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Abstract: Puczylowskil!l established the general theory of radicals of the class of objects
called algebras. In this paper, we make use of the method of lattice theory to characterize
the general hereditary radicals and general strongly semisimple radicals and investigate
some properties of them in normal classes of algebras. This extends some known studies
on the theory of radicals of various algebraic strutures.
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1. Introduction

Recently, Puczylowskim developed some ideas of the theory of radicals of various al-
gebraic structures, established the general theory of radical in the Universal classes of
objects called algebras by means of axioms system, gave the characterizations of general
radical class and general Semisimple class, and illustrated the possibilities of applications
of this theory to three samples. Here, we will propose the concepts of hereditary radical
and strongly semisimple radical and present characterizations for them by means of the
lattice theory method. As the normal classes of algebras are much more extensive than
the class of associative rings, the results of this paper generalize respectively the problems
12-14 and Theorems 8.1-8.2 of [2] for associative rings to any normal class of algebras, such
as the category F of alternative algebras over a commutative ring F' with usual identifica-
tion, the Category ¢ of Semigroup with zero, the Category g of associative algebra with
involution over a Commutative ring F, the Category 8 of G-graded rings and (h, k)-graded
homomorphisms and the category b of I'-rings, etc., and these results also can be applied
to many other categories satisfying axiom A1-A6. In this way one obtain known and new
results on radicals of these classes.
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2. Preliminaries

Let A be a class of objects called algebras, O be a fixed element of A called zero algebra
and ~ be an equivalent relation on A. They satisfy the following axioms:

Al. With every a € A there is a complete lattice (Lg, <) such that L, C A, where o
and a are respectively the bottom and the top of L,.

A2. For every i € L, [0,4]1, = {z € Ly|i <z < a} is a sublattice of L;.

A3. With every ¢ € L, there is an algebra denoted by a/i, such that L,/; = {k/ilk €
[i,a]r,} and the map given by k — k/i is an isomorphism between [i,a]r, and Lg ;.

A4. If a ~ b, then there is an isomorphism f : L, — L such that for every [ € L,, ! ~
f(1) and a/l ~ b/ f(1).

A5. Foreverya € Aandi,j € Lo, (1V3/i) ~ (j/iNj), and if j < ¢, then (a/5)/(i/j) ~
a/t.

Definition 2.1l We say that an i € L, is distinguished, which is denoted i/\'a, if
j=1=k for every j, k € L, such that j <i < k,i/j ~ k/i and i/j is a travial algebra.

Definition 2.2 The class A is called normal if it satisfies

AG. Ifa € Ly and iN'a, then i € Ly,.

In (1], [3] it was shown that the above classes F, ¢,g and § are all normal class. We
can easily prove that b is also normal class (cf. [4]).

Remark Let A be the class of all near-rings. For every A € N, let L4 be the Lattice
of all ideals of A and define A ~ B if and only if they are isomorphic. Then N satisfies
axiom Al-A5. But N is not normal class (cf. [5]).

Definition 2.3 A subclass R of A is called a radical class if

(I) Foreveryi € L,, ifa € R, thena/i € R;

(II) Every algebra a contains a largest (with respect to the order of L,) R-ideal R(a)
called R-radical of a;

(III) For every a € A, R(a/R(a)) = 0.

For every radical class R the class PR = {a € A|R(a) = 0} is called the semisimple
class of R; elements of PR are called R-semisimple algebras.

Throughout the paper A is always assumed to be a normal class and all radical classed
and algebras considered are supposed to be contained in .A. Qur notation and terminology,
unless otherwise state, agree with that of [1]. For the concepts of the lattice theory we
refered the reader to any standard text such as [6].

Proposition 2.1 Let R be an arbitrary radical class. Ifi € L,, then R(7) € L,.

Proof Let j,k € L; and j < R(i) < k,R(i)/j ~ k/R(i). By definition, R(7) and
R(i)/j € R. Since R is abstract, k/R(i) € R. It follows that k € R by (1, Theorem 1].
Thus we obtain that j = R(i) = k. So R(i)Ai. But A is normal. Hence R(i) € L,.

Proposition 2.2 Let R be an arbitrary radical class. If a € PR and i € L,, then
t € PR.
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Proof By proposition 2.1, R(i)) € L,. By axiom A5 we have R(i) Vv R(a)/R(i) ~
R(a)/R(i) A R(a) € R. Hence, by [1, Theorem 1] R(a) < R(3) V R(a) € R. Since R(a) is
the largest R-ideal of a, R(a)) = R(z) V R(a). So R(i) < R(a) = 0. Thus R(E) =01 e
i € PR.

Proposition 2.3 Ifa/i € PR, then R(a) <.

Proof By axiom A5, R(a) Vi/i ~ R(a)/i A R(a) € R. Since R(a) V i/i € Lqyis by
proposition 2.2 R(a) Vi/i € PR. Consequently R(a) Vi/i € R PR = {0}, which gives
that R(a) < R(a) Vi =1.

Now let R be an arbitrary radical class and a be an arbitrary algebra For every i € L,

we denote by 4 the ideal of a, uniquely determined by R(a/i) = i/i in the sense of axiom
A3. We have

Proposition 2.4 Let a be an arbitrary algebra and i,4y,12 € L,. Then

(1) i=1;

(2) ifiy <19, then 21 < 22;

(3) (i Vig) = (6, V 22)
Proof (1) By axiom A5, a/i ~afilifi = ali/R(a/i) € PR. So 0 = R(a/?) = z/g implies
that 7 = 1.

(2) By axiom A5, we have the equivalence

2 \% ZAQ/ZAz ~ ’L-Al/(ihl A 2»2) ~ (’L'Al/il)/([l A ZAQ/’Il) = R(a/il)/({l AN ’LAQ/’I,l)

It follows that ¢; V z'Az/z'} € R by [1, Theorem 1].

On the other hand, by axiom A3 we have

afia ~ (a/i)/(i2/iz) = a/ia/R(a/is) € PR.

But 41 Vig/ia € L o/is . By virtue of Propomtlon 2.2, i1 Vig/iz € PR. Thus one gets that

iV 12/12 =0. Hence i1 =11 Az < iy as desired. o L
(3) By 11 Vig < 21 Vig and by (2), (i VZQ) <14 V’Lg But 23 V19 < (iy Vig). We also

have (’Ll V 22) < (1,1 \% 12) (Z1 \Y 22) So (11 \ Zg) = (Zl \2 22)
3. General hereditary radicals

Definition 3.1 A radical class R is called hereditary radical class if for every a € R and
every i € L,, we have i € R.

Theorem 3.1 The following statements about a radical class R are equivalent:
(1) R is hereditary radical class;
(2) For any i € Lo, R(i) = i A R(a);
(3) Ry = {R()|i € Lo} is a convex sublattice of Lq;
(4) Ry = {R(i)|i € Lo} is a convex subset of L.

Proof (1)=(2) By Proposition 2.1, R(i) € L,. Hence R(i) € R(a) Ni € [0,R(a)]L,
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By axiom A2, R(a) A7 € Lp(,. So R(a) Ai € R by (1). Further, R(a) A1 < R(7) since
R(a) A4 € L;. Thus we get R(i) = i A R(a).

(2)=(3) Take any ji,j52 € Re. Then j; = R(j1) € R and j» = R(j3) € R. In
view of Proposition 2.1 R, C Lg, it follows that j1 < R(a) and jo < R(a). By (2),
J1 Aj2 = (1 Aj2) AR(a) = R(jy Aj2) € R. Also note that ji Vjo/j1 ~ je/i1 AJ2 € R
and that R is closed under extensions, we have that j; V jo € R. Moreover, if j € L, and
71 < < j2, then j € [0,j2]L,. Hence j € Lj,. By (2), R(j) = jAR(j2) =jNj2=J € Ra.
Thus we obtain that R, is a convex sublattice of L,.

(3)=(4) It is trivial.

(4)=(1) Take any ¢ € R and any 1 € L,. Then R(i) < i < a = R(a). Since
R(i), R(a) € R(a) and R, is convex subset of L,,i € R,. So i = R(i) € R.

Theorem 3.2 Let R be a hereditary radical class. Ifiy,i9 € L,, then (ilTig) =1 Ag.

Proof The theory was proved for associative rings in [2, Theorem 8.1]. The proof carries
over mutatis mutandis for algebras.

Theorem 3.3 For a radical class R the following statements are equivalent:
(1) For every algebra a € A and 1,12 € Ly, R(i1 Aig) = R(i1) A (i2);
(2) For every algebraa € A, I, = {ilt € L, R} is a sublattice of L,.

Proof (1)=(2) Take any 41,42 € I,. Then 43 Via/is ~ i1/1; Aiy € R. Further,
11 Vig € Rty Nig = R(il) AN R(Zg) = R(il Ai9) € R. Hence 13 Ay, 11 Vig € I, that is I,
is a sublattice of L,.

(2)=(1) For arbitrary a € A and any 41,12 € L, since i1 Az € [0,41]p,, 11 Adg €
[0,42]1,, we have i1 Ady € L;; and 4 Aég € L;, by Axiom A2. In virtue of proposition 2.1,
R(il VAN ig) < R(Zl) and R(Zl A ’iz) < R(iz). Hence R(il /\iz) < R(Zl) AN R(Zz) On the other
hand, it is easy to see that R(i1) AR(i2) < i1 Aia. By (2), we have R(11) AR(iz) < R(iy Ady).
So R(il A ’ig) = R(Zl) AN R(Zg)

Corollary 3.1 If R is a hereditary radial class, then R(iy Aig) = R(i1) A R(i3) holds for
any a € A and any i1,i2 € L,.

Proof Take any i1,i2 € I,. Since R is hereditary, iy Aiz € I,. Also, i; V iafiy ~
i2/11 A g € R implies that iy V iy € I,. The result follows from Theorem 3.3.

4. General strongly semisimple radicals

Definition 4.1 A radical class R is said to be strongly semisimple if for every a € PR
and every ¢ € L,, we always have a/i € PR.

Theorem 4.1 The following statements about a radical class are equivalent:
(1) R is strongly semisimple radical class;
(2) For every algebra a and every i € Ly, ifi > R(a) then a/i € PR;
(3) For every algebra a and every i € Lo,a/R(a) Vi € PR;
(4) For every algebra a and every i € L,,1 = R(a) Vv i;
(5) For every algebra a and any i,is € Lg,i1 Vig/iy V R(ig) € PR;

— 600 —



(6) I={ili € L,} is a convex subset of L,.

Proof (1)=(2) Let ¢ > R(a). Since a/i ~ (a/R(a))/(i/R(a)) and a/R(a) € PR, by (1)
a/i € PR.

(2)=(3) By R(a) Vi > R(a), it is clear.

(3)=(4) Since a/R(a) Vi ~ (a/i)/(R(a) V i/i) € PR, by Proposition 2.3 R(a/i) <
Rla)Vvilie La/l But R( )Vi/i~ R(a)/R(a) Ni € R. Hence R(a) Vi/i < R(a/i). Thus
R(a/i) = R(a) Vi/i,i-e,i = R(a) Vi.

(4)=>(5) Since L, is a modular lattice, we have o A (i1 V R(42)) = R(iz) V (i1 A i3).

By i1 V (i1 V R(i2)), we obtain that

1, V ig/il \ R(’ig) ~ ig/ig A (il \Y R(’Lg)) = ig/R(ig) \Y (i1 N ig).

But iy € A. By (4) we have R(ig/R(iQV(il/\ig)) = R(iQV(R(iQ)V(iI/\ig))/R(iz)V(il/\iz) =
0. This implies that i; V iz/i; V R(i2) € PR.

(5)=(1) Take any a € PR and any i € L,. Put i, =i and i3 = a. Then by (5) one
getsiVa/tVR a) = a/z € PR. This shows that R i is strongly semisimple radical class.

(4)=(6) Takeiy,is € I and any i € L, such that 1 <1< iy Smce afip ~ a/zl/zl/zl =
a/i/R(a/i) € PR, by Proposition 2.3, R(a) < ¢;. Thus, by (4) t=14V R(a) =i € I.

(6)=>(1) Take any a € PR and any i € L,. Then o = R(a) = R(a/o) = 6/0,6 € I
Also by o = R(o) = R(a/a) = a/a we know that ¢ € I. Since o < i < a and Iis
a convex subset of Ly, i € I. Hence there exists an i1 € Lo such that 1; = 4. Thus
afi =a/iy ~a/i1/i1/11 = a/i/R(a/i) € PR, and the proof is complete.

Corollary 4.1 Let a be an arbitrary algebra and iy,i3 € L,. If R is a strongly semisinple
radical class, then

R(iy Vig) = R(61) V R(52), (i) Via) = i1 V ia.

Proof By Theorem 4.1(5), we have i Via/R(i1)Vis € PR and R(i1)Via/R(3;)V R(ig) €
PR. Moreover, (il Vig/R(il) VR(lz))/(R(Zl) Vig/R(il) \Y R(’Lz)) ~ 1 V’iz/R(il)Vig € PR.
Since PR is closed under extensionsl!, i; Vig/R(i1) V R(i3) € PR. Thanks to Proposition
2.3, R(i1 Vi2) < R(i1) V R(i3). On the other hand, it is easy to see that R(i1) V R(ig) <
R(i1 Vi3). Consequently R(i1 V i) = R(i1) V R(i9). o
Also, by Theorem 4.1(4), (i1 V 12) = (i3 Vi2) VR(a) = (i1 VR(a)) V (i2 VR(a)) = 11 Vio.

Theorem 4.2 For a radical class R the following statements are equivalent:
(1) For any algebra a and i1,12 € L, (43 Vig) =11 Vig;
(2) For any algebra a, I = {i|i € L,} is a sublattice of L.

Proof (1)=(2) Take any 1,12 € Lo. by (1), 41 V iz = (i Vig) € I. Moreover, a/i € PR
and a/7 € PR. Put j = i1 Aty and R(a/j) = k/j, where k € [j,a]L, by axiom A3. Then we
have k Vi /iy ~ k/k/\n and kAiy > kNG =] Accordingly k/k:/\zl ~ k/g/k/\zl/j € R.
By Proposmon 2.2, kV zl /11 € PR. Consequently k V 1 /11 = 0, and this means that
k<14 =kVi;. Sxmllarly we also have k < ip. Thus, k < i1A\ip = j. Hence R(a/zl /\12) = 0.

This implies that 1, A iy = (11 A 12) € I. So I is a sublattice of L.
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(1)=(2) Take any i1,52 € L,. By (2), 41 V4o € I. Hence there exists i € L,
such that ¢ = 4; V 45. Thanks to Proposition 2.4(1), (i1 vi}) = i; V i3. On the other
hand, by i; Vi < 41 V iy and by Proposition 2.4(2), we have (11/\/\72) < (zA] VzAg) But

i1 Viy < (i1 Vis). Hence (41 Via) < (i1 V ip) = (i1 Viz). It follows that (i; Vig) =, V iy
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