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On the Projective Radicals of Regular Rings *
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Abstract: We study the properties of projective radicals of regular rings. It is shown
that the projective radical of a regular ring is left-right symmetric and a regular ring
modulo its projective radical has zero projective radical. Also, we obtain a relation
between projective radicals of a finitely generated projective module over a regular ring
and its endomorphism ring, from which we give formulas about projective radicals of
matrix rings and corners of a regular ring, and some equivalent conditions for a regular
ring with zero projective radicals are given.
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1. Introduction

Given a right R— module X, a submodule of X, Y, is called a maximal quotient pro-
jective submodule of X if X/Y is simple and projective. The projective radical (denoted
by P(X)) of X is defined as the intersection of all maximal quotient projective submodules
(if there is no any such submodules, then set P(X) = X). An equivalent definition for
P(X) is that

P(X) = n{Kerf|f € Hom(M, S), S is simple and projective}.

A module X is called to be meta-projective if P(X) = 0. The concept of projective radi-
cals was first introduced in [1] and the authors used it to study the structure of modules.
In [2], the commutative rings with P(R) = 0 were investigated and some characterizations
for those rings were obtained. But when we discuss the properties of the projective radi-
cals over an unrestricted ring, some difficulties occur. For example, although we can prove
the projective radicals of any ring is always two-sided, they are not left-right sysmmetric
in general as the following example shows:
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{( 8 8 ) , ( 8 (1) ) , ( g (1) ) , < 8 i )}, by straightforward computations.

A ring is called to be (von Neumann) regular if for every z € R, there exists y € R
such that z = zyz. The class of regular rings is very important and is studied extensively.
For details, one may refer to [3]. We all know the Jacobson radical of any regular rings
is always zero, hence it is interesting to study other radicals of regular rings. The aim of
this paper is to make a systematic study of the projective radicals for regular rings.

Throughout this paper, all rings are associative with nonzero identity and all modules
are unital. An idempotent in R is called to be primitive if it can not be written as a sum of
two nonzero orthogonal idempotents. The set of all primitive idempotents of R is denoted
by w(R). As usual, we denote the socle of a module M by soc(M) and use notations ¢ and
v to represent left and right annihilators respectively.

We conclude this section by recording some results in {1,2], which we need in the later
section.

Example 1 Set R = Since R contains only eight elements, we can

Lemma 1.1{1:Propositionl.5] [ ot £ M s N be a module homomorphism. Then f(P(M)) C
P(N).

Lemma 1_2[1,Proposition1.6] P(@?:l Mz) — @?:1 P(Ml)

Lemma 1.32Lemmalll Lot A1 be a family of meta-projective R-modules. Then both
[1 M; and € M; are meta-projective.

2. Projective radicals

We first give a characterization for a simple and projective module over a regular ring,
of which the proof is easy and omitted.

Lemma 2.1 Let M be a right R-module over a regular ring R. Then the following
statements are equivalent:

(1) M is simple and projective;

(2) There exists e € w(R) such that M = eR.

Proposition 2.2 Let R be a regular ring.
(1) P(RR) = Neen(r)(1 — )R = y(n(R));
(2) P(RR) = Neer(r)R(1 — €) = 1(n(R)).

Proof It is only necessary to prove (1). If Ag is a maximal quotient projective submodule
of Rg, then Ap is a direct summand of Rp and so A = fR for some idempotent f in R.
Since (1 — f)R = R/A is simple and projective, we have 1 — f € 7(R). Set e = 1 — f,
then A = (1 — ¢)R and e € 7(R). Conversely, if e € w(R), then (1 — e)R is a maximal
quotient projective submodule. Thus the first equation of (1) holds. The second equation
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is obvious. O
As is well known, if R is a regular ring, then two Loewy chains of R coincide. In

particular, soc(Rg) = soc(gR) for any regular ring R. In the following, we use soc(R) to
represent soc(Rg) and soc(gR).

Proposition 2.3 Let R be a regular ring.
(1) P(RR) = y(soc(R));
(2) P(rR) = t(soc(R)).

Proof (1)

P(Rp) ={z € Rlex =0 for all e € n(R)} = {z € R( Z Re)z = 0}
ecn(R)
= {z € Rjsoc(R)z = 0} = y(soc(R)).

(2) is a dual to (1). O
Now, we obtain the main theorem of this section.

Theorem 2.4 Let R be a regular ring. Then P(Rp) = P(grR).

Proof Assume z € P(Rpg), then soc(R)z = 0. Note that every (one-sided) ideal of a
regular ring is idempotent, we have zsoc(R) = zsoc(R)zsoc(R) = 0 and so z € P(gR).
Thus P(RRr) C P(grR). Likewise, P(rR) C P(RR), and the result follows. O

Hereafter, the projective radical of a regular ring is denoted by P{R). we list some
examples to show that the projective radicals of regular rings hold all sorts of possibilities.

Example 2 Let F be a field and V an infinite-countably dimensional vecter space over F.
Set R = End(Vr). Then R is a directly infinite regular ring. We will show that P(R) = 0.
Let v,,2 =1,2,... be an F-base for V and define e; € R,i = 1,2,... as e;(v;) = d;;v;. We
see that e; € m(R) for all . If £ # 0, then there exist nonzero elements ay,...,a, of F
such that ajv;; +. .. anvin € V. Thus a1v; € e;12(V) and so e,z # 0, whence z ¢ P(R).
This implies P(R) = 0.

Example 3 Define R as above and let J = {z € R|dimzV < oo} be a maximal ideal
of R. If € is a nonzero idempotent in R/J, then dim(eV) = oo and eV has a direct
decomposition eV = V7 @V, such that dimV; = dimV5 = co. Hence e = e; + €5 such that
e1,es are orthogonal idempotents and e;V = V] for ¢ = 1,2 and so € is not primitive in
R/J, and it follows that soc(R/J) = 0 and so P(R/J) = R/J.

Example 4 Define R and J as above and set S = RxR/J. Noting that n(S) = {(e,0)|e €
n(R)}, we immediately get P(S) = R/J.

Proposition 2.5 Let R be a regular ring. Then P(R/P(R)) = 0.

Proof First we claim that if e € m(R), then € € w(R/P(R)). Let e € n(R), then
e € soc(R), and esoc(R) # 0, hence € # 0; If € ¢ 7(R/P(R)), then there exist nonzero
orthogonal idempotents ;,€; in R/(P(R)) such that € = €] + €. Note that &1 = &e and
€ = €€, we have ejeez € P(R) and egee; € P(R), and so eejeez = eegee; = 0 — 1.

— 605 —



On the other hand, since e—e; —ez € P(R), we have e = ee; +eez = eeje+eeze. In view
of 1, we get (ee1e)? = eejeere = eey (e — eea)e = eere, and hence ee;e, eeze are orthogonal
idempotents in R. Thus either ee;e = 0 or eeze = 0, and so either &7 =egje = 0 or &5 = 0,
a contradiction.

Now if T € P(R/(P(R)), then & = 0 for all e € n(R). Thus soc(R)z C P(R) and it
follows that soc(R)z = soc(R)soc(R)z = 0. Hence z € P(R) and T=0. O

3. The computation of P(R)

Lemma 3.1 Let M be a finitely generated right projective R-module over a regular ring
R, and End(Mg) = S. Then P(M) = N{Kerf|f € n(5)}.

Proof Note that f € n(R) if and only if f(M) is simple and projective, and the result
follows in the same way as the proof of Proposition 2.2.

Theorem 3.2 P(M) = P(S)(M) = {f(m)|f € P(S),m € M}, with the above notations.

Proof Let g € P(S) and m € M. Since fg = 0 for any f € 7(S), we have g(m) € Kerf
for every f € n(S) and it follows that g(m) € P(M) from Lemma 3.1. Conversely, given
any m € P(M), then f(m) = 0 for all f € x(S). By [3,Theorem 1.11], there exists
a submodule N of M such that M = N & mR. Let g : M —— mR be the natural
projection, then m = g(m) and fg(M) = f(mR) = 0 for all f € w(5). Hence g € P(S)
and m = g(m) € P(S)(M). O

Corollary 3.3 Let M be a finitely generated projective right module over a regular ring
R with P(R) = 0. Then P(End(Mg)) =0.

Corollary 3.4 Let R be a regular ring.
(1) P(M,(R)) = M, (P(R)) for any positive integer n,
(2) If e is an idempotent in R, then P(eRe) = eP(R)e.

Proof (1) Replacing M by nR, the direct sum of n copies of R, in Theorem 3.2, we
have nP(R) = P(M,(R))(nR). Assume A = (ay,...,a,) € P(M,(R)). Set ¢ =
(0,...,0,1,0,...,0), then o; = Ae; € nP(R), and so A € M,(P(R)). Conversely,
given any A = (ay,...,a,) € M,(P(R)), then o; € nP(R) and there exist B; €
Mp(P(R)) and f; € nR such that o; = B;5;. Set A; = (0,...0,0;,0,...,0) and A; =
0,...,0,8;,0,...,0), then A=A, +...+ A, = B1A; +... + By A, € P(M,(R)).

(2) Note that P(eR) = eP(R) and replace M by eR in Theorem 3.2, then we have
eP(R) = P(eRe)eR. If ere € P(eRe), then ere = ez for some z € P(R) and so ere =
eze € eP(R)e. For any ere € eP(R)e with r € P(R), we have er € P(eRe)eR and so
ere € P(eRe)eRe = P(eRe), completing the proof. O

Let M be an R-module, recall the semi-reflexive radical (cf. [1]) of M is definded as
N{Kerf|f € Hom(M, R) = M*} and denote it by S(M).

Lemma 3.5 Let R be a regular ring with P(R) = 0, and M a right R-module. Then
P(M) = S(M).

Proof For any f € Hom(M, R), let t : eR — R be the natural injection, then tf € M*
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and Kerf = Kertf. Thus S(M) C P(M). Conversely, given any f € M*, let p, : R — eR
be the natural projections, then Kerf = n{Ker(p.f)|e € n(R)} by a straightfoward check.
Hence P(M) C S(M). O

Now, we give some equivalent conditions for a regular ring with P(R) = 0.

Theorem 3.6 Let R be a regular ring, then the following statements are equivalent:
(1) P(R) =0
(2) soc(R) is a essential right(left) ideal;
(3) P(M) = S(M) for any right(left) R-module;
(4) There exists a faithful right(left) meta-projective R-module;
(5) Every right(left) projective module is meta-projective.

Proof (1)=(2) For any given 0 # 2 € R, P(zR) = 0 by Lemma 1.1 and so 2R = eR®z, R
for some ¢ € w(R). Hence zRNsoc(R) 2 eR # 0.

(2)=(1) By Proposition 2.4, we have that P(R) is a singular submodule of Ry and so
P(R) =0.

(1)=>(3) This is Lemma 3.4.

(3)=(1) Since S(R) = 0, we get P(R) = 0 by (3).
(1)=>(4) Note that Rg is a faithful right R-module.

(4)=(1) Let M be a faithful right meta-projective R-module, then Rp is isomorphic
to a submodule of a direct product of copies of M. The result follows by Lemmas 1.1 and
1.3.

(1)=(5) This is an immediate consequence of Lemmas 1.1 and 1.3.

(5)=(1) This is trivial. O

Let R be a semisimple ring. Clearly, R is always regular and P(R) = 0. Example 2
shows that a regular ring with P(R) = 0 needs not be semisimple.

Proposition 3.7 Let R be a regular ring with P(R) = 0. Then the following statements
are equivalent:

(1) R is semisimple;

(2) Every right meta-projective module is projective;

(3) Every right meta-projective module is injective.

Proof (1)=-(2) and (1) = (3) are trivial.

(2)=(1) If X is a set, denote by RX the direct product of X copies of Rp. By Lemma
1.3, we have P (RY) = 0 and so RY is projective for any set X. From a famous result of
Chase in [4], it follows that R is right perfect and so R = R/J(R) is semisimple.

(3)=>(1) Given any right ideal J, we have P(Jg) = 0 and so Jg is injective, whence
Jg is a direct summand of R. Hence R is semisimple. O

4. Closeness

Proposition 4.1 Let R be a regular ring, and e be an idempotent in R. Then the
following statements are equivalent:

(1) P(R) =0;
(2) P(eRe) = 0 and P((1 — e)R(1 —¢)) = 0.
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Proof (1)=(2) follows immediately from Corollary 3.3. (2) = (1): By Theorem 3.2, we
have P(eR) = 0 and P(1 — ¢)R =0, and so P(R) = P(eR) ® P((1 —¢)R) =0. O

01
they are regular and have zero projective radicals. But we have seen that P(R) # 0. This
should be contrasted with Proposition 4.1.

Remark Set e = ( 01 ) in Example 1, then eRe & (1 — e)R(1 — e) = Z3 and so

Proposition 4.2 Let R be the direct product of regular rings R;. Then P(R) = 0 if and
only if P(R;) = 0 for any 1.

Proof Note that 7(R) = {e € Rle; € w(R;) for exactly one ¢, and e; = 0 otherwise}.
Then the result follows easily. O

It is well-known that the subdirect product of semiprimitive rings (the rings with zero
Jacoboson radicals) is semiprimitive. But this is not the case for the regular rings with
zero projective radicals as the following example shows.

Example 5 Let R be the ring of all continuous maps from Q, the set of rational numbers
equipped with the topology inherited from R, to Z, with the discrete topology. Then
R is a Boolean ring and so it is a subdirect product of copies of Z,. But we claim that
P(R) = R. Let 0 # f € R, then f~1(1) is a nonempty open subset of Q and assume
x € f~I(1). Then there exist a,b € R with a < b such that z € (a,b) N Q C f~I(1).
Choose irrational numbers c, d such that a < ¢ < d < b. By an easy observation, (c,d)NQ
is a clopen set of Q and so we can define a contiuous map g : Q — Zy by g(y) = 1 for
every y € (¢, d) N Q, otherwise g(y) = 0. Now f = g+ (f — ¢) and g, f — g are nonzero
orthogonal idempotents and we infer that f ¢ 7(R). Hence soc(R) = 0 and P(R) =
Recall that a right essential product of a collection {R;} of rings is any subdirect
product of the R; which contains an essential right ideal of the ring [T R; (cf [5]).

Proposition 4.3 Let R be a regular ring. If R is a right essential subdirect product of
regular rings R; with each P(R;) = 0, then P(R) = 0.

Proof Since soc([] R;) is the intersection of all right essential ideals of [T R;, we have
soc([T R;) C R. Noting that an idempotent e which is primitive in [] R; is also primitive in
R if e € R, we infer that =([] R;) C w(R). So it follows that P(R) = 0 from Propositions
2.2and 4.2. O

Finally, we give an example to show that the class of regular rings with P(R) = 0 is
not closed under a direct limit.

Example 6 Let F be a field. Set R, = Man(F) for all n = 1,2,..., which maps each
R, — R,y along the diagonal, i.e., map z —> ( z | and set R = lim R,. Then R

is a simple regular ring and so soc(R) = 0 or soc(R) = R. By [3, Example 8.1], R is not
semisimple and so soc(R) = 0. Hence P(R) = R.

5. MP-dimension
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Assume R is a ring such that P(gR) = 0. Note that every projective left R~module is
meta-projective, so every left R-module has a meta-projective resolution. According to [2],
the MP-dimension of A (denoted by MPdimpgA) is defined as inf{n| there exists an exact
sequence 0 — P, — ... = Py = A — 0, where each P; is meta-projective}. The left MP-
dimension of R (denoted by LMP-dimR) is defined as sup{MPdimA|A is a left R-module}.
And RMP-dimR is defined similarly. Since every submodule of a meta-projective module
is meta-projective, it is easy to see that LMP-dimR = 0 or 1.

In the case R is regular, we can decide when LMP-dimR = 0.

Theorem 5.1 Let R be a regular ring such that P(R) = 0. Then the following statements
are equivalent:

(1) LMP-dimR = 0; (2) RMP-dimR = 0; (3) every cyclic right R-module is meta-
projective; (4) every cyclic left R-module is meta-projective; (5) R is semisimple.

Proof It is only necessary to show (3)= (5). Assume R is not semisimple. By Theorem
3.6 and [6, Proposition 5.10], we infer that R/soc(R) is a nonzero singular right R-module.
Since R is nonsingular, we have Homp(R/soc(R), R) = 0, by [5, Proposition 1.23]. From
Lemma 3.5, it follows that P(R/soc(R)) = R/soc(R), which contradictes (3).

Corollary 5.2 Let R be a regular ring. Then LMP-dimR=RMP-dimR.
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