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Distribution of Elements in Primitive Sequences over Zye *
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Abstract: Using the estimates of character sums over Galois rings and the trace de-
scription of primitive sequences over Z,., we obtain an estimate for the frequency of the
occurrences of any element in Z,. in one period of a primitive sequence, which is better
than Kuzmin’s resultst!) if n > 4e, where n is the degree of the generating polynomial of
the primitive sequence.
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Let Z,. be the residue ring of integers modulo p°. For a monic polynomial f(z) =
2"t ep_12" N+ teg € Zpe[z] with f(0) # 0 mod p, there exists a positive integer T such
that f(:c)|:cT—— 1 over Z,e , and the smallest T is called the period of f(z) over Z,, denoted
by per(f(z))e. By (2] per(f(z))e < p°7H(p" ~ 1). If per(f(z))e = p*~(p" — 1), f(2)
is called a primitive polynomial over Z,.. The sequence a = (a;)2, € Z° satisfying
@ipn = —(€p=1@itn-1 + '+ + coa;) is called a linear recurring sequence over Z,. generated
by f(z). a is called a primitive sequence if a is generated by a primitive polynomial f(z)
and @ # 0 mod p. In this paper, we will investigate the distribution of elements in the
primitive sequences.

When p°® = 4, the distribution of elements in the primitive sequences over Z,c has been
explicitly investigated in [3,4,5]. In [1], Kuzmin investigated the distributions of elements
in the primitive sequences for general p°. Let g be a primitive sequence over Zp, n the
degree of the generating polynomial, T(a) the period of a which is p*~1(p™ — 1) and »(l)
the number of occurrences of an element | € Z, in one period of ¢. Kuzmin obtained the
following estimates:

(1) fp>3,v(l) > &2 el

(2) pr:2andn23,y(l)_>_%-Tzf§.

Galois rings have played very important roles in designing large families of phase-shift-
key sequences having low correlations/*%! which can be potentially used as the candidates
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of CDMA signature sequences. Some famous nonlinear binary codes such as Kerdock,
Preparata, Goethals and related codes can be viewed as linear codes over Galois ring Z4.
To analyze the properties of the codes over Galois rings, some kinds of character sums
over Galois rings were introduced and investigated!”.

In this paper, with the help of the trace description of primitive sequences and the
estimates of character sums over Galois rings, we prove that the frequency of occurrences
of any element in Z,. in one period of a primitive sequence is asymptotic to 1/p° +0(p~™?)
for given p®. More precisely, we will prove

(1) I 1#0, p(l) - p=t] < 5L - (Br=h — By g2,

(2) I1=0,[¥(0) - (p"" - “)|<"—,;l (55 - 2) -

This shows that if p© is fixed and n is large enough, the distribution of elements in the
primitive sequences over Zpe is balanced. Furthermore if n > 4e, our estimate is better

than Kuzmin’s results.

2. Preliminary
2.1 Galois rings of characteristic p°

Let e > 1 be a fixed integer and p a prime number. A monic polynomial f(z) € Zpe[z]
is said to be a basic irreducible polynomial of degree n if f(z) mod p € Z,[z] is a monic
irreducible polynomial. The Galois ring R., = GR(p%,n) is the unique extension of
degree n over Z,c and can be written as Z,[z]/(f(z)), where f(z) is a basic irreducible
polynomial of degree n over Ze. R, is a local ring with the unique maximal ideal PRe .
The set of units R}, = R, \pRe . is a multiplicative group with the following structure:

R:,n = Zp"—l X Zpe-l X e X Zpe-—l

n copies
when p is odd or p = 2 and e = 2. When p = 2 and e > 3, the group structure is:

.
RE = Zpny X Zy X Zypems X Zypemt X+ X Zpems

n-—1 copies

Let £ be a generator of the cyclic group of R, corresponding to Z,»_;. Define T, =
{0,1,£,---,€7"2} . It can be shown that every element z € R, has a unique p-adic
expansion z = zg+ pz1 + - -+ plz,_y, z €T.,.

Let o be the Frobemus map from R, , to R, , given by

1

o(z) =z +paf +--- 4+ p12E_,.

As we know, o is the generator of the Galois group of R, ,/Z, which is a cyclic
group of order n. The trace mapping T'r, w(.) 1 Req = Zpe is defined via Tron(z) =
2+o(z)+ -+ 0" Yz) forz € R, ,,.

2.2 Estimates of character sumns over Galois rings
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Let 1 be the canonical additive character over Zye defined by y(a) = e2™¢/?° for g €

Zpe, e n the canonical additive character over R, defined by Yem(2) = (Yo Tren)(z) =
eZ‘Ktng,a(E)/pe for r € Re,n-

Lemma 1 Let ¢ be the canonical additive character of Zype and a € Zpe. We have

pt, if a=0;
Z YP(ca) = [ ) !
e l 0, if a#0.

Let g(z) be a polynomial over R, with ¢(0) = 0 and g(z) not identically 0. Let
9(2) = go(2) + g1(z)p+ - - - + ge~1(2)p° ™! be the p-adic expansion of g(z), where g;(z) is a
polynomial of degree d; with coefficients in ', ,, for ¢ = 0,1,---,e — 1. Define the weighted
degree of g(z) by D. , = max{dop®~!,dp*72,---, d._1}.

Definition 1 Let g(z) be a polynomial as above and g;(z) = 2?‘:0 Gijz?, Gij € Tep.
g(z) is called nondegenerate if G; ; = 0, if j =0 mod p,0< j < d;,0<i<e—1.

Various kinds of character sums over Galois rings have been investigated in [7,8,9].
Here we give a theorem from [7] which is analogous to Weil estimates on character sums
over finite fields.

Theorem 1) Let g(z) € R..[z] be a nondegenerate polynomial of weighted degree D, ,,
and e 5, the canonical additive character over R, . Then

| > Wen(9(2))] € (Deyg = 1) - VAT

were,u

3. The estimate of the frequencies of the elements in primitive sequences
over Z,.

3.1 Trace description of primitive sequences over Z,.

Let f(z) be a primitive polynomial over Z, with degree n. Denote by Q(f(z)). the
set of all sequences generated by f(z) over Z,.. For any sequence a = (ag,a1, --) €
Q(f(z))e, the period of a is defined by per(a)e = min{T € Nlaj11 = a;, Vi € Zxo}. It is
obvious that per(a).|per(f(z))e. If a is a primitive sequence generated by f(z), we have
per(a)e = p°~1(p™ — 1). In fact, the set of all primitive sequences generated by f(z) is
Q(f(2)e = {a € O(f(z))e] @ # 0 mod p}. For the primitive sequences, we have the
following trace description :

Lemma 2 (Trace Description) Let f(z) be a primitive polynomial over Zye with degree
n,9 € R a root of f(z). Then for any primitive sequence a € §'(f(z))e, there exists a
unique o € R, such that a; = Tre,n(a*y") for i € Z»o.

As we kno'w, the order of 4 in Lemma 2 is p*~}(p” — 1). So 7 can be written as
y = £(1 + p€1), where £ is a generator of the multiplicative group I';, and £ € R¢ .
The set of all primitive sequences generated by f(z) can be written as {{Tr.(a(é(1 +

PE)Y )20l € BZ L}
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3.2 Estimate of frequencies

In this subsection, we will discuss the distribution of elements in one period of the

. e—1¢ n__ . .

primitive sequence {T'r. ,(a(§(1 + p{l))’)}?zo w 1), where € is a generator of the multi-
plicative group I'; ;, and & € R ..

1

Divide the sequence a = {T7...(a(£(1 + p&1))’) J«ol *"=1) jnto p°~! subsequences ac-
k

cording to 7 mod p°~!. For 0 < k < p¢~1~1, the p*~! subsequences can be written as a* =
{Tren(a(é(1 +p£1))1’e lt“””)} >%. Denote by Vi o(1) the number of I (1 = 0,1,---,p% — 1)
in the subsequence a*, then

Vk,a(l) = #{t € {01 1: ot apn - 2}lTre.n(a(€(1 + p&l))pe-—lﬂ—k) = l}
= #{t € {0,1,-,p" = 2HTren(Cral€(L + &)Yt = 1}
= #{t € {0,1,--+,p" = 2}|Tren(Croab™t) = 1}
where Ci o = a(£(1 + p€;))*. It is obvious that Cra € R,
Since (p*~1,p" — 1) = 1, p*"1t mod p" — 1 covers {0,1,---,p" — 2} when t runs across
{0,1,---,p" — 2}. So
Vo) = #{t € {0,1,,p" — 2}|Tre n(Crat’) = 1}
=#{z €T, |Tren(Craz) =1}
sl -1 if 1= 0;
T vke(Y) if 1#0.

where v o (1) = #{z € Te n|Tre n(Craz) = 1}.
Let 4 be the canonical additive character over Zye, 9., the canonical additive char-
acter over R, ,. From Lemma 1 we have

Vka :‘”' Z Z ¢ T"'en Ckaz)_l))
er‘e n d€Zpye
Z Z ¢ TT‘en Clc az) - l))
p dEZPc TEFe n
1
L Z (-di) Z P 0 T're n(dCh o)
p Z EEFe,n
1
_— Z dl) Z ",be,n(dck,az)'
P €Zpe z€le n

Now we estimate v, . (1)'.

Case 1 Ifd =0, y(—dl) Yzl Yeu(dCraz) = p™.
Case 2 If d # 0, from Theorem 1 we have

(—di) Z "pe,n(dck,az), < (De,yd - l)pn/za

Tere,n
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where D, g, is the weighted degree of 9a(z) = dCy 42.
For d € Z,c\{0}, there exist p*~™ — p*~1-™g’s such that

e-1 e—1 2e __
De,gd =p 1-m Z(pe—m _pe—l—m)pe~—1—m — (p _ 1) Z pZm — (p _ 1) . Pz 1
m=0 m=0 p° - 1
So we have
. 2e __ 1 € _ 1
| X W) Y YenldChaz) < (- 1) (B - 20y 2,
d€Z,e\{0} z€Te -1 p-1
As a result,

1 -1 Ze_1 € -1
l”k,a(l)l—'_e'pnlgp '(p2 _p ).pn/Z.
p P p-1 p-1
Denote by »(!) the number of occurrences of ! in one period of the primitive sequence

. e—1 5—1_..1

a={Trea(a(é(1+p1)))} im0 P"=1) It is easy to see that v(l)= Y vpa(l). We have

proved

Theorem 2 Let p be a prime number, f(z) a primitive polynomial over Z,e of degree n,
and a a primitive sequence generated by f(z). Forl = 0,1,---,p° — 1, denote by v(l) the
number of occurrences of [ in one period of a. We have

n— -1 p*-1 p°—~1
@) = < B (e - Em) 2 (£ 0),

and )
_ _ -1 p*-1 pt-1
v(0) - n—-1__  e—1 <p B -
v(0) - " - < B B B

) p™2

Corollary 3 Let p be a prime number, f(z) a primitive polynomial over Z,. of degree
n, ¢ a primitive sequence generated by f(z). For I = 0,1,...,p° — 1, denote by A(l) the
frequency of the occurrences of | € Z,e in one period of a. We have

MO i

" I<p—1'(p26—-1_pe—1)_p
P p"-1" p¢ ‘pP-1 p-1

7 (1#0),

d ) 2 /2

1 (p"~r° p—1 p*-1 p°-1  p"

N A R (B A B LS
p¢ pt-1 P pP-1 p-1" pr-1

From Theorem 2 and Corollary 3, for any given e, the frequency of occurrences of an
element | € Z,e in the primitive sequences over Zye is asymptotically 1/ pe+0(p’"/ ?). This
means when 7 is large enough, the distribution of elements in the primitive sequences over
Zye is balanced. Furthermore if n > 4e, our estimate is better than Kuzmin’s resultsf].

Example 1 Let e = 1. From Theorem 2, »({) = p*~! for [ # 0, and »(0) = p"~! ~ 1.
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which is the distribution of elements in the m-sequences over Fy,.

Remark 1 When p* = 4, there is a complete description of all possible values of the
distribution of the elements in the primitive sequences 4.5,
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