On the Existence of p-Blocks with a Given p-Group as Defect Group G *

WANG Li-zhong

(Dept. of Math., Peking University, Beijing 100871, China)

Abstract: In this paper, we study some actions of a finite group G on the set of characters of its subgroups, and by using these actions we determine the existence of a p-block with given defect group in some cases.

Key words: *p*-block; defect group; conjugacy.

Classification: AMS(2000) 20C20/CLC number: O189.1

Document code: A **Article ID:** 1000-341X(2004)03-0418-03

It is important to study the action of a finite group G on the set of conjugacy classes or the set of irreducible characters of its subgroup. In this paper, we give a sufficient and necessary group condition for the property of this kind of action. We give also some group conditions of the existence of p-block with a given defect group D by using this kind of action.

We will give a sufficient condition of the existence of blocks by using the action of G on the set of conjugacy classes in its subgroup. We introduce some notations at first. Assume that G is a finite group, $P \in S_p(G), D \leq P$, that $|P:D| = p^2, N = N_G(D), H = DC_G(D)$ and that $P \in S_p(N), P_0 \in S_p(H)$ and P_0 is a maximal subgroup of P. Let $\overline{N} = N/D, \overline{H} = H/D$. Define $A(\overline{g}) = \{(v, w)|\overline{g} = vw; v, w \in \overline{N}; v^p = w^p = 1\}, A_0(\overline{g}) = \{(x, y, z)|xyz = \overline{g}; v, w, z \in \overline{N}; v^p = w^p = z^p = 1\}.$

Let C_1, \dots, C_s be all *p*-regular classes of \overline{H} with representative x_i for each C_i , and $\varphi_1, \dots, \varphi_r$ be all irreducible Brauer characters of defect zero. Let \overline{N} act on C_1, \dots, C_s and $\varphi_1, \dots, \varphi_r$ by conjugation. Then we have

Lemma 1 G has a block of defect D if and only if there exists $\varphi_i, 1 \leq i \leq r$ such that $p \mid |\varphi_i|^{\overline{N}}$, where $\varphi_i^{\overline{N}}$ is the orbit of φ_i under the action of \overline{N} .

Proof By [4], we have that G has block with defect D if and only if there exists a block of defect zero in \overline{H} which is covered only by blocks of defect zero in \overline{N} . By [2, Chart 5, Theorem 5.6], the lemma follows.

*Received date: 2002-06-07

Foundation item: Supported by NNSFC and BNSF (1992003)

Let \overline{N} acts on the multiple (C_1, \dots, C_s) by conjugation. Let F be the stabilizer of (C_1, \dots, C_s) in \overline{N} . Then we have

Theorem 1 If $p^2 \mid |F|$, then G has no block with defect group D.

Proof For any $x \in F$, we have $\varphi_i^x = \varphi_i, i = 1, \dots, r$. Hence the theory follows from Lemma 1.

For any $\varphi_i(i=1,\cdots,r)$, we can define relation of equivalence among the elements of the set $C=\{C_j\}_{j=1}^s$ as following: $C_l\sim C_h$ if and only if $\varphi_i(x_l)=\varphi_i(x_h)$. Then $C=\bigcup A_k^{\varphi_i}$ where $A_k^{\varphi_i}$ is the equivalent class. It is obvious that for $x\in \overline{N}$, $\varphi_i{}^x=\varphi_i$ if and only if x fixes every equivalent class $A_k^{\varphi_i}$. Then from Lemma 1 we have the following:

Proposition 1 G has a block of defect D if and only if there exists a fixed $\varphi_i (1 \le i \le r)$ such that for any p-element $x \in \overline{N} - \overline{H}$ there exists $A_k^{\varphi_i}$ with $(A_k^{\varphi_i})^x \ne A_k^{\varphi_i}$.

Proof If G has block with defect group D, then there exists a block b of defect zero in \overline{H} is covered only by the blocks of defect zero in \overline{N} . Hence we have $|T(b):\overline{H}|$ is prime to p, where T(b) is the inertial group of b. Since there is only one irreducible Brauer character φ in b, the inertial group $T(\varphi)$ of φ is the same as the inertial group T(b) of b. Hence there is no p-elements of $\overline{N} - \overline{H}$ in the stabilizer of φ . Hence we have for any p-element $x \in \overline{N} - \overline{H}$ there exists $A_k^{\varphi_i}$ s.t. $(A_k^{\varphi_i})^x \neq A_k^{\varphi_i}$.

Next we show the converse. If there exists a irreducible Brauer character of defect zero φ in \overline{H} such that for any p-element $x \in \overline{N} - \overline{H}$ there exists $A_k^{\varphi_i}$ with $(A_k^{\varphi_i})^x \neq A_k^{\varphi_i}$. Then there is no p-elements of $\overline{N} - \overline{H}$ in $T(\varphi)$, so is T(b), where b is the block to which φ belongs. Hence b is covered only by the blocks of defect zero in \overline{N} . The proof is completed.

It is important to determine the properties of representation of a group by group conditions in representation theory. The following result is of this kind.

Proposition 2 The following statements are equivalent:

- (i) There exists a fixed $\varphi_i(1 \leq i \leq r)$ such that for any p-element $x \in \overline{N} \overline{H}$ there exists $A_k^{\varphi_i}$ with $(A_k^{\varphi_i})^x \neq A_k^{\varphi_i}$.
- (ii) There exists a p-regular element x with defect group D such that $(|A(\overline{g})|, p) = 1$ if $p \geq 3$ and $(|A_0(\overline{g})|, p) = 1$ if p = 2.

Proof The Proposition follows from Proposition 1 and [5, Theorem 4].

Next we will determine the existence of blocks by using the action of N on the set of irreducible characters of its subgroup. Let $N \geq N_1 \geq N_2 \geq H \geq H_1 \geq H_2 \geq D$ be a normal series of N, and $\overline{N_1} = N_1/D$, $\overline{H} = H/D$. Assume that $N_1 = \langle \eta \rangle H$ and that $\overline{N_1} = \overline{H} \langle \eta \rangle$, where $\langle \eta \rangle$ is a p-group of order p. Then η can acts on \overline{H} and $N_{\overline{H}}(\overline{P_0})$ by conjugacy. η can also acts on their blocks by conjugacy. Let F(H), F(N) be the sets of fixed points of $cl(\overline{H})$ and $cl(N_{\overline{H}}(\overline{P_0}))$ under the action of η respectively. Let $z = |cl(\overline{H})| - |F(H)|, s = |cl(N_{\overline{H}}(\overline{P_0}))| - |F(N)|$. Then we have

Lemma 2 Let $\overline{b} \in Bl(\overline{H}), \overline{b} \in Bl(N_{\overline{H}}(\overline{P}_0))$ and $\overline{b}^{\overline{H}} = \overline{b}$. Then we have

- (i) $(\bar{b})^{\eta} = \bar{b}$ if and only if $(\tilde{b})^{\eta} = \tilde{b}$.
- (ii) If $(\bar{b})^{\eta} = \bar{b}$, then $|\operatorname{Fix}(\bar{b})| = |\operatorname{Irr}(\bar{b})| = |\operatorname{Fix}(\tilde{b})| = |\operatorname{Irr}(\tilde{b})|$; otherwise $|\operatorname{Fix}(\bar{b})| = |\operatorname{Fix}(\bar{b})|$

 $|F(\tilde{b})| = 0$, where $Fix(\bar{b})$, $Fix(\tilde{b})$ are the set of all irreducible characters fixed by η in \bar{b} , \tilde{b} respectively.

Lemma 3 $\overline{N_1}$ has a p-block of defect zero if and only if \overline{H} has a p-block of defect zero which is not fixed by η .

Lemma 4 $\overline{N_1}$ has a p-block of defect zero if and only if $0 \le z - s$.

The proof of Lemma 2-4 is similar to the proof of Lemma 5-7 in [1]. We omit it here.

Theorem 2 G has p-block with D as defect group if and only if $z - s \le 0$.

Proof It suffice to show this for N. By [2 Chart 5, Theorem 5.15, Theorem 5.16], the following conditions are equivalent:

- (i) N has a block with defect group D.
- (ii) N_1 has a block with defect group D.
- (iii) There exists $b \in Bl(H)$ such that $b^{\eta} \neq b$ and $\delta(b) = D$.

By [2 Chart 5, Theorem 8.11], (iii) holds if and only if there exists a p-block of defect zero of \overline{H} which is not fixed by η . The theory follows from Lemma 3 and Lemma 4.

Acknowledgments The author is grateful to Professor S.M.Shi for his encouragement and useful suggestions.

References:

- HU Lei, SHI Sheng-ming. The finite groups of order p²q with p-blocks of defect zero [J]. J. Algebra, 1998, 210: 487-497.
- [2] NAGAO H, TUSHIMA Y. Representation of Finite Groups [M]. Academic Press Inc., 1988.
- [3] SHI Sheng-ming. On the existence of block with defect group D [J]. Communication in Algebra, 2001, 29(11): 5233-5238.
- [4] MICHLER G O. Brauer's conjectures and the classification of finite simple groups [J]. Lecture Notes in Math., Springer, 1984, 1178: 129-142
- [5] WANG Li-zhong. The existence of p-blocks with a submaximal-subgroup of Sylow p-subgroup as defect group [J]. Communication in Algebra, 2003, 31(7): 3463-3470.

给定亏群的 p 块的存在性

王立中

(北京大学数学学院, 北京 100871)

摘 要: 在本文中,主要研究了群 G 在其子群的指标上的一些作用,并用这些作用得到了一些给定亏群的块的存在性.

关键词: p- 块; 亏群; 共轭类.