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Abstract: In this paper we modify approximate trust region methods via three precon-
ditional curvilinear paths for unconstrained optimization. To easily form preconditional
curvilinear paths within the trust region subproblem, we employ the stable Bunch-Parlett
factorization method of symmetric matrices and use the unit lower triangular matrix as a
preconditioner of the optimal path and modified gradient path. In order to accelerate the
preconditional conjugate gradient path, we use preconditioner to imnprove the eigenvalue
distribution of Hessian matrix. Based on the trial steps produced by the trust region
subproblem along the three curvilinear paths providing a direction of sufficient descent,
we mix a strategy using both trust region and nonmonotonic line search techniques which
switch to back tracking steps when a trial step is unacceptable. Theoretical analysis is
given to prove that the proposed algorithms are globally convergent and have a local su-
perlinear convergent rate under some reasonable conditions. The results of the numerical
experiment are reported to show the effectiveness of the proposed algorithms.
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1. Introduction
In this paper we consider the nonlinear unconstrained minimization problems
min f(z), (1.1)

where f(z) : ®* — R is continuously differentiable. The trust region method is a very
popular way for unconstrained minimization to assure global convergence. Many different
versions have been suggested in using trust region strategy. An attractive idea is to solve
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the trust region subproblem approximately along a curve originating at zx within the
trust region. The various curvilinear path trust region algorithms are available (see [2], [5]
and [15], for example). Bulteau and Vial proposed in 2] three curvilinear paths that are
named as the conjugate gradient path, optimal path and modified gradient path within
the trust regions. The conjugate gradient path make use of the eigenvalue distribution of
Hessian matrix of the quadratic model function, then the convergence rate will depend on
the eigenvalue and the calculation may be expensive and not stationary. Therefore, we aim
to choose a preconditioner such that the eigenvalues of preconditional Hessian are more
favorable for the convergence theory. The optimal path and modified gradient path can
be expressed by the eigenvalues and eigenvectors of the Hessian matrix of the quadratic
model function. However, a calculation of the full eigensystem of a symmetric matrix
is usually time-consuming, and the optimal path and modified gradient path algorithms
generally are impractical. Recently Zhang and Xu in {17] employ the stable Bunch-Parlett
factorization method to factorize the Hessian to form a scaling optimal path within the
trust region for unconstrained optimization.

In trust region algorithms it is sometimes helpful to include a preconditioner which is
diagonal and fixed for the variables. In this paper, this idea of the stable Bunch-Parlett
factorization motives to extend to preconditional optimal path and preconditional modified
gradient path which can be easily formulated from the full eigensystem of the block matrix
that is very easy to calculate. Meantime, we improve the eigenvalue in the preconditional
conjugate gradient path by constructing a symmetric and positive define matrix as a
preconditioner, such as the incomplete Cholesky approach or the stable Bunch-Parlett
factorization. Another preconditional method may arise in linear constrained optimization
solved by using affine scaling interior algorithms. On the other hand, we also noticed that
Nocedal and Yuan'!] suggested a combination of the trust region and line search methods.
In particular, in order to avoid expensive computation at the acceptable successful trial
step, we shall show that the trial step on the three preconditional curvilinear paths should
provide a direction of sufficient descent so that it can be accepted by employing the back
tracking technique although the trial step maybe unsuccessful. Another valuable idea is
to abandon the traditional monotonic decreasing requirement for the sequence {f(zx)}
of the objective values (see [4] and [9]), because monotonicity may cause a series of very
small steps if the contours of the objective function f are a family of curves with large
curvature.

The main purpose of this paper is to propose an approximate trust region method
with three preconditional curvilinear paths by adopting nonmonotonic back tracking tech-
nique. The paper is organized as follows. In Section 2, we propose the characterizations
and properties of the three preconditional curvilinear paths in the trust region subprob-
lem. In Section 3, we describe the algorithms which combine the techniques of trust
region, back tracking and nonmonotonic search, and partial update factorizing method
of decompositions of the matrices. In Section 4, the weak global convergence of the pro-
posed algorithms are established and some further convergence properties such as strong
global convergence and superlinear convergence rate are discussed. Finally, the results of
numerical experiments of the proposed algorithms are reported in Section 5.
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2. Curvilinear paths

An important portion of the unconstrained minimization procedure will be concerned
with the solution of the trust region subproblem of the quadratic model form

min  gx(8) € fi + (¢5)75 + 16T By,

st (8 < A, (21)

where fi = f(zi), ¢* = Vf(z1), § =z — i, By is either V2f(zy) or its approximation,
Ay is the trust region radius, and || - || is the 2-norm. Let §; be the solution of the
subproblem. Then set the next step

Tyl = Tg + 0.

In trust region algorithms it is sometimes helpful to include a scaling matrix for the
variables. In most cases, the scaling matrix is diagonal and fixed. We will employ the
stable Bunch-Parlett factorization method of symmetric matrices to factorize the Hessian
matrix of the quadratic model function. The factorization method (see [1]) factorizes the
matrix By into the form

P.By P! = Ly DyLY, (2.2)

where Py is a permutation matrix, Ly a unit lower triangular matrix and D; a block
diagonal matrix with 1 x 1 and 2 x 2 diagonal blocks. The elements of the matrices {L;}
and {L,:l} are bounded by two fixed positive constants independent of the matrix By, i.e.,
there exist positive constants ¢; < ¢p such that for all & (see [17]),

1 | Lill < 2. (2.3)

In our preconditional curvilinear paths type of trust region algorithm, at kth iteration,
the matrix Lka is used to scale the variables

6 = LT P, (2.4)

and the preconditional trust region subproblem takes the form
N ~ 1 PN
min Ge(3) ¥ fio+ (@70 + 587 Dib, 18] < A, (2:5)

where §* = L,;IPkgk. Note that in this problem, 4 rather than § = P,;F L,;Tg is required
to be within the trust region, which will further improve the efficiency of the calculation
of the solution step. Based on solving the about trust region subproblem, we give the
following lemma which is due to Sorensen’s paper in [15].

Lemma 2.1 & is a solution to the subproblem (2.5) if and only if it is a solution to the
following equations of the forms

(D + ped) 8 = =3, (2.6)
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pe(I0ell = Ak) =0, pe 20, (2.7)

and Dy + pxl is positive semidefinite.

Lemma 2.1 establishes the necessary and sufficient conditions concerning the pair
ks 5, when 85 solves (2.5). The preconditional optimal path is concerned with the
solution of Systems (2.6) and (2.7).

The preconditional modified gradient path emerging at the current point zy of a general
continuously differentiable function f is the solution of the differentiable equation

dz(t)

1 = —Vf(z(t)), and z(0) = x}. (2.8)

For general function f, the solution of (2.8) could be obtained by numerical integration
methods. However, if f is quadratic, a closed form solution of (2.8) exists. It motivates
to use the local quadratic approximate to f in a neighorhood of z;. Let z; be the kth
iteration and .

~ def TR < <

@(0() = fr+ @700 + 55(t)TDk5(t)

be the local quadratic approximation of f at zj, where S(t) = LT P.s(t), 6(t) = z(t) — z4,
and Dy, is given in (2.2). Then the solution of

ds(t)

Tdr
is a valid approximation of the curvilinear paths of f, and thus provides a set of sensible
candidates for a successor point Ty 1 = Zg + 8 (tr) to zk.

Now, the idea of general curvilinear paths proposed by Bulteau and Vial (see [2])
motivates to form the two preconditional curvilinear paths, i.e., preconditional optimal
path and preconditional modified gradient path, respectively. When the trust region radius
Ag of the subproblem (2.5) varies in the interval [0, +00), the solution points form the
preconditional paths and emanate from the origin. In order to define those arcs in a closed
form, we shall use the eigensystem decomposition of B. Since D is a block diagonal matrix
with 1 x 1 and 2 x 2 diagonal blocks, without lost of generality, let ¢; < 2 < -+ < @,

= Vg (6(t)), and 6(0)=0

be eigenvalues of D and u!, u?,---,u" be corresponding orthonormal eigenvectors. We
partition the set {1,...,n} into T+, Z~ and N according to ¢; > 0, ¢; < 0 and ¢; = 0
for i € {1,...,n}, respectively. We now give two preconditional curvilinear paths.

Preconditional optimal path
The preconditional optimal path I'(1) can be expressed as
I(r) =T1(t1(7)) + Ta(ta(7)), (2.9)

where )
t1 T : .
Ty(ti(7)) = - — G (r E giut |,
[g‘pitl(ﬂ'”gl . )ieNgzu ]

Ta(ta(7)) = ta(r)u’,
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and
7 and i3(7) =0, if 1<,
t1(7)=% and tp(r) =7~ L. if T> 4,

L =T UI;, g8 = )T, i=1,---,n, §"= Y1 gFut, T = max{0,—¢,} and 1/T
is defined as +oo itT =0 It should be noted that FQ(tz(T)) is defined only when D is

indefinite and §¥ = 0 for all z € {1,---,n} with ; = ; < 0 and that for other cases, I'(7)
is defined only for 0 < 7 < 1“’ that is, F(T) =T (t;(7)).

Preconditional modified gradient path
The preconditional modified gradient path can be given in the following closed form
(refer to see [2]):
F(T) = FI (tl (T)) + F‘Z(tQ(T))*, TE [0 +OO)7 (210)
where if ¥ # 0 for some 1 € T~ JN, the term [o(ta(7)) is not relevant, that is, if §F # 0

for some © € Z7JN, then T'y(t2(7)) = 0. For the path I'(7), the definitions of I'; (¢, (7))
and I'y(t2(7)) are as follows

ex t
Pyt (r)) = 3 2Rz () - (1) gk,
1€ i €N
with
_ tul, if ¢ <0, ) = i T
Pz(tz)“{ 0, i @20, TN >

and t2(7) = max{r — 1,0}.
Preconditional conjugate gradient path

Suppose that we apply a standard preconditional conjugate direction algorithm to
the quadratic but not necessarily convex function gx(d), starting from zg. We con-
struct a symmetric and positive define matrix My = C,CTC;c with Cy as a precondi-
tioner, such as the incomplete Cholesky approach or the stable Bunch-Parlett factorization
Cy = (LEP;C)'1 where the process does not make use of Cy explicitly. Then we generate

a sequence of vy, - -+, vy (v; = 0) and a sequence of preconditional conjugate direction
di, -, dmyr (d1 = sg, S0 = Mk‘lgk). For 1 = 1,2,---,m, perform the iteration of the

preconditional conjugate gradient path
siv1 = M gip1, i=1,--,m; (2.11)
dit1 = siy1+ Bidi, 1=1,---,m; (2.12)
Vigr = U+ Yids, =1, ,m (2.13)
dFHyd; >0, i=1,---,m, (2.14)

where fori =1,---,m
_ giT+1Uz' giT’Ui

gir1 = Var(vir1) = Hevipn + 65, Bi = LHAd; >0 and y; = T Hed, >0.  (215)
i 1 'L
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The procedure stops either because g;+1 = 0 or because g;+1 7 0 but pz-THHk.le.S_ 0.In
the former case vj4; is a critical point of gx; in the latter d;41 is a descent direction (see
[2]). Now, we define the preconditional conjugate gradient path by

Lp(r) = }T_n_: ti(T)di — tm+1(T)dm1 (2.16)
and .
ti(7) = min{~y;, max{0, 7 — Z'yj}},
j=1

where the conjugate direction d; and +; are defined by (2.11)~(2.17) which have the prop-
erty that
gk (vi + 7idi) = min  gi(vi + ¥dy).

In this formula we take Z] ~1Yj=0fori=1

Properties of preconditional curvilinear paths

1t is well known from solving the trust region algorithms to obtain the global con-
vergence of the proposed algorithm, it is sufficient to show at kth iteration the sufficient
descent condition of the predicted reduction defined by

Pred(x) = frx — ax(3k) = frx — Gr(0k),

where §; = P,;"" L;lgk and Sk is obtained by the step Sk from the preconditional curvilin-
ear paths in trust region. In this paper we only discuss the properties of preconditional
conjugate gradient path in detail and summarize the properties of the other two paths as
the following two lemmas, whose proofs are similar to those in {18].

Lemma 2.2 Let the step & in trust region subproblem be obtained from the precondi-
tional optimal path. Then the norm function of the path is monotonically increasing for
7 € (0,+00), and there exists 7, € (0,+00) such that the point T'(1;) on the path with
IT(T)l| = A satisfies the systems (2.6)-(2.7) with pi > 0 given as follows

1 1
e =— a8 Ty < —, (2.18)
Tk k

1 1
llsz,tz(Tk)——Tk—--* as TR > —
k

7 (2.19)

T ?

where Ty = max{0, —¢1}. Furthermore, the predicted reduction qk(ék) and the descent

direction (g¥)T§;, respectively, satisfy-the sufficient descent conditions

Pred(3¢) = /i — (5k) > willg*|| min{A, ,}‘f; 'l'l} (2.20)
(") 6 = —(3") 78 > wlg¥]| min{ Ag, 4Ly (2.21)
A
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for all g*, Dy, and Ay, where wy > wy > 0 are some constants independent of k.

Lemma 2.3 Let the step 8% in trust region subproblem be obtained from the précon~
ditional modified gradient path. Then we have that the norm function of the path is
monotonically increasing for 7 € (0,+00), and there exists 74 ‘€ (0,+00) such that the
point T'(7;) on the path with |T'(7;)|| = Ay. Further, the predicted reduction Gi(3)) and
the descent direction (§*)T0y, also satisfy the sufficient descent conditions (2.20) and (2.21),
respectively.

Lemma 2.4 Let the step Ek in trust region subproblem be obtained from the precon-
ditional conjugate gradient path. Then we have that the norm function of the path is
monotonically increasing for T € (0,+00), and there exists 7, € (0,+00) such that the
point T'(7) on the path with ||[T(7x)|| = A. Further, the predicted reduction i (dy) and
the descent direction (§F)T 8, also satisfy the sufficient descent conditions (2.20) and (2.21),
respectively.

Proof Consider the following subproblem with preconditioner Cj,

1
min ¢ (6) = fi + ()78 + §5THk5,

‘. (2.22)
st ICyoll < Ay, S €T
We omit the A£th iteration. If ZJ 1Y <7< 23:1 v; (¢ £m), and
i—1 1—1
T) = Z vid; + (17— Z v;)d;, (2.23)
j=1 Jj=1

which imply 0 < 7 — Y47} ¥ < %, we have

i—1 i—1 i—1
t;(7) = min{y;, max{0,7 = >_ v;}} = min{yi, 7~ }_ v} =73 -
71=1 j=1

Jj=1
for k < 1,
k—-1
tg(7) = min{y, max{0, 7 — Zvy 1} = min{y, 7= Y vt =%
Jj=1 j=1

For i < k < m, tg(r) = min{7y,0} = 0, so (2.23) holds. When 7 > >7e1), we get
I(r) = 3741 7jd;- So the norm function

~1

—llZ'ﬁdH +2T—Zw)2wd,d+ _Z Pl

j= j=1  g=1 =

By induction, we get d¥d; > 0 (j < i). Frorp v >0 (4 < m) ddld; >0 (j <1i), we

get that o

T)—ZZ"hd d; +2(r = Y_v)ldil* > 0,
i=1 i=1
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which means that ||T'(7)|| is monotonically increasing on ®7.
When Zrl v <1< 23—1 v; (1 £ m), and noting dy = —gF, we have that

i—1 i—1
(¢")TT(7) = —dI [Z vjdj + (T = Z’Y])d = ydldy — (1= 3 vy)d d.
i=1 j=1 j=1

and from (2.11)—(2.14),
i—1 i—1 i—1 i—1
O(r)THD(7) = [Z vidh Hy, + (1 = Y v)d]l Hel[Y wids + (1= v5)ds]-
J Jj=1 Jj=1 Jj=1

i—1
Z vidl Hidj + (1 =D v))%d] Hydi.
j=1 J=1

Therefore, .
@(D(1)) E fe + (6*)'T(r) + 3T(1)" HiT(r)

i1 i1
=fi — o vdjdi — (1= ) v)d] di+
i=1 =1

= 1 i—1
5 Z’)’?dfﬂkd]‘ + *2“(7‘ - Z’)’j)zd?dei.
Jj=1 Jj=1
As 7 Tk vy S, e gt

i1
WD) _ _idy + (r - 3 )l Hidy

dr £
i=1
< —d¥d; + ydF Hed;
T4,
= ~dfd; - STy
L JTde ke

i~-1

=~d{ (g1 + g1 + 3_ viHed;)
i=1

= O,

which implies that ¢(I'(7)) monotonically increasing on 7 € (0,00). Therefore, we have
that

Pred(dx) = fr — ox(6k)
2 fi = inf{p(C()] IC7'T()] < Ay}
2 fi = inf {p(D(O)] G ()] < Ae}.
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When 7 < i, since I'(1) = —7 M "¢, we have from My = CFCy, Cp & (LyPp)™
g% = L' Pegy that

2

-
Pred(é;) > max {—7(9k)THkgk + T”.ngQ}
T<min{y, KZ{I—I}

T2
max {**é‘(ﬁk)TD@k + 7)Ig* 1%}

T<mm{'71, -7{“}
Ifvy < ”v‘;«,fﬁ, then 7 = @“ﬁ%% = =1 is the solution of the above subproblem, and
@) 'Deg* 1912 llg*|I*
Pred(d;) > —
(%) 2 ((g’“)TDk ()T Dig*
[ N [

=mwvnw 2] Dx |

Lok min Ig*

[

and

kT -k k
Ify > ALk ie., (@) Dig” 9"l then 7 = Bk is the solution of the above subproblem,

g 1l ligk|I? B’ lig* |l

and

=~k TD ~k
Pred(8;) > ~A§(—"2—‘)‘A—k“—’;g— + Agllgt)

Azlgl G| = Agllgtl

> ~Ofgr + At = =5
S s Ig* 1

> 2||§% )| min{ Ay, .

> 16 min{As, 75

From the above two cases, we get that
Pred(d) > L1g¥ min{a,, 121,

2 | Dl

On the other hand, noting the definition of Pred(d;) and c{fdej >0 (=1,-,i—1),

we have
- 1
(¢*)7 6 = ()7 0 = —Pred(dx) — 557;Hk5k
L3S 2d] Hyd; 1 Z )2d] Hyd;
= —Pred(d) - 5 > vidi Hedj — 5 Y5 k
j=1

< ~Pred(d)

e
B

< ~ 3 lg¥ min{As,
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This completes the proof.
The above lemmas show the relation between the gradient g* of the objective function

and the step Sk generated from the various paths which are a sufficiently descent direction.

3. Algorithms

In this section we describe a method combining nonmonotonic line search technique
with an approximate trust region algorithm, which uses preconditional curvilinear paths
instead of a minimization in the whole trust region.

Initialization step Choose parameters 8 € (0, %), we(0,1),0<m<m<L,0<y<
Y2 <1< 173, &>0 and positive integer M. Let m(0) = 0. Choose a symmetric matrix
By. Select an initial trust region radius Ag and a maximal trust region radius Apax such
that Amax = Ap > 0, and give a starting point zp € R™. Set k = 0, then go to the main
step.

Main Step

1. Evaluate fr = f(zx), ¢¥ = Vf(zs).
2. If ||g*|| < e, stop with the approximate solution z.

3. Factorize DBy into the form (2.2) and calculate the eigenvalues and orthonormal
eigenvectors of Dy. Form three preconditional paths 'y, the preconditional conju-
gate gradient path, the preconditional optimal path or the preconditional modified
gradient path.

4. Solve the subproblem via the preconditional optimal path or the preconditional
modified gradient path

($) ™in $(6) = Gk(8) T §5)78 + 5T DiS
st |I6]] < Ag, 6 € L.

Denote by 8 the solution of the subproblem (S;). Solve the subproblem via the
preconditional conjugate gradient path

(L) ™in ¥i(6) € (g)T5 + L6T Hyo,
st |IC7l8 < Ay, S€ET.

Denote by dj the solution of the subproblem (S;)-
5. Let § = P,CT L,;lgk, and Sk be solution of the subproblem (Sk) or & be solution of

the subproblem (S}). Choose M\; = 1, w, w?, --- until the following inequality is
satisfied

@+ Aedr) < Flayry) + MB(g")T 6, (3.1)

where f(:l:l(k)) = maxngjgm(k){f(mk—j)}'
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6. Set

hi = A6y, (3.2)
T4y = T + hg. (3.3)
Calculate
Pred(hy) = —1p(hy), (3.4)
Ared(hi) = fzyy) — flzk + ), (3.5)
_ Ared(hy)
pk - Pred(hk), (3-6)
and take
114k, 1244, if o < m,
Appr =4 (72l A, if m < pp <y,

(Ag, min{v3A, Amax}], if px = 7.
Calculate f(zpy1) and gh+l.

7. Take m(k + 1) = min{m(k) + 1, M} and update By to obtain Bj,;. Then set
k < k+ 1 and go to step 2.

Remark 1 As shown below, the preconditional curvilinear paths can be generated by
employing general symmetric matrices which may be indefinite. In each iteration the
algorithm solves only one trust region subproblem. If the solution §; fails to meet the
acceptance criterion (3.1) (take A\ = 1), then we turn to line search, i.e., retreat from
Zk + 0k until the criterion is satisfied. It is easy to see the usual monotone algorithm can
be viewed as a special case of the proposed algorithm in the case M = 0.

Remark 2 In the subproblems (S) and (S, ), a candidate iterative direction d is generated
by minimizing 1,bk(g) along the curve paths I'y within the ball centered at z; with radius Ag.
As being proved in [2], moving along these I'y with =4 as the starting point, the distance
to zi is increasing, but the value of v (é) is decreasing. Therefore, the subproblem (Sy)
can be solved with great ease.

Since the preconditional optimal path and preconditional modified gradient path algo-
rithms generally require both calculation of the full eigensystem of the symmetric matrix
By, and repeated decompositions of the matrices, forming these paths are usually time-
consuming and impractical. We suggest another way of updating the approximate Hessian
matrix By that under reasonable conditions preserves uniform boundedness of {||Bg||} and,
in addition, incorporates second-order information using the decomposing technique.

A partial update method is suggested for the approximate Hessian matrix By. That is,
instead of using exact updating matrix in the computations, we may use an approximate
updating matrix that satisfies the inexact Newton methods (see {19]).
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4. Convergence analyses

Throughout this section we assume that f : " — R! is twice continuously differ-
entiable and bounded from below. Given zo € R", the algorithm generates a sequence

{zx} C R In our analysis, we denote the level set of f by
L(zo) ={ z €R"| f(z) < flzo) }-
An estimate is expressed in terms of the function

O0r) — gk T(5
wi(f, Tk, 6k) = o k)llékﬂg (97) %

Since f is twice differentiable, the mean-value theorem implies that

T<72 5:.)6
R
k

It is also easy to verify that there exists a finite constant ¢3 > 1 such that

wi(f, Tk, ) <c3, VEk, Vo€ {5k|-77k + 4 € E(ﬂ?o)}.

Set def
b max {IDell}+1,

,7’,

be ®_max {jui(f,w0, 81} +1.

Lemma 4.1 If there exists € > 0 such that
etz e
for all k, then there is an €9 > 0 such that
(cBbx + k) Ak > €0, V kK,

where c; is given in (2.3). In fact, g = min{wy(1 — B), w1 (1 — o) }em.

(4.6)

Proof We first show that there is an £; > 0 such that if Ay = 1 does not satisfy the

condition (3.1) in step 5, then
bkAk 2 €l

(4.7)

Assume, on the contrary, that there is infinite subsequence K such that {ZkAk} converges

to zero for k£ € K. If (3.1) is nat true at Ay = 1, we have

Fl@e 4 86) > Fmyry) + BeF) 6k > flak) + B(gF)T 6.

Because f(z) is continuously differentiable, we have that from (4.4)

Flar+8) = flzx) = (6%) 76 < | flak +0k) — Fzx) — (6°) 76k | < Belloili2.
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Inequality (4.8) implies that

(8~ 1)(¢*)7 8k < billk]I*.
Hence,
(1= B)(g") b + Billdil® 2 (1 - B)(9*) 6% > 0.
Note that {b;Ax} converges to zero for k € K, by (4.5) and (4.7),

[~w2e(1 = B) + b Ak) Ak > —woe(l — B) min{Ay, 5;} + b A} > 0.

This means that, by A, > 0,
we(l - B) < brAy, (4.9)

which contradicts that {gkAk} converges to zero for k € K since by > 1. From the above
we see that if (4.7) does not hold when e; = ews(1 —~ ), then the step size Ay = 1, i.e.,
hy = i and hence x| = x4 + .

We know that

£ 86) = £ (@) = 9e80)] € F0elPln(F, 20,56) — Bell < S(ouch + 5082 (410

Set by Ay < €. We obtain that from (2.20)

Pred(hy) = =93 (0x) > wie min{Ayg, 5};} > wielg. (4.11)
Set pr = %ﬁ—‘;#l. By (4.10) and (4.11), with
< wie(l = m)y (4.12)

(b +by)
we have that
|f (zk + hi) — flzk) + Pred(h)]

lpe — 1] < Pred(hy)|
1 (bkC% t Bk)Az
< - <1l-
-2 wie - m

This implies that pp > n2. Therefore, gy > pr > 12. By the updating rule for the trust

region radius Ay in the step 6, we have Agi; > Ap when Ay < %ﬁi—%{—;—’l, that is,
2

€1 = w1e(1 — 12)71. Hence, the conclusion of the lemma is true. In fact, from (4.7), (4.9)

and (4.12), we have that ¢ = min{wz(1 — 8),w1(1 = 72)}me. O .
We are ready to state one of our main results of which the proof is similar to those in

(18].
Theorem 4.2 Let {z;} € R" be a sequence generated by the algorithm. Then

lim inf ||g|| = 0. (4.14)
k—o00
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Theorem 4.2 indicates that at least one limit point of {zx} is a stationary point. In this
section we shall first extend this theorem to a stronger result, but it requires the following

assumptions.

Assumption A1l. There exists b > 0 such that

b < b. : (4.15)
Assumption A2. Let Hy, = V2f(z),
. 1(Bx = Hg)okll
lim —~————r— = 0. 4.16
L TN (4.16)

Theorem 4.3 Assume that the assumptions Al and A2 hold and H, = V*f(z,) Is
positive definite. Let {x)} be a sequence generated by the proposed algorithm. Then

lim ||g¥|| = 0. (4.17)
k—o0
Proof It is clear to see that since (2.3) bolds, (4.17) holds if and only if
. ki
Jim [IgH) = 0.

Assume that there are an &; € (0,1) and a subsequence {§g™} of {§*} such that for all
M, 1= 172a"'a

g™l > e1. (4.18)
Theorem 4.2 guarantees the existence of another subsequence {g%} such that
”gk“ 2 €2, for m; < k< li) (419)
and
1% < €2 (4.20)

for an €2 € (0,¢1).
We now prove that the solution d; in the three proconditional curvilinear paths satisfies

. d NTT (7 =
G (8%) X (¢*)7 8%, + 6T Bidi = (5%)T 8% + (8) " Dibi < 0. (4.21)
For the preconditional optimal path, since (2.6) holds, we have that
dr(8k) = (@) T8k + (0)T Didi = — |42,
where gy 2> 0. It implies that (4.21) holds. ‘

-+ From the definition of the preconditional modified gradient path, we have for 7 < 1
that N e

@) = 3 2Ol oottt g 80 - gy

k
€T, 2¢; l €N},
= Z exp{“‘ﬂ:'ctl (T)}(exp{—‘pftl(T)} — 1) (gk)2 _ iy (T) Z (§k)2
1€T; 2(p£c ' 2 ’l:ENk ’
<0,
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sinCe Mi_(_’r_)ﬂ S 0
If 7 > 1, then #;(7) = +o0, that is, §* = 0, Vi € I UNy, the term Ta(ta(7)) is
relevant. In the case, by

—ksl —
lim €§P_{_v;kﬁ_£ _ —% if of 50,

we get that

- 1 .
G (T1(t1(1)) + Ta(ta(7))) = = > 57(95)2 <0.
ez T
From the above inequities, we have that (4.21) holds.

From the definition of preconditional conjugate gradient path, we have that when
;';11 v <7 < Y5217 (1 < m) and noting d; = —gF,

@ (I(r)) = (¢")T(r) + If(T>THkP<r)

i1 -1 i—1 1—1

=7 Z 'VJdJle — (7 - Z%’)dzrdl + Z’Y]gdekdj + (1 - Z’Yj)Qd;'Tde,
i=1 i=1 P i=1

<0,

where the last inequality is deduced by 7 — Z;;Il v; < 7, and (2.11)-(2.15). So, (4.21)
holds.
By (4.16) and (4.21), we get

(65)7 6y < ~(0k)T Didy, = —0F Bid = —0f Hidi + o(||dk %)
v T2
< ]l + olnl?) < —ﬁfl +o(812), (4.22)

- c

where v > 0 is the minimum eigenvalue of the matrix H, since H, is positive definite.
Since the sequence {f(x;())} is nonincreasing for all &, (4.22) means that

v~ -
Flzywy) < flzpewy-1) — )\z(k)-1a|l5t(k)-1||2 + o([|6yky~1 1) (4.23)
Similar to the proof of the Theorem 4.2 in (18], we can prove that
lim [|dx] = 0. (4.24)
k—o0

For large enough ¢ and m; < k <l;, we have

Flak + ) = flazx) + (g5)T 6 + o(llkl))
< flaw) + BT 8k + (1 = B) (") 0k + o(lldkl)-

From (4.25), for large enough ¢ and m; < k <;, we have

(1 = B)(g")T 6k + o(||ékl)) <O.
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Hence (4.25) means that the step size M\ = 1, i.e, hy = 6 for large enough ¢ and

m; < k <l
By the assumption A2, we know that

|f(zk + 0k) — f(zk) — ¥r(dk)] 1
= |[(g") " 0k + %5£Hk5k + o|18x112)] = [(¢") bk + §5£Bk5k]|
= o(||6xll*).

From (2.8), similar to the proof of (4.22), for large enough i, m; <k <,
-1z - 1= ~ _ 0|2 ~
Pred(s) =~ 5 ~ S@) Debe 2 2607 Didk 2 L o). @)

As hy = &, for large i, m; < k < l;, we obtain that
oo _ T flot he) 14 fe — [k + ) + i (0)
Pk = Pk = " pred(hy) Pred(hz)
2¢; o(l1011%)

8 3 : 4.28)
: 10k 112 + o(l|0k[?) 2 (

This means that for large i, m; < k <|;,

vlhe||?
I — f(zk + hi) > moPred(hy) > 72 ”46le .

Therefore, we can deduce that, for large %,

-1 c
S [far) — flax + )] = %(fmi —f)- (429)

4c
mei - wzillz < =

Inequality (4.29) means that fm,, — fi, tends to zero as ¢ tends to infinity and hence
|z m, — 1, || tends to zero as ¢ tends to infinity. By the continuity of the gradients g(x) and
G(z), we thus deduce that ||§™ — g4|| also tends to zero as i tends to infinity. However,
this is impossible because of the definitions of {m;} and {l;}, which imply that the triangle
inequality to show

g™ —g"ll > g™ |l = 1g"1l = &1 — e, (4.30)

Therefore (4.30) contradicts ||§g™ — g%)| — 0 as i — oco. This implies that (4.18) is not
true, and hence the conclusion of the theorem holds. O

Theorem 4.4 Assume that Assumptions Al and A2 hold. If the matrices Dy, satisfy the
following condition

@1[Dx] < @1 [V f (2k)], when o1[V2f ()] < 0, (4.31)

where 7| is some positive constant and ¢1[B] is the minimum eigenvalue of the symmetric
matrix B, then V2f(z.) is positive semi-definite where z, is a limit point of {z}} (second
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order stationary point convergence).

Proof Because f(x) is twice continuously differentiable, we have that, noting (4.16),
1
Flze+0) =f(z) + (8°) 6 + 55/{Hk5k +o(/|de 1)
1
S (@) + Blg*) 0 + (5~ B)(6*)T o+

1.
[(9%)T 6k + 6F Bdx) + ”2“‘5/{(ch — Bi)k + o(||6k])?)

B

<F (@) + B8k ~ (5~ Boalsel + o(64 1)
<F(@igey) + Blg*)T 6, (4.32)

where the last two inequalities hold because of 8 < —]g and (4.21). By the above inequality,
we know that

Tk+1 = Tk + O,
which implies that for large enough &, the step size Ay = 1, i.e., Ay = 4.
Suppose to the contrary that ¢1[V?f(z,)] < —2¢ for some positive constant €. By the
condition of the theorem, there exists K such that if k > K, ¢;[Dy] < T101[V2f ()] <

—71€. Similar to those in [2], we can also obtain that there exists 7 > 0 such that for large
enough k,

~9(3) = =@ 5 + 3G Debi > ~ Lor (Dl

Hence,

T ~ TITE

—9(d) 2 _§‘P1[Dk]”5k”2 > 12
Since Dy is not positive definite, the Newton method or the quasi-Newton step is never
taken for k > K. From Lemma 2.2, Lemma 2.3 and Lemma 2.4, we get that the step J;
obtained from the preconditional optimal path, the preconditional modified gradient path
or the preconditional conjugate gradient path satisfies ||dx || = Ag.
By the assumption A2 and (4.33), we can obtain

e — 1] =| [(¢*)" b + 30t Brhe] = [(6°)" b + 3hi Hihy + O(Hhkli2)1|

Pk B Pred(hy)

ol ]l?) < 210(“3:1”2)\ .

Pred(hy) T17€||0k )|

This, in turn, implies that for sufficiently large k£ > K and sufficiently small Ay, Ay cannot

be decreased further. Thus, the updating rules for the trust region radius then prevent
A from tending to zero. But from (4.33) and ||0x]| = Ak, we get

e (4.33)

1
fe — Flzk + hi) > naPred(he) > EnleTEA%,

and since f is bounded below and fi — f(zx + hi) converges to 0, we know Ay, converges 0,
which is a contradiction. Hence ¢[V2f(z.)] > 0. This concludes the proof of the theorem.
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We now discuss the convergence rate for the algorithm when By, is positive definite.

Theorem 4.5 If By is eventually positive definite and Assumptions Al and A2 hold,
then {zy} converges to z* superlinearly:
lzk41 — 2]

lim ——t = 0
koo ||z — 2*|

Proof We can prove that (4.32) also holds for large enough k, then the step size A, = 1,
i.e. hk = (S;C

Snmlar to the proof of (4.27), we can prove that (4.27) also holds for large enough k.
By the assumption A2, we can obtain

= L&Y e+ S Biha] — 1(6F)Thu + i Hih 4 o(ll]1)]
Pk - Pred(hy)

o(llhll?)
= ———" = 0. 4.34
Pred(hg) (4:34)

Conclusions (4.27) and (4.34) mean that when 6] = O, px — 1. Hence there exists
A > 0 such that when ||6]| < A, Pk 2 12, and therefore, Appy 2 Ag. As hy — 0, there
exists an index K' such that ||<5k|{ < A whenever k& > K'. Thus Ay > Ay, Ve > K.

On the other hand, as ¥ — §* = 0, we can obtain that Assumption A8 in [2] for the
preconditional conjugate gradient path, the preconditional optimal path or the precondi-
tional modified gradient path holds, which ensures

5= lim Ty= -Dy 15%.

T~3-400

The step size Ay = 1 for large enough k means that
he =6 = —PLL;TD Ly Pog® = - By ' g,

Therefore, the algorithm becomes the Newton method or the quasi-Newton method. Asin
this case assumption A2 is a sufficient condition for superlinear convergence, the theorem
is proved. O

5. Numerical experiments

Numerical experiments on the preconditional optimal path and preconditional modified
gradient path algorithms with the nonmonotonic back tracking technique given in this
paper have been performed on an IBM 586 personal computer. In this section we present
the numerical results. We compare with different nonmonotonic parameters M = 0, M = 4
and M = 8, respectively, for the proposed algorithms. The monotonic algorithms are
realized by taking M = 0. In order to check effectiveness of the back tracking technique,
we select the same parameters as used in [7). The selected parameter values are: 7 =
0.01, n1 = 0.001, no = 0.75, 71 = 0.5, 72 = 2, Apax = 10, and initially Ag = 1.
The computation terminates when one of the following stopping criterions is satisfied:
gkl < 1075, or fi — fr41 < 1078 max{1, |fi(}.

— 644 —



The experiments are carried out on 15 standard test problems which are quoted from
(14]. Besides the recommended starting points in (14], denoted by zg,, we also test these
methods with another set of starting points zg,. The computational results for By, = Hy,
the real Hessian, are presented at the following table, where POPPATH and PMGPATH
denote respectively the preconditional optimal path algorithm and the preconditional mod-
ified gradient path algorthm proposed in this paper with nonmonotonic decreasing and
back tracking techniques. NF and NG stand for the numbers of function evaluations and
gradient evaluations respectively. NO stands for the number of iterations in which non-
monotonic decreasing situation occurs, that is, the number of times fy — fre1 < 0. The
number of iterations is not presented in the following table because it always equals NG.

Problem Initial POPPATH
M =0 M=4 M=8
Name Point NF NG | NF NG NO [ NF NG NO
Rosenbrock Tog 23 19 16 14 5 13 12 4
(C=100) Zop 12 10 7 7 1 7 7 1
Rosenbrock ZLoa 76 54 16 16 5 16 14 5
(C=10000) Tob 28 23 8 8 1 8 8 1
Rosenbrock Toq 215 199 27 25 4 18 16 5
(C=1000000) | zos 61 43| 15 15 4| 15 15 4
Freudenstein | zgq, 6 6 6 6 0 6 6 0
Tay 12 10| 11 11 1 11 11 1
Cube Zoa 30 23 9 9 2 9 9 2
Top 21 18 [ 11 11 3] 11 11 3
Box ZToa 17 171 17 17 0] 17 17 0
Top 13 11| 15 15 1 15 15 1
Engvall Toa 17 16| 17 16 07 17 16 0
oy 20 18| 19 19 1 19 19 1
Wood Toa 56 39| 54 35 5| 28 28 5
Top 13 12 14 14 11 14 14 1
Powell To 16 16 | 16 16 0} 16 16 0
Davidon To 11 11| 12 12 1 12 12 1
Osborne T 13 13| 13 13 0] 13 13 0
Biggs Toa 43 18 | 53 42 51 51 41 6
Top 60 331|179 102 29| 183 94 16
Banana Tog 27 20 19 18 1 16 16 2
(n=6) Zob 32 26} 24 23 31 23 23 4
Banana Zga 34 271 21 21 21 21 21 2
(n=10) Zob 41 36| 33 33 4] 32 32 4
Banana Zga 45 35| 45 35 0| 45 35 0
(n=16) Top 32 30} 32 30 0] 32 30 0

Table 1: Experimental Results of the Preconditional Optimal Path Algorithm

The results under POPPATH and PMGPATH represent mixture of trust region and
line search techniques considered in this paper. Our preconditional curvilinear tyPe of
approximate trust region method is very easy to resolve the subproblem (S;) with a
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reduced radius. Indeed, the formulation of curvilinear paths I' do not depend on the
value of A, so that when the trust region is contracted and d; is outside the new region,
we only need to set the point back tracking along the same path until reaching the new
boundary. The back tracking can outperform the traditional method when the trust region
subproblem is solved accurately over the whole hyperball.

The last three parts of the table, under the headings of M = 0, 4 and 8 respectively,
show that for most test problems the nonmonotonic technique does bring in some notice-

able improvement.

Problem Initial PMGPATH
M =0 M=4 M=8
Name Point NF NG | NF NG NO | NF NG NO
Rosenbrock Toa 23 19 16 14 5 13 12 4
(C=100) Tob 13 11 7 7 1 7 7 1
Rosenbrock Toa 82 481 16 16 51 16 14 5
(C=10000) Tob 28 24 8 8 1 8 8 1
Rosenbrock Toa 223 201 | 28 26 41 16 14 5
(C=1000000) | zos 62 43 15 15 41 15 15 4
Freudenstein | xgq 6 6 6 6 0 6 6 0
Tob 12 10| 11 11 1 11 11 1
Cube Toa 30 23 9 9 2 9 9 2
Zgp 21 18] 11 11 3] 11 11 3
Box Zoa 17 17| 17 17 0| 17 17 0
Tob 13 11} 15 15 11 15 15 1
Engvall Toa 17 16| 17 16 0 17 16 0
Tob 20 18] 19 19 1] 19 19 1
Wood Toa 56 39| 54 35 5| 28 28 5
Tob 13 12 14 14 1 14 14 1
Powell To 16 16| 16 16 0] 16 16 0
Davidon T 11 11 12 12 1 12 12 1
Osborne g 13 13 13 13 0} 13 13 0
Biggs Zoa 40 18] 51 33 5| 54 38 8
Top 67 36 181 83 321172 63 15
Banana Zga 27 204 19 18 1 16 16 2
{n=6) Top 32 261 24 23 3| 23 23 4
Banana Zoa 30 24 21 21 2] 21 21 2
(n=10) Top 41 36| 33 33 41 32 32 4
Banana Toq 45 35| 45 35 0] 45 35 0
(n=16) Top 32 30| 32 30 0} 32 30 0

Table 2: Experimental Results of the Preconditional Modified Gradient Path Agorithm
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k £ &
(MR RERER, L 200234)

i B ACGREEIELCME RIS R 2 S RBIR A IRE BRI IEM ARG,
R PRI MR TEE Bunch-Parlett 5 TR sUEBUS T RIER ML #AR, £HARAT = AEEE
HERCHE ARG M ER TN BREEF. ZRABIRGE TS Hessian 5 EEFHEE 277 i1
BRI AR SOR . BT E S ARREBRTFREFERRS, HEBRREg S
FRARERBAMGE ST EL. BERMTENES IR T iR ta 5 2B Al
Sk, FFEHARRMALERSER, YESARATIENAERE.
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