω}^2 contained in (16) is replaced by zero, then the result of the paper [3] is yield. Clearly, the inequality (16) is an improvement of the corresponding result of the paper [3]. Similarly, some results in [5] and [6] might be improved.

Acknowledgements The author expresses his thanks to the referees for their valuable suggestion.

References:

- HARDY G H, LITTLEWOOD J E, POLYA G. Inequalities [M]. Cambridge Univ. Press, Cambridge, 1952, 13: 727e.
- [2] GAO Ming-zhe. A note on the Hardy-Hilbert inequality [J]. J. Math. Anal. Appl., 1996, 204: 346-351.
- [3] GAO Ming-zhe, YANG Bi-cheng. On the extended Hilbert's inequality [J]. Proc. Amer. Math. Soc., 1998, 126(3): 751-759.
- [4] GREUB W H. Linear Algebra [M]. Springer Verlag, Berlin, 1963, 181.
- [5] HSU L C, WANG Y J. A refinement of Hilbert's double series theorem [J]. J. Math. Res. Exposition, 1991, 11(1): 143-144.
- [6] ZHAO De-jun. On a refinement of Hilbert's double series theorem [J]. Math. In Practice and Theory, 1993, 1: 85-89.

加权 Hilbert 不等式的一个改进

高明哲

(吉首大学师范学院数学与计算机科学系, 湖南 吉首 416000)

摘 要: 本文通过引入一个适当的非零实数 R_{ω} 得到了加权 Hilbert 不等式的一个改进,并且利用 Gram 矩阵的正定性给出了 R_{ω} 的具体表达式.

关键词: 重级数; 二次型; 加权 Hilbert 不等式; 权函数.