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1. Introduction

Let (W¢)t>0 be a d-dimensional Brownian motion, (k(t))t>0 a Poisson point process
taking value in a measurable space (Z,B(Z)), Ni(ds,dz) a Poisson counting measure
defined by k(-) with compensator II(dz)ds, Ni(ds,dz) the martingale measure such that
Ni(ds,dz) = Ny(ds,dz) — I(dz)ds, and II(-) a o-finite measure on B(Z).

Let(§2, F, P) be a complete probability space equipped with a filtration denoted by
Fi = o[Ws;s < ]V a[Nie(4,(0,s]);s <t,A € B(Z)] VN, where N is the all P-null sets.
We consider the following forward-backward stochastic differential equations with jumps
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(FBSDEJs):
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where (z,y, g, p) takes values in (R" x R™ x R™*dx R™) 1y € R™, and 7 is a stopping time
and takes values in [0, +oc]. The functions b, k, o are jointly measurable and Fi-adapted;
¢ is jointly measurable and F;-predictable; and 1 is jointly measurable with respect to
B(R"™) x F-.

b:[0,00) x B" x R™ x ™% x Lfj ,(R™) x @ — R",
h:[0,00) x R™ x R™ x R™4 x Ly (R™) x @ — R™,

o : [0,00) X R" x R™ x R™® x L} (R™) x @ — R™™,
¢:[0,00) x B" x R™ x R™4 5 L (R™) x Z x Q4 — R",
¢ :Q x R* — R™,

where L%I(.)(Rm) will be given in next section.

FBSDEs with Brownian motion were first introduced by Antonellill. In his work, he
obtained a local existence and uniqueness result, where the coefficients satisfy Lipschitz
conditions and are independent of the variable ¢. Due to broad applications to stochastic
optimal control, mathematical economics and mathematical finance, there have appeared
lots of results on FBSDEs. To our knowledge, there are two main methods to study FB-
SDEs. The first one is purely probabilistic method, which was given by Hu and Peng!?
and Peng and Wul®, who apply Itd’s formulas and then construct a contractive mapping
to solve FBSDEs under a monotonicity condition and Lipschitz condition. Specially, in
[5] the authors considered two cases: same dimension and different dimension. Similarly,
Peng and Shil® investigated a class of system of infinite horizon FBSDEs. Under some
monotonicity assumptions and terminal value of solution for BSDE being zero, the exis-
tence, uniqueness, and comparison theorem of FBSDEs are given. Pardoux and Tangm
have also studied, under some natural monotonicity conditions, existence and uniqueness,
a prior estimate, and established the connection with qusilinear parabolic PDEs, where
the proof for existence and uniqueness of solution was based on the fixed point theorem
by using an equivalent norm, while some coefficients are not Lipschitz continuous. The
second was given by Ma, Protter and Yong®®!, via a partial differential equation approach.
But this method needs the forward equation to be non-degenerate and the coefficients not
to be random. Tang and Lill% initially applied the idea of Peng to get the first result on
adapted solution to a BSDE with Poisson jumps and with Lipschitzian coefficients . And
then SiTul”l discussed the existence and uniqueness of solutions for BSDE with jumps with
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non-Lipschitzian coefficients. Wull'l also studied FBSDEs with jumps and Lipschitzian
coefficients. In particular, SiTul® have extensively researched on BSDEs and FBSDEs
with Poisson jumps for an arbitrary time duration. This paper considers extended FBS-
DEs, i.e. forward-backward stochastic differential equation with Poisson jumps (in short
FBSDEJs). Moreover, the time duration is a stopping time which is unbounded and can
take infinite value.

The paper is organized as follows. In Section 2, we present some notations and the
assumptions that coefficients and terminal function satisfy, then give a priori estimate;
Section 3 is devoted to the proof of the existence and uniqueness of solutions to FBSDEJs
under non-Lipschitz conditions.

2. Preliminary: notations and a priori estimate

In this section, we will mainly present a priori estimate, which is very important for
proving existence and uniqueness of solutions. We introduce following notations:

SQE(R") ={u(t,w) : v(t,w) is R" valued, F, — adapted such that |v - I\

=B sup |o(t,w)]? < oo}
0<i<r

R") ={v(t,w) : v(t,w) is R" valued, F; — adapted such that |lv - I
:E/ lo(t,w)]? < oo};
F%t(R") :{u(z,z,w) cu(t, z,w) is R™ valued, F; — predictable such that
lutg =2 [ [ lut.z )P nide)at < oo}
L%(_)(Rm) ={u(z) : u(z) is a B(Z) measurable, R™ —valued such that ||u||
=([ lu@)P1I@)? < oo
M? ={§Z ¢ is an F; measurable, such that El€|? < oo}.
Obviously, the space S%,(R") x S%,(R™) x L% (R™*%) x F% (R™) is a Banach space.
For notation simplification, here we only con51der the case n = m. Similarly, we can use

the techniques in [5] to deal with the case n # rn. Moreover, all results are remain correct
when k(-) is a d;- dimensional Poisson point process(c and ¢ have a proper dimension).

We will use the following notations:

U :(x',yv q7p)7 A(t’ u’ w) = (—-h(t7 u7 w)? b(t7 u7w)7g(t7u3 w)7c(t1 ’U/, '7w))’
(u, A) =u- A = —(z,h) + {y,b) + (g, 0)+ K p,c>;

L p,c>= /Zpt(z) -t u, 2)II(dz),

where (a,b) = a - b is the usual inner product with Euclidean norm in R™ and Rrd Al
the equalities and inequalities mentioned in this paper are in the sense of dt x dP almost
surely on [0,00) x §.
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Definition 2.1 (2, ¥, qs, p¢) is called an adapted solution of (1.1) and (1.2), if and only

if

1) (T4, yt, a6 pe) € S5, (R™) x 5%, (R") x L%, (R™?) x FZ,(R");

2) (zt, yt, qt, pr) satisfies (1.1) and (1.2).

The following assumptions are necessary:

(H1) The functions b, h, o, ¢ are continuous with respect to (z,y,q,p) € 5%, (R") x
5% (R™) x L}t(R”Xd) x FZ (R").

(H2) The process A(t,.’l),?j, Q3paw) = Al(t>$ays (I»P’w) + Az(t,l', y7q3p7w)a maoreagver,
lhi(t, 2y, q,p,w)| + |61(¢, 2,9, ¢, p,w)| < ui(t). Furthermore, for any u; = (24, Y, g, 0;) €

RrFnAnxd L%I(,)(R”),i = 1,2, the following hold:

I}Ll (t7$?y7 (]hpl,w) - hl(tv'z)ya QQaPQ)W)' + U)[(tvfl")ya qlaplaw) - bl(t7$ayaq27p27w),

< wa(t){lgr — g2| + llpr — pall]
lo1(t, ur,w) — o1t ug, w)| + llar (t, ur, -, w) — 1 (E, ug, -, w)||
<ur(O)flzr — 2| + [y1 — yoll + u2(t)lg1 — g2| + Iy — pal|]

[A2(2, ur,w) = Az(t, ug, )| S wr(B)fler — zal + ly1 — v2ll + w2l — g2 + llp1 — p2fl]

where u1(f) and ux(t) are strictly positive deterministic functions and satisfy f5°(u; (t) +

uz(t))dt < oo. Moreover, there exists a positive constant C such that u;(t) < C,i = 1,2.
(H3) Function % is uniformly Lipschitz continuous, that is, 1 (z1)—1(z2)] < Clz1—x2).
(H4) For function (), 1(0) € M?. Moreover,

T T
E(/O |hs(s,0,0,0,0,w)|ds)? + E(/ 1b2(5,0,0, 0,0, w)|ds)?+
0
E/O lo(5,0,0,0,0,w)|?ds +E/ fle(s,0,0,0,0, -, w)||?ds = Lo < oo.
0

(H5) For any u; = (2,9, ., ps), 1 = 1,2, the following inequalities hold:

(Alt,ur) = At uz, )y ur —w2) < = Brur(t)|z — 22| — Bowy (8)|y1 — ol >~
Baua(t)lla1 — g2* + |1 — poll?)
(1) ~ Y(22), 21 — T2) >Bulz) — x2]%,

where 3; > 0,1 <7 < 4 are constants, and satisfy one of the following conditions:
(1) B1, By > 0 and

(yl - Y2, h'l (t’ T1,Y1, q’p) - hl (tv T2, Y2, Q7p)>
< u(B)p(lyr ~ y2?) + wr () |yr — yallzy — 2. (2.1)

(2) /82a /83 >0 and
<$1 — xg,bl(t,$17y1>Q7p) - bl(t73327y2,q7p)>

S ui(t)p(lz1 — z2l*) + w1 ()|21 — z2|lyy — yol- (2.2)
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Lemma 2.2 We inake assumptions (H1)-(H4). (H5) is satisfied except (2.1) and (2.2).
If (z¢, ye, qe, pt) solves (1.1) and (1.2), then

e - 13+ lly - 17+ llg - 113+ llp - 113 < Co < oo,

where Cy is a constant depending on C,f;,i = 1.2,3,4, [ (u1(t) + ua(t))dt, Ly, and
E(0)]? only.

Proof Applying Ito’s formula to |y}, we have
2 T N 2
el + [ lgfPds e [ lplPas
INT AT
. T T
= |o(z,)|* + / 2zg - h(s,zg,Ys, qs, ps)ds + dM;
Jinr Jinr
where M; is an Fi-martingale. From this and Yang’s inequality, for any € > 0,
. 1 T 1 T . . .
Elyt|2 + _E/ |(Is|2d5 + TE/ ”psHZdH < 202E1x7|2+
2 Jine 2 Jins
T T
2mme+E/(mmg+@amwﬁm+E/ wn ()|, Pds+
tAT JINT
T o>
clly 1+ B[ ha(s,0,0,0.0)ds)? + [ ur(s)ds,
Jo 0
Hence by the Gronwall’s inequality

sup Elyt(2+E/ {q512d3+E/ lps]l?ds < KE+KEle[2+KE/O wy (8)|@s)?ds+Kelly-|I3.
0<t<r 0 0

Note that
l? =tl? ~ [ 22 hls s + [ 20, W
[ [ 2 stz + [ lafass [ [ RNz ),
0 Jz 0 0Jz
From the martingale inequality, it follows that
lly - 1} <lyol® + E/OT 2lys||h(s, us)lds + llg - II” + llp - 1P+
208([ lusPlads)® +208([ s Plpsld)?
<ol + B [ (ur(s) + 4l Pas + B [ (el s+

Sy 0+ [ 1ha(5,0,0.0,0)(a5)° + Culla- 5 + - 1)

thus, by what we have just proved, taking a small enough £ > 0, we have

]
H%W§K+KEAMQMﬁ®+Km%ﬁ
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This leads to, in particular

lo-I? +lp- I < K + KB [ un(s)fasf*ds + KBl "
Applying Ité’s formula to (zs,ys), we have
ﬁmm#+E47&mmmﬁ+@m@mﬁ+mmm£+wmmm
< |zollyol + Bl (0)||z-| + e(llz - IIZ + lly - 13 + lig - 13 + llp - 15)+
B [ us)faidds + B [ w(s)lylds+
Kg[E(/OT Iha(s,0,0,0,0)|ds)? + E(/O 1bs(s,0,0,0,0)|ds) >+
E/T(la(s,o,o, 0,0)]% + lle(5,0,0,0,0, )|1*)ds).
0
For the case (31, B4 > 0, the inequality
Elz,|* + E/OT ui(s)|z,|%ds
<K .+ Ke(lz- 12+ Ny 11+ lg- 115+ lp-113)

follows, and thus )
Iy 13 +llg- 15+ llp- I3 < Ke + Kellz - |11,

where K, > 0 and K can be different in above and below inequalities. Analogously, for
the case f2 > 0,33 > 0, we have

B [Cu@lylds + B [ uno) (.l + lpilds)
0 0
SKe+e(lz- 17+l I+ llg- 15+ lp- 113)- (2.5)
Finally, by It6’s formula,
t
Ela[* =|zo|* + E/O 2z - b(s, us)ds + 1737/()t(|0'($,us)l2 + lle(s, us, -)][%)ds
<K+ KF /t(ul(s) + ug(s))|zs|*ds + KE/tul(s)lySIst +ellz - |2+
0 0

KE /OT uz(8)(|gs)® + ||ps)|2)ds + s—‘E(/OT |b2(s,0,0,0,0)|ds)?

<{ Ke+K(lly-12+lla-I* +llp- ") +ellz - ||, fr, 8 >0
= Ke+Ee(lz- [P +lly- 12+l 1P+l 1), B2Bs>0.

By the martingale inequality, and taking a small enough ¢ > 0 first, we get

WnW<{K+mMM“WmW+MM% 81,1 > 0,
S| K+ Kelly- I+l 12 +1p- 15 s> 0.
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With the help of this and above inequalities, the assertion follows.
3. Existence and uniqueness

Now we give the result of existence and uniqueness for solutions of FBSDEJs (1.1) and
(1.2). Because of the non-Lipschitzian coefficients, we use smoothness techniques in [7].
First the following lemma is necessary, which is the same as that in [12].

Lemma 3.1 Let the assumptions (H2)-(H5) be satisfied, for Ai(s,us) = 0, then FBSDEJs
(1.1) and (1.2) have a unique adapted solution (z, ys, ¢s, Ps)-

Remark In {12], we pointed out, under weaker conditions, the uniqueness of solutions
for FBSDEJs still holds. In fact, the assumptions (2.1) and (2.2) are equivalent to that in
[12].

Theorem 3.2 Assume that (H1)-(H5) are satisfied. Then there exists a unique solution
to the FBSDEJs (1.1) and (1.2).

Proof We first smooth A by A™ with respect to x and y. Define

fn(S,ﬂ%ya (I7p) = ‘/Rn+n f(57$ - ’I”L_l.’f,y - n—lg'/ Q7p)‘](jvg)d‘id’gv

where f = b, h, 0, c and J(z,y) = J(z)J(y),

J(.T):{co exp(—(L—[z2)7"),  as lal<1

0, otherwise,
and the constant cy satisfies [pn J(x)dz = 1. It is easy to check that
E(/OT |b"(s,0,0,0,0)|ds)* + (/OT |h™(5,0,0,0,0)|ds)?+

/OT 16™(5,0,0,0,0)[%ds + /0 1¢%(5,0,0.0,0, -)[2ds < K* < oo,

where K* is independent of n, and

‘fn(sa T1,Y1, Ch»Pl) - fn(5,$27y2792ap2)|
S ‘/ (fl(saxl - n—ljayl - n_lga(ﬂapl)_’
Rn+n
f1(s8, 9 — 0712, yo — 7', g2, p2)) J (2, §)dzdg|+
/ lf2(57x1 —ndli‘ayl '”—117,‘11471)_
Rn+n

fo(s, 2o — 0" 2,y — 07 Y, a2, p2)| I (2, §)dEdY
< Knui(8)[|lz1 — 2| + ly1 — y2l] + 2u2(s){lar — g2l + llp1 — pall],
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where K, is a constant depending on n ,f = b, h, g, ¢. Observe that
(uy —ug, A" (s,u1) — A" (s, u2))
= /Rn+n (uy — ug, A(s,z1 —n Y&, y1 —n "G, q1,p1)—
A(s, 32 — n7'Z,y2 — n” ', g2, p2)) T (Z, §)dEdY.

Since the assumption (HS5) are satisfied, it is easily checked that (H5) also hold for A™. Con-
sequently, by Lemma 3.1, for each n = 1, 2, - - -, there exists a unique solution (z;, y¢, g¢, p1)
to solve the following FBSDEJs:

IAT IAT
xy —’170+/ b (s, Tq,y?,q?,p?)d-wr/o o™ (s, 2y, s, gy, Py ) dWs+
tAT "
/ / "(s, 2,y g pl, 2) Ni(ds, d2), (3.1)
T
d=0ED 4 [ Wl el — [ g
AT
/ /p (2) Ny (dz, ds). (3.2)
tAT
Denote
X = af —aft Y=g -y QP =g - g
P = pft = ! ul = (2P, g7, g pY)
by = b (t, U”) — 0™ (t,uf") 6" = o™(t,uf) — o™ (¢, u)
~TL, 1M T
& = (bl z) — EM(t Ul z) D" = p(a}) — p(a)
then
)’(\vn,m t"n,m t ~n,m ¢ ~,m N
P [Bmas e o dWS+/ /c’ (z)Nk(dz,ds) (3.3)

n ,m T
. . Qr . P Ni(dz, ds). (3.4)

By It6’s formula and Lemma 2.2(It is true for (3.1) and (3.2), by checking the proof), we
have

~ %7 1 T oy 1 T o~
B4 g8 [0 Pas+ 58 [T B Rds
2 tAT 2 AT
SB[ 2T =0y 4 w5202, ) dsdgds

CBIXI™P 4B [ 2ui(s)| X2 s+

! 2 v n,m - 1125
B[ () +8B)ITI s + = m2E (3.5)

Next, use It6’s formula and Lemma 2.2 to get
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BE|RM™2 4 B /0 (Brus ()| X2™ 2 + Byuy ()| P72 ds +
BE /O Q™2 + || Prm|2)ds
<E / /R L 2u()|XP I — w8 (2, §)dadgds+

E/ /Rnﬂ 7 —m™ a:Hh S, Ty —n“li:,ygn—n_lg,q;”—p;")—
h’<5 f -m ‘Z' ys -m- gv (]5 —psl),‘](j7 g)djdgd3+
B[] 2ul)gmlnty - me gl ) dedgda+

()T Rnrtn
g [ /R It —m s, 27 - n T 2 - 0 gl — plt) -
b(s, 2 —m™ 2,y —m 7'y, ¢ — pi)|J (2, 7)dzdgds
< Co]n - m”l}.,
and hence
E|Xpm2 4+ B[] ui(s |X"m|2ds — 0 B1,B1> 0
E [y ui( s)’Y"leds + E [y ua(s Q?ml‘? + |PM™ |1 2)ds — 0 Ba, B3 > 0.

For the case (1,84 > 0, by (3.5) and Fadou’s lemma, we get

T BT < Ro /°° (11 (5) + () (ol Ty I

n,Mm—r00

Y+ m BT s

since sup IYtnmP < Ky according to Lemma 2.2. Thus, by SiTul® and taking p;(u) =

0<t<r
p(u) + u, it follows that
n,m n,m n,m
i (5P 4+ 1@ 13 + 1@ 1) = (3.6)

Utilizing the same technique, we also obtain lim || X/ |2 =
m,n—00

For the case B2, 3 > 0, using [td’s formula to |X]"™|2, we have
o~ t o~
E|RPm? gKE/ [ 20() +ua(s) (1R = 0+ m a4
0 JRrn
—~ t o~ s
| X — 7z m T z)%)ds + KE/ uy(s)|Y™ 2 ds+
0

t . ~
KE /0 ()| + || PPy ds + Kt —m 72,

Hence
[o.e] — ~
2 2 . TN,my2 T n,m2
n},{r_fiooEIXn ™2 < K/o (uy1(s) +u2(3))(p(n,}7{glooE|Xs %) +n’71%11)100E[X8 |“)ds

This gives lim E|X;™?> = 0. From this and the martigale inequality, it deduces that
7,m—r00

lim [[X™™- |3 =0.

7,00
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Similarly, we also have
lim (™™ 2+ 1Q™™ - I3 + IP™™ - [I5) = 0.
n,m—00

Therefore, there exists a unique uy = (&, ¥t, 41, Pt) € S%t(R") x 5% (R") x L%rt(R"Xd) X
F% (R™). We can take a subsequence {ng} of {n}, and denote it by {n} again, such that

as n — o©

2t (w) = z4(w) in R"

v (w) = ylw) in R"

(w) = q{w) in R

(@) > yP(w) in LR

ae. (t,w) € [0,7] x Q. It is easy to derive that as n — oo
Blaf(w) ~zi(w)] = 0, Elyi(w) —p(w)] = 0.
Let us show that as n — o0
E| /Ot (0 (s,ul,w) — b(s,us,w))ds| = 0.
Note that
E/OT /Rm (s, @5 —n 7',y — n7'G, qF,0%) = b(s, %5, Ys, 45, ps)*J (, §)dZdFds

<KE [ [ ()13 + o) + i) (ol + o)+
0 JRntn

uB(3) (21 + 1asf) + () fasf? + 1)+

ud(s) + ud ()12 + |51%)n?) J (2, §)dzdgds,

since

Bl sup (o + sup u®+ [ (i + lpul)dt]
0<t<r 0<t<r 0

T
=Bl swp lim [of? + sup lim WP+ [ lim (a7 + Ip¢1P)d

0<t<r n—00 <t<T n-—00 n—o0

)
< lim B sup |7’ + sup [y + / (g2 + [IpP]2)dt] < Ko.
0<t<r 0

n—oo 0<t<r

Hence the sequence {|b(s,z} —n7'Z,yf — n™'7,q}, pt) — b(s, Ts, Ys, 45, Ps)[* } oo, IS uni-
formly integrable on [0, 7] x R™ x R™ x 2. Recalling that b is continuous, we immediately
deduce that as n — oo

t
E| /0 (" (s, u™, w) — b(s, us, w))ds]| — 0.
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Analogously, it is shown that

E]/ h"(s,u},w) — h(s,us,w))ds| — 0

Now we show that

EI/ (s, xsvyqus?ps) (S:xwysa%yps))dwsl - 0.

Indeed, by Lemma 2.2, for each n we get
¢
E‘ /O (07L(57x7517 y?vqsvp?) - 0(57 Tsy Ys, (ISaps))dW.S’Q S KO'

It means that {lfo (8,25, U5, 48, 0%) — 0(s, @4, Ys. qs, ps) AW}, is uniformly inte-
grable. Observe that for cach € > 0, by Doob’s inequality, it deduces that

P(I/ (s,uy) — o(s,us))dWs| > €) < E/ lo™(s,ul) — o (s, ug)|*ds.

Therefore, by Lebesgue’s domination convergence theorem and the continuity of o, we
have

i/ —o(s,us))dWy| > €) — 0,

which implies that

t
EI/O (0™(s, 25,45, 45, Py ) — 08, Zs, Ysy s, s ) )AWs| = 0.

Similarly,

E]/(c 8,27y, g7, p 2) — (8, Ts, Ys, @s Ps» 2)) Ni (dz, ds)| — 0

is also hold. Now let n — oo in (3.1) and (3.2), we obtain that (z;,y:, q¢,p¢) is a solution
of (1.1) and (1.2). Observe that, from Schwarz’s inequality, if E [ ui(s)|zs|*ds = 0, then
E [§ u1(s)|zs|ds = 0, the proof of uniqueness is similar to that of Theorem 2.1 in {12].
Thus, the assertion is followed.
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