Journal of Mathematical Research & Exposition
Vol.24, No.4, 589-596, November, 2004

On Monogeny and Epigeny Classes of Modules *
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Abstract: Let (S, <) be a strictly totally ordered monoid, and M and N be left R-
modules. We show the following results: (1) If (S, <) is finitely generated and satisfies
the condition that 0 < s for any s € S, then Epi(jjgs.<))[[M>=]]) = Epi(jps.<) [N *<]))
if and only if Epi(M) = Epi(N); (2) If (S, <) is artinian, then MOHO([[RS,SH[MS’SD =
Mono(jgs.<)[N<]) if and only if Mono(M) = Mono(NN).
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1. Prelimilaries

All rings considered here are associative with identity and all modules are unital unless
otherwise specified. Any concept and notation not defined here can be found in [9].

Following (1] or (2], two left R-modules M and N are said to belong to the same
monogeny class, if there are a monomophism f : M — N and a monomorphism g : N —
M. In this case we denote Mono(M) = Mono(N). Similarly, M and N are in the same
epigeny class if there are an epimorphism b : M — N and an epimorphism & : N — M.
In this case we denote Epi(M) = Epi(N). In 1] and [2], the authors discussed finite
direct sums of uniserial modules and the weak form of the Krull-Schmidt Theorem for
serial modules, respectively, by using the concepts of monogeny class and epigeny class of
modules. In this paper we consider the influence of extensions of generalized power series
rings upon the properties of belonging to the same monogeny class and epigeny class of
modules.

Let (8, <) be an ordered set. Recall that (S, <) is artinian if every strictly decreasing
sequence of elements of S is finite, and that (S, <) is narrow if every subset of pairwise
order-incomparable elements of S is finite. Let S be a commutative monoid. Unless stated
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otherwise, the operation of § shall be denoted additively, and the neutral element by 0.
The following definition is due to [9].

Let (S, <) be a strictly ordered monoid (that is, (S, <) is an ordered monoid satisfying
the condition that, if s,s',t € S and s < ¢/, then s+t < s’ +1), and R aring. Let [[RSS])
be the set of all maps f : S — R such that supp(f) = {s € S|f(s) # 0} is artinian and
narrow. With pointwise addition, [[R®<]] is an abelian additive group. For every s € §
and f,g € ([R%=]], let X(s; f,9) = {(w,v) € § x S|s = u+ v, f(u) # 0,g9(v) # O}). It
follows from [9, 4.1] that X(s; f,g) is finite. This fact allows to define the operation of
convolution:

(f9)s) = Y, flu)glv),
(wv)eX(s:f,9)
Clearly, supp(fg) C supp(f) + supp(g), thus by [9, 2.1], supp(fg) is artinian and narrow,
hence fg € [[R5<]]. With this operation, and pointwise addition, [[R><]] becomes a ring,
which is called the ring of generalized power series. The elements of [[R%<]] are called
generalized power series with coefficients in R and exponents in S.

For example, if § = N U {0} and < is the usual order, then [[RNY{0}<]] = R[[z]], the
usual ring of power series. If S is a comnmutative monoid and < is the trivial order, then
[[R*<]] = R[S], the monoid-ring of S over R. Further examples are given in [5, 9-12].

2. Epigeny classes of modules of generalized power series

Let M be a left R-module. We denote by [[M%<]] the set of all maps ¢ : § — M
such that supp(y) = {s € S|e(s) # 0} is artinian and narrow. With pointwise addition,
[[MS55]] is an abelian additive group. For each f € [[R%<]], each ¢ € [[M5<])] and s € S,
denote

X (s f,0) = {(u,v) € § x Sfs =u+wv, fu) # 0,¢(v) # 0}.

By [4], X (s; f, @) is finite. Thus from [4], [[M5=]] can be turned into a left [[R%<]]-module
by the scalar multiplication defined as follows

fols)= > flu)e(v)

(uv)eX(s:f.0)

for each f € [[R*<]] and each ¢ € [[M>5]]. [[M5<]] is called the module of generalized
power series over left R-module M. The elements of [[M5<]] are called generalized power
series with coefficients in M and exponents in S.

For every ¢ € [[MS<]] with ¢ # 0, supp(y) is a nonempty well-ordered subset of S.
We denote by 7(p) the smallest element of the support of ¢ # 0. As in (10] we adjoin an
element 0o to S with s < 0o and s + 00 = 00 + s = oo for all s € § and define 7(0) = oo.

If s1,...,8, € § we denote by < s1,...,s, > the set of all elements > kis; (with
ki integer, k; > 0). A monoid S is called finitely generated if there exists a finite subset
{s1,...,5n} such that S =< s1,...,s, >.

For any s € S, define e; € [[R5<]] as follows:

wo={ 2320
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By analogy with the proof of [4, Lemma 3], we have

Lemma 2.1 Suppose that (5, <) is a strictly totally ordered monoid which is finitely
generated and satisfies the condition that 0 < s for any s € S. Assume that o ¢
Homygps, < ([([M>=]), [[N*=]]) and 0 # € [MS<]]. Then n(a(p)) > (y).

Lemma 2.2 Let M and N be left R-modules. If Epi(M) = Epi(N), then
Epi(jirs < [[M*=])) = Epi(jps.<y [[NS<]).

Proof Let h: M — N be a surjective R-homomorphism. Define o : [[MSS]] — [[NS’S]]

via
aflp): S M

s = h{w(s))
for any ¢ € [[M5<]).
For any f € [[R%<]), any ¢ € [[M5<])]andany s € S, set X; = {(u,v) € X(s; f,0)|h(p(v)) =
0}, Xz = {(u,v) € X(s; f, 0)|h((v)) # 0}. Then clearly X5 = X(s; f, (). Now

alfe)(s) =h((fo)(s)) =h( > fluye(v))

(u,v)€X(5:f,0)

= > Fuwhie()

(u,w)EX (s:f,0)

= > f@hle@)+ 3 fu)h(p(v))

(u,v)EX, (u,0)EXo

=Y el

(u,v)eX (3:f,0(p))

= (falp))(s)-

This means that a(f) = fa(p). Thus a is an [[R5<]]-homomorphism.
For any % € [[N%<]] and any s € supp(%), there exists an element ms € M such that
h(ms) = 1(s) since h is surjective. Define ¢ : § — M via

0 s ¢ supp(y).

Clearly supp(p) C supp(%), which implies that supp(y) is artinian and narrow and thus
o € (M55)) T s € supp(y), then a{p)(s) = hlp(s)) = h(ms) = (s). If s ¢ supp(s),
then a(p)(s) = h(p(s)) = 0. Thus a(p) = 1. This means that « 1ssa<surject1w; L[R =)
homomorphism. Hence there exists an [[R><]]-epimorphism « : [[M><]] = [[N>=]].
Similarly there exists an [[RS'<]]-epimorphism g : [[NS<]] = [[M®<]]. Thus

Epi(gas.<p[[M5]]) = Epi(jgs.<;[[NS=]).

Lemma 2.3 Suppose that (S, <) is a strictly totally ordered monoid which is finitely
generated and satisfies the condition that 0 < s for ang'<s eS8 If M and N be .Ieft R-
modules such that Epi([[Rs,SH[[M‘S’S]]) = Epi(jps.<j[[N™=]]), then Epi(rM) = Epi(gN).

o(s) ;{ ms s € supp(y)
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Proof Let a : [[M5<]] = [[N<]] be a surjective [[R*=]-homomorphism. Define f :
([N$S]] = N via f(¢) = ¢(0). For any m € M, define A, € ([M5<]] as

m =0

’\m(‘”)z{ 0 z#0.

Now define h : M — N via h(m) = fa(A\y). For any r € R, define ¢, € ([R5<]]

via ¢;(0) = r and ¢.(z) = 0 for all 0 # = € S. Then h(rm) = fa(Arm) = falerAm) =
flera(Am)) = (cra(Am))(0) = ra(An)(0) = rfa(ly) = rh(m). Thus hisan R-homomorphism.
For any n € N, there exists ¢ € [[M5=]] such that a(p) = An. Let ¢ = ¢ — Ay)- Then
7(+p) > 0 and thus 7(a(y)) > 0 by Lemma 2.1. Hence

n = An(0) = a()(0) = (¥ + Ay(0))) (0)
= (a(1))(0) + (a(Xp(0))(0) = fa(Ay) = h(¢(0))-

This means that h is a surjective R-homomorphism. Hence there exists an R-epimorphism

h:M— N.
Similarly there exists an R-epimorphism & : N — M. Thus Epi(rM) = Epi(rN).

Theorem 2.4 Suppose that (S, <) is a strictly totally ordered monoid which is finitely
generated and satisfies the condition that 0 < s for any s € S. Then for left R-modules
M and N, the following conditions are equivalent:

(1) Epi(M) = Epi(N).

(2) Epi(jgs.<[[M>=]]) = Epi(jps.<)[[N5=])).

Proof It follows from Lemmas 2.2 and 2.3.
3. Monogeny classes of modules of generalized inverse polynomials

If M is a left R-module, we let [M <] be the set of all maps ¢ : § — M such that the
set supp(¢) = {s € S|p(s) # 0} is finite. Now [M><] can be turned into a left [[RS<]}-
module under some additional conditions. The addition in [M <] is componentwise and
the scalar multiplication is defined as follows

(fo)(s) =D f(t)p(s +1), forevery s€ S,
tesS

where f € [[R%<]], and ¢ € [M5S]. By [6], if (S, <) is a strictly totally ordered monoid
which is also artinian, then supp(fy) is finite and [MS<] becomes a left [[RS<]]-module.
The elements of [M*5] are called generalized inverse polynomials with coefficients in M
and exponents in S.

Note that the usual left R[[z]}-module M[z~] introduced in [8] is a module of general-
ized inverse polynomials. Further examples of modules of generalized inverse polynomials
are given in [5, 6].

Suppose that (S, <) is a strictly totally ordered monoid which is also artinian. If s € §
is such that s < 0, then

<38 <C28<8<0
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by {10, 3.1]. This contradicts the assumption that (S, <) is artinian. Thus for any s € §,
we have 0 < s. This result will be often used throughout this section.

For every ¢ € [M*<], we denote by o(p) the maximal element in supp(p). The
following result is a direct corollary of [7, Lemma 2.1].

Lemma 3.1 Let (S, <) be a strictly totally ordered monoid which is also artinian. Suppose
o€ Hom[[Rs,g}]([MS’f], [NS<]). Then for any ¢ € [M5<], a(a(p)) < o(yp).

Theorem 3.2 Let (S, <) be a strictly totally ordered monoid which is also artinian. Let
M and N be left R-modules. Then Mono(jigs.<|[M*<]) = Mono(jgs.<;[N><]) if and
only if Mono(M) = Mono(N).

Proof Suppose MOnO(HRS,g”[MS’SD = Mono([[Rs,gn[NS’S]). Let
a € Homgps.<) ([M<], [N*<])

be injective. For any a € M, define gy, € [M 5] as follows

a, t=90

Since o(pgq) = 0, it follows from Lemma 3.1 that o{a(pg.)) < 0. Thus a(pg.)(s) = 0 for
any 0 #s€S.
Define f: M — N via
fa) = a(p0a)(0), Ya e M.

For any r € R,

(crp0a)(z) = Z cr(Y)w0a(z + ) = rpoa(z) = Yora(2).
yeSs

Thus, ¢r¢¥0a = @o,ra; and so

f(ra) = O‘(‘Pﬂ,ra)(o) = afcrpoa)(0) = c,a(go()a)(())
= Z cr(y)epoa) (y) = rafpod)(0) = rfla).

yeS

This means that f is an R-homomorphism. If f(a) = 0, then clearly a(ppa) = 0, which
implies that @g, = 0 since « is injective. Thus a = 0. This means that f is an injective
R-homomorphism. Hence there exists an R-monomorphism h : M — N.
Similarly, there exists an R-monomorphism & : N — M. Thus Mono(M) = Mono(N).
Conversely, suppose Mono(M) = Mono(N). Let f € H omp(M, N) be injective. Define
a: [MSS] » [N5S] via

a(p)(s) = fle(s)), s€S. pe[M>=].
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Clearly, for any g € [[R>=]] and any s € 5,

a(ge)(s) = fllge) ()] = F(O_ a(w)e(s +v))

y€S

= gy fle(s +v))

y€S

= g9lalp)l(s +y)

yeSs

= (ga(p))(s),

which implies that « is an [[R%<]]-homomorphism. If a(p) = 0, then for any s € 5,

flpls)) = 0, which implies that ¢(s) = 0 since f is injective. Thus ¢ = 0. This means

that « is injective. Hence there exists an [[R%<]}-monomorphism a : [M5S] — [N9<].
Similarly, there exists an [[RSS]]-monomorphism 8 : [N5<] — [M®=]. Thus

MOIIO([[RS,S]] [MS’S]) = MOI}O([[RS,SH[NS’SD.

Remark 3.3 Let R be a ring not necessarily possessing an identity. Varadarajan““’w]
says that a left R-module M has property (F) if for any submodule N of M we have
{m € M|Rm < N} = N. It is easy to see that M has property (F) if and only if
m € Rm for every m € M, i.e., M is an s-unital module in the sense of Tominaga[m].
It follows from [13, Theorem 1] that M has property (F) if and only if for any finitely
many elements mq,...,m, € M there exists an element ¢ € R such that em; = m,,
i=1,...,n. Let (S,<) be a strictly totally ordered monoid which is also artinian. It
was proved in [7] that if N has property (F) and a € Hom[ms,gﬂ([MS’f],[NS’S]) then
for any ¢ € [M*<], o(a(p)) < o(p). Using this result, by analogy with the proof of
Theorem 3.2, we can show that if M and N are left R-modules having property (F), then
Mono([[Rs,gn[MS’S]) = Mono(HRs,SH[NS’g]) if and only if Mono(M) = Mono(N).

4. Corollaries

Corollary 4.1 Let S be a finitely generated torsion-free and cancellative monoid, and
(S,<) be narrow and satisfy the condition that 0 < s for every s € S. Then for left
R-modules M and N, we have Epi(M) = Epi(N) if and only if Epi(jps.<)[[M5<]]) =

Epi((ps.<j[[N*<])).

Proof If (5, <) is torsion-free and cancellative, then by [10, 3.3], there exists a compatible
strict total order <’ on S, which is finer than <, that is, for any s,t € §, s < ¢ implies
s <'t. By [12], we have 0 <' s for any s € S. Thus by Theorem 2.4, Epi(M) = Epi(N) if
and only if Epi(jps <y [M>=)) = Epi(j s, [[N*=T])). On the other hand, since (S, <)
is narrow, by [10, 4.4], [[R9<]] = [[R®="]]. By analogy with the proof of [10, 4.4], it follows
that {[M5=]] = [[M5<]]. Now the result follows.

Any submonoid of the additive monoid N U {0} is called a numerical monoid. It is
well-known that any numerical monoid is finitely generated (see [10, 1.3] or [3, p. 13]).
Thus we have
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Corollary 4.2 Let S be a numerical monoid and < the usual natural order of N U {0}.
Then for any left R-modules M and N, we have
(1) Epi(M) = Epi(N) if and only if

Epi(jrs.<j[[M>=]]) = Epi(ggs.< ) [[IN*<])).
(2) Mono(M) = Mono(N) if and only if
Mono(jps,<y, [M55)) = Mono(HRs,gn[NS’S}).

Corollary 4.3 Let (S1,<1),--+,(Sn, <pn) be strictly totally ordered monoids. Denote
by (lex <) and (revlex <) the lexicographic order and the reverse lexicographic order,
respectively, on the monoid 57 X --- x S,,. Let M and N be left R-module.

(1) If (S,, <,) is finitely generated and satisfies the condition that 0 <, s for every
s €S8,,i=1,...,n, then the following conditions are equivalent:

(i) Epi(M) = Epi(N);

(1-1-) Epi([[Msl><-~~><Sn,(lex§)”) — Epi([[NSlX"'XS”’(ICXS)J]);

(iii) Epi([[MSl ><~~~><Sn,(revlex§)”) — Epi([[NS’X"'Xs'l"(re‘de’(g]]).

(2) If (S,, <,) is artinian, ¢ = 1,---.n, then the following conditions are equivalent:

(i) Mono(M) = Mono(N);

(1-1-) MOIIO((MSIX"'XS"’(leXS)]) — MOHO({NSlX"'XS"“(IQXS)]).

(1-1-1-) MOILO([MSI><-~-><Sn,(revlex§)]) — MOHO([NS’ X - ><Sn,(revlex§)]).

Proof (1) It is easy to see that (S) x -~ x Sy, (lex <)) is a strictly totally ordered monoid
which is finitely generated and satisfies the condition that

(0 : :O)OGX S)(Sl v ‘asn)

for every (s1,-+,85) € S1 X -+ x Sp. Thus, by Theorem 2.4, we have (i)« (ii). The proof
of (1)< (iii) is similar.

(2) 1t follows from Theorem 3.2.

Let p1,-- -, pn be prime numbers. Set

N(p1,---,pn) = {PY" 95" - PR Imi,ma, -+, my € NU{0}}.
Then N(p1,---,pn) is a submonoid of (N,-). Let < be the usual natural order.

Corollary 4.4 Let M and N be left R-modules. Set A = [[RN(Pr-Pn). <) Then
(1) Epi(a[[MY®2n)<]]) = Epi(a[[NV®#)0]]) if and only if Epi(M) = Epi(N).
(2) Mono(4[MN®1pn)S]) = Mono( 4[NV Pr2e).21) if and only if Mono(M) =
Mono(N).

Corollary 4.5 Let z1,-- -,z be n commuting indeterminates over R. Let M and N be

left R-modules. Set A= R[[z1,---, ]} - .
(1) Epi(aM{[z1, -, znl]) = Epi(aN{[z1,- - -, 2,]]) if and only if Epi(M) = Epi(N).
(2) Mono(aM(z7*, -+, z,') = Mono(aN(zi?, -+, z,;')) if and only if Mono(M) =
Mono(N).
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Proof Let S =--- =8, = N and <;, i = 1,---,n, be the usual order of N in Corollary
4.3. Then the result follows from [10, Example 3].
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%F Monogeny $0 Epigeny $&3

x| fF &£
(FALMRARESER, A 2M 730070)

R B(S<) RIELFLER, MM N RER B 8 A= [[RSS). EHTHT
it (1) WR (5,<) REMERGAXER s € S H 0 < s, W Epi(ps.cy[[M5S])) =
Epi((irs.<[IN*=])) % B{X%4 Epi(M) = Epi(N); (2) sk (S, <) £ Artinian &, Jl

MOnO([[RS,SH[MS’S]) = MOHO([[RS,S]][NS’S])
% HAX% Mono(M) = Mono(N).
38T Monogeny 2, Epigeny %; /" LFEHM.
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