JOURNAL OF MATHEMATICAL RESEARCH AND EXPOSITION

Vol.25, No.2 May, 2005

Article ID: 1000-341X(2005)02-0244-11

Document code: A

The Maximum Jump Number of (0,1)-Matrices of Order 2k-2 with Fixed Row and Column Sum k

YOU Lin¹, WANG Tian-ming²

Lab. of Combinatorics and Information Science, Hainan Normal University, Haikou 571158, China;
 Dept. of Appl. Math., Dalian University of Technology, Dalian 116023, China)
 (E-mail: mryoulin@263.net)

Abstract: In 1992, Brualdi and Jung first introduced the maximum jump number M(n,k), that is, the maximum number of the jumps of all (0,1)-matrices of order n with k 1's in each row and column, and then gave a table about the values of M(n,k) when $1 \le k \le n \le 10$. They also put forward several conjectures, including the conjecture $M(2k-2,k)=3k-4+\lfloor\frac{k-2}{2}\rfloor$. In this paper, we prove that $b(A) \ge 4$ for every $A \in \Lambda(2k-2,k)$ if $k \ge 11$, and find another counter-example to this conjecture.

Key words: (0,1)-matrices; jump number; stair number.

MSC(2000): 05B20, 15A36 CLC number: O151.21

1. Introduction and Lemmas

Let P be a finite poset (partially ordered set) and its cardinality |P| = n. Let $\mathbf{n} \leq$ denote the n-element poset formed by the set $\{1, 2, \dots, n\}$ with its usual order. Then an order-preserving bijective mapping $L \colon P \longrightarrow \mathbf{n} \leq$ is called a linear extension of P to a totally ordered set. If $P = \{x_i \mid 1 \leq i \leq n\}$, then we can simply express a linear extension L by $x_1 - x_2 - \cdots - x_n$ with the property $x_i < x_j$ in P implies i < j.

A consecutive pair (x_i, x_{i+1}) is called a jump(or setup) of P in L if x_i is not comparable to x_{i+1} . If $x_i < x_{i+1}$ in P, then (x_i, x_{i+1}) is called a stair(or bump) of P in L. Let s(L, P)[b(L, P)] be the number of jumps[stairs] of P in L, and let s(P)[b(P)] be the minimum[maximum] of s(L, P)[b(L, P)] over all linear extensions L in P. The number s(P)[b(P)] is called the jump [stair] number of P.

Let $A = [a_{ij}]$ be an $m \times n$ (0, 1)-matrix. Let $\{x_1, \dots, x_m\}$ and $\{y_1, \dots, y_n\}$ be disjoint sets of m and n elements, respectively, and define the order as $x_i < x_j$ iff $a_{ij} = 1$. Then the set $P_A = \{x_1, \dots, x_m, y_1, \dots, y_n\}$ with the defined order becomes a poset. For simplicity, s(A)[b(A)] is used for the jump [stair] number of P_A . More discussions about jump numbers and the (0, 1)-matrices with fixed row and column sum are given in [1-3].

Let $\Lambda(n,k)$ denote the set of all (0,1)-matrices of order n with k 1's in each row and column and $M(n,k) = \max\{s(A) : A \in \Lambda(n,k)\}$. In [4], Brualdi and Jung first studied the maximum

Received date: 2002-05-08

Foundation item: Hainan Natural Science Foundation of Hainan (10002)

jump number M(n,k) and gave out its values when $1 \le k \le n \le 10$. They also put forward several conjectures, including the conjecture that $M(2k-2,k) = 3k-4 + \lfloor \frac{k-2}{2} \rfloor$.

In this paper, we prove that $M(2k-2,k)=3k-4+\lfloor\frac{k-2}{2}\rfloor$ does not always hold, and find another counter-example (Corollary 2) to this conjecture.

Let $J_{a,b}$ denote the $a \times b$ matrix with all 1's, and let J denote any matrix with all 1's of an appropriate size. The following lemmas obviously hold or come from [4] and [6].

Lemma 1.1 Let A and B be two $m \times n$ matrices. Then

- 1) s(A) + b(A) = m + n 1, and hence $M(n, k) \le 2n 1 \min\{b(A) : A \in \Lambda(n, k)\}$;
- 2) $s(A \oplus B) = s(A) + s(B) + 1$;
- 3) If there exist two permutation matrices R and S such that B = RAS, that is, A can be permuted to B, expressed $A \sim B$, then
 - (a) A and B have the same row sum and column sum. And in this case, we call that A can be permuted to B and expressed as $A \sim B$.
 - (b) b(A) = b(B) and s(A) = s(B).

Lemma 1.2 $b(A) \ge b(B)$ holds for every sub-matrix B of A.

Lemma 1.3 Let A be a (0,1)-matrix with no zero row or column. Let b(A) = p. Then there exist permutation matrices R and S and integers m_1, \ldots, m_p and n_1, \ldots, n_p such that RAS equals

$$\begin{bmatrix} J_{m_1,n_1} & A_{1,2} & \cdots & A_{1,p} \\ O & J_{m_2,n_2} & \cdots & A_{2,p} \\ \vdots & \vdots & \ddots & \vdots \\ O & O & \cdots & J_{m_p,n_p} \end{bmatrix}.$$

Lemma 1.4 Let A be a (0,1)-matrix with stair number b(A) = 1. Then A can be permuted to the following matrix

$$J ext{ or } [J ext{ } O] ext{ or } \begin{bmatrix} J & O \\ O & O \end{bmatrix}.$$

Lemma 1.5 Let A be a (0,1)-matrix having no rows or columns consisting of all 0's or all 1's. Then b(A) = 2 if and only if the rows and columns of A can be permuted to an oblique direct sum

$$O\overline{\oplus} \dots \overline{\oplus} O$$

of zero matrices.

Lemma 1.6 $M(2k-2,k) \ge 3k-4+\lfloor \frac{k-2}{2} \rfloor$ holds for every $k \ge 2$.

Lemma 1.7 If A is an $m \times n$ (0,1) matrix without zero row [column] and there are at most l 1's in each column [row], then $b(A) \ge \lceil \frac{m}{l} \rceil [b(A) \ge \lceil \frac{n}{l} \rceil]$.

Lemma 1.8 If $k \nmid n$ and $n \mod k \nmid k$ for $1 \leq k \leq n$, then $M(n,k) \leq 2n-2-\left\lceil \frac{n}{k} \right\rceil$.

For a matrix X in block form, we use $X[i_1, i_2, \dots, i_s | j_1, j_2, \dots, j_t]$ to denote the submatrix composed of the i_1 -th, i_2 -th, \dots , i_s -th block-rows and the j_1 -th, j_2 -th, \dots , j_t -th block-columns from X.

2. Main theorem

Theorem 2.1 If $k \ge 11$, then $b(A) \ge 4$ holds for every $A \in \Lambda(2k-2,k)$.

Proof If there exists a matrix $A \in \Lambda(2k-2, k)$ such that b(A) = 3, then by Lemma 1.3 we may suppose

$$A = \begin{bmatrix} J_{k,k-q-2} & B_{12} & B_{13} \\ O & J_{p,q} & B_{23} \\ O & O & J_{k-p-2,k} \end{bmatrix},$$

where B_{ij} (i = 1 or 2, j = 2 or 3) are block-matrices and $1 \le p, q \le k - 3$.

Since $b(A) = b(A^T) = 3$, we may assume $p \le q$, $1 \le b(B_{12}) \le b(B_{23}) \le 2$. First, we have the following lemmas.

Lemma 2.1 $b(B_{12}) = 2$.

Proof Suppose $b(B_{12}) = 1$. Since B_{12} has evidently no zero or all 1's column, by Lemma 1.4 we have $B_{12} \sim \begin{bmatrix} J_{k-p,q} \\ O \end{bmatrix}$, Thus

$$A \sim A_1 = \begin{bmatrix} J_{k-p,k-q-2} & J_{k-p,q} & B_{131} \\ J_{p,k-q-2} & O & B_{132} \\ O & J_{p,q} & B_{23} \\ O & O & J_{k-p-2,k} \end{bmatrix}.$$

The proof will be complete by the following Propositions 2.1, 2.2 and 2.3.

Proposition 2.1 B_{131} has zero columns and $1 \le b(B_{131}) \le 2$.

Proposition 2.2 $b(B_{131}) \neq 1$.

Proof If $b(B_{131}) = 1$, then by Lemma 1.4 we have $B_{131} \sim [J_{k-p,2} \ O]$. Thus

$$A_1 \sim A_2 = \left[egin{array}{cccc} J_{k-p,k-q-2} & J_{k-p,q} & J_{k-p,2} & O \ J_{p,k-q-2} & O & C_1 & C_2 \ O & J_{p,q} & C_3 & C_4 \ O & O & J_{k-p-2,2} & J_{k-p-2,k-2} \end{array}
ight].$$

Obviously, $p \ge \lceil \frac{k-2}{2} \rceil \ge 5$ for $k \ge 11$.

It is clear that both C_2 and C_4 have no zero row or column and $b\left(\left[\begin{array}{c}C_2\\C_4\end{array}\right]\right)=b(C_2)=$

 $b(C_4) = 2$. Hence we may suppose

$$A_2 \sim A_3 = \begin{bmatrix} J_{k-p,k-q-2} & J_{k-p,q} & J_{k-p,2} & O & O \\ J_{p_1,k-q-2} & O & C_{11} & J_{p_1,l} & * \\ J_{p-p_1,k-q-2} & O & C_{12} & O & J_{p-p_1,k-l-2} \\ O & J_{p+2-p_1,q} & C_{31} & J_{p+2-p_1,l} & * \\ O & J_{p_1-2,q} & C_{32} & O & J_{p_1-2,k-l-2} \\ O & O & J_{k-p-2,2} & J_{k-p-2,l} & J_{k-p-2,k-l-2} \end{bmatrix}.$$

Obviously, $0 \le b(C_{12})$, $b(C_{32}) \le 1$. If $C_{12} = O$ then $C_{32} = J_{p_1-2,2}$, or if $C_{32} = O$ then $C_{12} = J_{p-p_1,2}$. Without loss of generality, we suppose that the latter holds. If C_{31} has zeroes, then b([3,4,5,6|1,3,4,5]) = 4, a contradiction. Hence $C_{31} = J_{p+2-p_1,2}$. Therefore, in the third block-column of A_3 , the column sum $k \ge (k-p)+(p-p_1)+(p+2-p_1)+(k-p-2)=k+(k-2p_1)>k+(k-2p)$, that is, k < 2p. On the other hand, we have (k-q-2)+2+(k-l-2)=k and q+(k-l-2)=k, and so k=2q which contradicts k < 2p. It follows that Proposition 2.2 holds. \Box

Proposition 2.3 $b(B_{131}) \neq 2$.

Proof Suppose $b(B_{131})=2$. Then $B_{131}\sim \left[\begin{array}{ccc} J_{s,1} & * & O \\ O & J_{t,2} & O \end{array}\right](s+t=k-p),$ and hence

$$A_1 \sim A_4 = \begin{bmatrix} J_{s,k-q-2} & J_{s,q} & J_{s,1} & * & O \\ J_{t,k-q-2} & J_{t,q} & O & J_{t,2} & O \\ J_{p,k-q-2} & O & * & * & D_1 \\ O & J_{p,q} & * & * & D_2 \\ O & O & J_{k-p-2,1} & J_{k-p-2,2} & J_{k-p-2,k-3} \end{bmatrix},$$

where * denotes any matrix of an appropriate size.

It is clear that $b\left(\begin{bmatrix}D_1\\D_2\end{bmatrix}\right)=1$ and both D_1 and D_2 have no zero column, and hence both D_1 and D_2 have all 1's rows. It induces $(k-q-2)+q+2(k-3)\leq 2k$, that is, $k\leq 8$, contradicting $k\geq 11$. Therefore, Proposition 2.3 holds.

By Lemma 2.1 and the hypothesis we have $b(B_{12}) = b(B_{23}) = 2$ and the following Lemma 2.2.

Lemma 2.2 B_{12} has neither zero row nor zero column.

Lemma 2.3 B_{12} has neither all 1's column nor all 1's row.

Proof It is clear that B_{12} has no all 1's column. Suppose B_{12} has t all 1's rows, then $B_{12} \sim \begin{bmatrix} J_{t,q} \\ E \end{bmatrix}$, where

$$E = O_{p,q_1} \overline{\oplus} \cdots \overline{\oplus} O_{p,q_m}, mp = k - t, q_1 + \cdots + q_m = q, m \ge 2.$$

Thus

$$A \sim A_5 = \begin{bmatrix} J_{t,k-q-2} & J_{t,q} & E_1 \\ J_{k-t,k-q-2} & E & E_2 \\ O & J_{p,q} & B_{23} \\ O & O & J_{k-p-2,k} \end{bmatrix}.$$

Obviously, E_1 has zero columns and $1 \le b(E_1) \le 2$.

The proof of Lemma 2.3 will be complete by the following Proposition 2.4 and Proposition 2.5.

Proposition 2.4 $b(E_1) \neq 2$.

Proof Suppose $b(E_1)=2$. Then $E_1\sim \left[\begin{array}{ccc} J_{t_1,u} & * & O \\ O & J_{t-t_1,2} & O \end{array}\right](1\leq u\leq 2),$ and hence

$$A_5 \sim A_6 = \begin{bmatrix} J_{t_1,k-q-2} & J_{t_1,q} & J_{t_1,u} & * & O \\ J_{t-t_1,k-q-2} & J_{t-t_1,q} & O & J_{t-t_1,2} & O \\ J_{k-t,k-q-2} & E & E_{21} & E_{22} & E_{23} \\ O & J_{p,q} & B_{231} & B_{232} & B_{233} \\ O & O & J_{k-p-2,u} & J_{k-p-2,2} & J_{k-p-2,k-4} \end{bmatrix}.$$

Obviously,
$$b\left(\left[\begin{array}{c}E_{23}\\B_{233}\end{array}\right]\right)=1$$
 and $\left[\begin{array}{c}E_{23}\\B_{233}\end{array}\right]\sim\left[\begin{array}{c}J_{p+2,k-4}\\O\end{array}\right](k-t>2)$ or $J_{p+2,k-4}(k-t=2)$.

If both E_{23} and B_{233} have all 1's rows, then $2k \ge (k-q-2)+1+q+2(k-4)$, that is, $k \le 9$, contradicting $k \ge 11$, and hence $B_{233} = O$. Since $b([B_{231} \ B_{232} \ B_{233}]) = b(B_{23}) = 2$, we have $b(A_6[1,4,5]1,3,4,5]) = 4$, a contradiction.

Proposition 2.5 $b(E_1) \neq 1$.

Proof Suppose $b(E_1) = 1$. Then $E_1 \sim [J_{t,2} \ O]$ and

$$A_5 \sim A_7 = \left[egin{array}{cccc} J_{t,k-q-2} & J_{t,q} & J_{t,2} & O \ J_{k-t,k-q-2} & E & F_3 & F_1 \ O & J_{p,q} & F_4 & F_2 \ O & O & J_{k-p-2,2} & J_{k-p-2,k-2} \ \end{array}
ight],$$

where F_1 has obviously no zero column or zero row, and F_2 has no zero row.

By Lemma 1.7 we have

$$b\left(\left[\begin{array}{c}F_1\\F_2\end{array}\right]\right)\geq \lceil\frac{k-t+p}{p+2}\rceil=\lceil\frac{(m+1)p}{p+2}\rceil\geq \left\{\begin{array}{ccc} \lceil\frac{m+1}{2}\rceil\geq 3 & \text{if } m\geq 4\\ \lceil\frac{3(m+1)}{5}\rceil\geq 3 & \text{if } m\geq 3 \text{ and } p\geq 3\\ \lceil\frac{(2+1)5}{7}\rceil=3 & \text{if } m=2 \text{ and } p\geq 5, \end{array}\right.$$

which implies $b(A_7) \ge 4$, a contradiction. Hence m = 3 and p = 2, or m = 2 and $3 \le p \ge 4$. If m = 3 and p = 2, then $k = mp + t \le (m+1)p + 2 \le 10$, which contradicts $k \ge 11$, and hence m = 2 and $3 \le p \le 4$.

The proof of Proposition 2.5 will be complete by the following claims.

Claim 2.1 $b(F_2) \neq 1$.

Proof Suppose $b(F_2) = 1$. Then $F_2 \sim [J_{p,w} \ O]$, and hence

$$A_7 \sim A_8 = \left[egin{array}{cccccc} J_{t,k-q-2} & J_{t,q} & J_{t,2} & O & O \ J_{p+2,k-q-2} & E' & K_1 & K_2 & J_{p+2,k-w-2} \ J_{p-2,k-q-2} & E'' & K_3 & J_{p-2,w} & O \ O & J_{p,q} & F_4 & J_{p,w} & O \ O & O & J_{k-p-2,2} & J_{k-p-2,w} & J_{k-p-2,k-w-2} \ \end{array}
ight].$$

It is clear that $b(F_4) = 0$ or 1.

If $b(F_4) = 1$, then F_4 has all 1's columns, otherwise, $b(A_8[1, 4, 5|1, 2, 3, 5]) = 4$. Hence $t \le 2$. Thus $k = 2p + t \le 8 + 2 = 10$, contradicting $k \ge 11$.

If $b(F_4)=0$, then $K_3=J_{p-2,2}$, and hence $t\leq 4$. If $t\leq 2$, or $t\leq 4$ and $p\leq 3$, then $k=2p+t\leq 10$, contradicting $k\geq 11$, and hence p=4 and t=3 or 4. It follows $K_2=O$ and $K_1\sim O$ or $\begin{bmatrix}J_{1,2}\\O\end{bmatrix}$. If $K_1=O$, then b(E')=1. Since E' has no zero row, E' has all 1's column.

Thus A_8 has a column which column sum $\geq t + (p+2) + p = k+2$, impossible. If $K_1 \sim \begin{bmatrix} J_{1,2} \\ O \end{bmatrix}$, then E' has a sub-matrix permuted to $J_{p+1,v}$, and hence $k \geq t + (p+1) + p$, that is, $k \geq k+1$, a contradiction.

Claim 2.2 $b(F_2) \neq 2$.

Proof Suppose $b(F_2)=2$. Then $\left[\begin{array}{c}F_1\\F_2\end{array}\right]$ has no zero row and $\left[F_4\ F_2\right]$ has no zero column, and we may suppose

$$A_7 \sim A_9 = \begin{bmatrix} J_{t,k-q-2} & J_{t,q_1} & J_{t,q_2} & J_{t,2} & O & O \\ J_{p,k-q-2} & J_{p,q_1} & O & F_{31} & F_{111} & F_{121} \\ J_{p,k-q-2} & O & J_{p,q_2} & F_{32} & F_{112} & F_{122} \\ O & J_{p_1,q_1} & J_{p_1,q_2} & F_{41} & J_{p_1,l} & F_{21} \\ O & J_{p-p_1,q_1} & J_{p-p_1,q_2} & F_{42} & O & J_{p-p_1,k-l-2} \\ O & O & O & J_{k-p-2,2} & J_{k-p-2,l} & J_{k-p-2,k-l-2} \end{bmatrix}.$$

Obviously, we can assume $0 \le b(F_{111}) \le b(F_{112}) \le 1$.

Case 1 If $F_{111} = O$, then $F_{121} = J_{p,k-l-2}$ and $b(F_{31}) = 0$ or 1. If $b(F_{31}) = 1$, then $t \le 2$, and hence $k \le 8 + t \le 10$, contradicting $k \ge 11$. Thus $F_{31} = O$, which induces $F_{42} = J_{p-p_1,2}$ and l = q. It follows $q_2 \le 2$.

If F_{41} or F_2 has zero column, then $b([F_{41} F_{21}]) = 0$ or 1. If the former holds, then $[F_{32}|F_{122}] \sim [J_{p,2}|O](p=p_1+2)$ or $\begin{bmatrix} * & J_{1,k-l-2} \\ J_{p-1,2} & O \end{bmatrix}$ $(p=p_1+1)$. Hence $(p-1)+t \leq p_1+2$, and it follows $t \leq 2$. So $k \leq 8+t \leq 10$, contradicting $k \geq 11$. If the latter holds, then $p \leq 2$ (impossible for $3 \leq p \leq 4$) or $t \leq 2$ (which induces $k \leq 10$). Hence $[F_{41} F_{21}]$ is a $p \times (k-q)$ matrix without zero column and there are k-2q 1's in its each row. By Lemma 1.7, we have $b([F_{41} F_{21}]) \geq \lceil \frac{k-q}{k-2q} \rceil = \lceil \frac{q_2+4}{4-q_1} \rceil \geq \lceil \frac{5}{4-q_1} \rceil$. If $q_1=1$, then $q=q_1+q_2 \leq 3$. Since $t \leq p+1$ we have $k=2p+t \leq 3p+1 \leq 3q+1 \leq 10$, contradicting $k \geq 11$. Thus $q_1=2$ or 3, which induces $b[F_{41} F_{21}] \geq 3$, and hence $b(A_9) \geq 4$, a contradiction.

Case 2 If $b(F_{111}) = b(F_{112}) = 1$, then we have

$$A_7 \sim A_{10} = \begin{bmatrix} J_{t,k-q-2} & J_{t,q_1} & J_{t,q_2} & J_{t,2} & O & O \\ J_{s,k-q-2} & J_{s,q_1} & O & G_1 & J_{s,l} & O \\ J_{p-s,k-q-2} & J_{p-s,q_1} & O & G_2 & O & J_{p-s,k-l-2} \\ J_{r,k-q-2} & O & J_{r,q_2} & G_3 & J_{r,l} & O \\ J_{p-r,k-q-2} & O & J_{p-r,q_2} & G_4 & O & J_{p-r,k-l-2} \\ O & J_{p_1,q_1} & J_{p_1,q_2} & G_5 & J_{p_1,l} & O \\ O & J_{p-p_1,q_1} & J_{p-p_1,q_2} & G_6 & O & J_{p-p_1,k-l-2} \\ O & O & O & J_{k-p-2,2} & J_{k-p-2,l} & J_{k-p-2,k-l-2} \end{bmatrix}$$

with $s + r + p_1 = 2p - 2$.

If $G_5 = O$, then $G_6 = J_{p-p_1,2}$, $G_1 = J_{s,2}$ and $G_3 = J_{r,2}$. It follows $t+s+r+(p-p_1) \le p+2$, and so $t \leq 2p_1 - 4 \leq 2$ (since $p_1 \leq 3$). Similarly, we will have $t \leq 2$ if $G_i = 0$ for some i = 1, 2, 3, 4, 6. Thus $k = 2p + t \le 8 + 2 = 10$, contradicting $k \ge 11$

1, 2, 3, 4, 6. Thus
$$k = 2p + t \le 8 + 2 = 10$$
, contradicting $k \ge 11$.

Suppose $t \ge 3$ and $G_i \ne O$ for all $i = 1, 2, 3, 4, 5, 6$. Then
$$\begin{bmatrix} G_1 \\ G_2 \\ G_3 \\ G_4 \\ G_5 \end{bmatrix}$$
is a $3p \times 2$ -matrix without proves and in its each column 1's number equals $n + 2 - t \le n + 2 = 3 = n - 1$, and hence by

zero rows and in its each column 1's number equals $p+2-t \le p+2-3=p$

Lemma 1.7,
$$b \begin{pmatrix} \begin{bmatrix} G_1 \\ G_2 \\ G_3 \\ G_4 \\ G_5 \\ G_6 \end{bmatrix}$$
 $\geq \lceil \frac{3p}{p-1} \rceil = 4$, a contradiction. Therefore, Claim 2.2 holds.

By lemmas 2.1, 2.2 and 2.3, we have

$$B_{12} \sim O_{p,q_1} \overline{\oplus} \cdots \overline{\oplus} O_{p,q_l}, \quad q_1 + \cdots + q_l = q, \quad lp = k(l \ge 2).$$

Similarly, we may suppose

$$B_{23} \sim O_{p_1,q} \overline{\oplus} \cdots \overline{\oplus} O_{p_s,q}, \quad p_1 + \cdots + p_s = p, \quad sq = k(s \ge 2).$$

Obviously, B_{13} has neither zero row nor zero column. If $s \geq 4$, then B_{13} has at most p-11's in its each column and so by Lemma 1.7 $b(B_{13}) \ge \lceil \frac{k}{p-1} \rceil = \lceil \frac{sq}{p-1} \rceil > s \ge 4$, a contradiction. Thus, the following Proposition 2.6 holds.

Proposition 2.6 s < 4.

Proposition 2.7 If s = 3, then p = q and l = 3.

Proof Suppose q > p. Then by Lemma 1.7 $b(B_{13}) \ge \lceil \frac{k}{p} \rceil = \lceil \frac{sq}{p} \rceil \ge s+1=4$, a contradiction. Hence q = p and so l = s = 3.

Proposition 2.8 $l \leq 4$.

Proof Suppose $l \geq 5$. Then by Lemma 1.7 $b(B_{13}) \geq \lceil \frac{k}{p+1} \rceil = \lceil \frac{lp}{p+1} \rceil \geq \lceil \frac{2l}{3} \rceil \geq \lceil \frac{10}{3} \rceil = 4$, a contradiction.

Therefore we have (s, l) = (3, 3) or (2,2) or (2,3) or (2,4).

Proposition 2.9 $(s, l) \neq (3, 3)$.

Proof Suppose (s, l) = (3, 3). Then k = 3p = 3q and

$$A \sim \bar{A}_{1} = \begin{bmatrix} J_{p,k-q-2} & J_{p,q_{1}} & J_{p,q_{2}} & O & H_{1} & H_{2} & H_{3} \\ J_{p,k-q-2} & J_{p,q_{1}} & O & J_{p,q_{3}} & H_{4} & H_{5} & H_{6} \\ J_{p,k-q-2} & O & J_{p,q_{2}} & J_{p,q_{3}} & H_{7} & H_{8} & H_{9} \\ O & J_{p_{1},q_{1}} & J_{p_{1},q_{2}} & J_{p_{1},q_{3}} & J_{p_{1},p} & J_{p_{1},p} & O \\ O & J_{p_{2},q_{1}} & J_{p_{2},q_{2}} & J_{p_{2},q_{3}} & J_{p_{2},p} & O & J_{p_{2},p} \\ O & J_{p_{3},q_{1}} & J_{p_{3},q_{2}} & J_{p_{3},q_{3}} & O & J_{p_{3},p} & J_{p_{3},p} \\ O & O & O & O & J_{k-p-2,p} & J_{k-p-2,p} & J_{k-p-2,p} \end{bmatrix}$$

with $p_1 + p_2 + p_3 = q_1 + q_2 + q_3 = p$.

Without loss of generality, we assume

$$0 \le b(H_1) \le b(H_2) \le b(H_3) \le 2, \quad 0 \le b(H_4) \le b(H_7) \le 2.$$

If
$$b(H_1) = 0$$
. Then $b([H_2 \ H_3]) = 1$ and $b\left(\left[\begin{array}{c} H_4 \\ H_7 \end{array}\right]\right) = 1$, and hence $[H_2 \ H_3] \sim [J_{p,q_3+2} \ O]$ and $\left[\begin{array}{c} H_4 \\ H_7 \end{array}\right] \sim \left[\begin{array}{c} J_{p_3+2,p} \\ O \end{array}\right]$, which implies $p_2 = p_3 = q_2 = q_3 = 1$. If $b(H_2) = b(H_3) = 1$ or $b(H_4) = b(H_7) = 1$, then $p_1 = p_2 = p_3 = 1$ or $q_1 = q_2 = q_3 = 1$, which implies $k = 3p = 3q = 9$, contradicting $k \geq 11$. Hence $H_2 = H_4 = O$ and so $H_5 = J_{p,p}$. It follows $q_1 = p_1 = 1$. Therefore, $k = 3p = 3(p_1 + p_2 + p_3) = 9$, contradicting $k \geq 11$.

contradicting $k \ge 11$. Hence $\mu_2 - \mu_3$ $k = 3p = 3(p_1 + p_2 + p_3) = 9$, contradicting $k \ge 11$. If $b(H_1) = 1$. Then $H_1 \sim [J \ O]$ or $\begin{bmatrix} J \ O \end{bmatrix}$, and it follows $p_1 = p_2 = p_3 = 1$ or $q_1 = q_2 = q_3 = 1$. Hence k = 3p = 3q = 9, contradicting $k \ge 11$.

If $b(H_1)=2$. Then $[H_1 \ H_2 \ H_3]$ is a $p\times 3p$ (0,1)-matrix without zero column and there are just q_3+2 1's in its each row. Hence by Lemma 1.7 $b([H_1 \ H_2 \ H_3]) \geq \lceil \frac{3p}{q_3+2} \rceil \geq 3$, which induces $b(\bar{A}_1) \geq 4$, a contradiction. Therefore, Proposition 2.9 holds.

Proposition 2.10 $(s, l) \neq (2, 2)$.

Proof Suppose (s, l) = (2, 2). Then k = 2p and $p = q = p_1 + p_2 = q_1 + q_2$ and

$$A \sim ar{A}_2 = \left[egin{array}{ccccc} J_{p,p-2} & J_{p,q_1} & O & L_1 & L_2 \ J_{p,p-2} & O & J_{p,q_2} & L_3 & L_4 \ O & J_{p_1,q_1} & J_{p_1,q_2} & J_{p_1,q} & O \ O & J_{p_2,q_1} & J_{p_2,q_2} & O & J_{p_2,q} \ O & O & O & J_{p-2,q} & J_{p-2,q} \ \end{array}
ight].$$

If $1 \le q_1$, $q_2 \le 2$, then $k = 2q = 2(q_1 + q_2) \le 8$, contradicting $k \ge 11$. Without loss of generality, suppose $q_1 \ge \max\{q_2, 3\}$ and $b(L_1) \le b(L_2)$.

If $b([L_1 \ L_2]) \ge 2$, then $[L_1 \ L_2]$ is a $p \times 2p$ -(0,1) matrix without zero column and there are just $p+2-q_1$ 1's in its each row. Hence by Lemma 1.7 $b([L_1 \ L_2]) \ge \lceil \frac{2p}{p+2-q_1} \rceil \ge \lceil \frac{2p}{p-1} \rceil = 3$, which induces $b(\bar{A}_2) \ge 4$, a contradiction. Hence $b([L_1 \ L_2]) = 1$ or $[L_1 \ L_2] \sim [J_{p,q_2+2} \ O]$.

If $L_1 = O$. Then $L_2 \sim [J_{p,q_2+2} \ O] (1 \le u < p)$ and so

$$ar{A_2} \sim ar{A_3} = \left[egin{array}{cccccc} J_{p,p-2} & J_{p,q_1} & O & O & O & J_{p,q_2+2} \ J_{p,p-2} & O & J_{p,q_2} & L_3 & L_{41} & L_{42} \ O & J_{p_1,q_1} & J_{p_1,q_2} & J_{p_1,q} & O & O \ O & J_{p_2,q_1} & J_{p_2,q_2} & O & J_{p_2,q_1-2} & J_{p_2,q_2+2} \ O & O & O & J_{p-2,q} & J_{p-2,q_1-2} & J_{p-2,q_2+2} \ \end{array}
ight].$$

It is clear that $L_3 \sim \left[\begin{array}{c} J \\ O \end{array} \right]$ and $L_{41} \sim \left[\begin{array}{c} J \\ O \end{array} \right]$.

If $[L_3 \ L_{41}]$ has zero row, then $b(\bar{A}_3[1,2,3,4|2,3,4,5])=4$, a contradiction. If $[L_3 \ L_{41}]$ has all 1's row, then $(p-2)+q_2+p+(q_1-2)\leq 2p$ or $q_1+q_2\leq 4$. Hence $k=2q=2(q_1+q_2)\leq 8$, contradicting $k\geq 11$. Thus $[L_3 \ | \ L_{41}]\sim \left[\begin{array}{c|c} J_{u,p} & O \\ O & J_{v,p} \end{array}\right]$ with u+v=p, which implies $(p+2-p_1)+(p+2-p_2)=p$ or 4=0, a contradiction.

If $b(L_1) = b(L_2) = 1$, then $L_i \sim [J \ O]$ (i = 1, 2), and so $p_1 \leq 2$ and $p_2 \leq 2$. Therefore $k = 2(p_1 + p_2) \leq 8$, contradicting $k \geq 11$. Therefore Proposition 2.10 holds.

Proposition 2.11 $(s, l) \neq (2, 3)$.

Proof Suppose (s, l) = (2, 3). Then k = 3p = 2q and so

$$A \sim \bar{A}_4 = \begin{bmatrix} J_{p,k-q-2} & J_{p,q_1} & J_{p,q_2} & O & N_1 & N_2 \\ J_{p,k-q-2} & J_{p,q_1} & O & J_{p,q_3} & N_3 & N_4 \\ J_{p,k-q-2} & O & J_{p,q_2} & J_{p,q_3} & N_5 & N_6 \\ O & J_{p_1,q_1} & J_{p_1,q_2} & J_{p_1,q_3} & J_{p_1,q} & O \\ O & J_{p_2,q_1} & J_{p_2,q_2} & J_{p_2,q_3} & O & J_{p_2,q} \\ O & O & O & O & J_{k-p-2,q} & J_{k-p-2,q} \end{bmatrix}.$$

If $b(N_i)=2$ for some N_i , assume $b(N_1)=2$, then $\begin{bmatrix} N_1\\N_3\\N_5 \end{bmatrix}$ is a $3p\times q$ (0,1)- matrix without zero row and there are just $p+2-p_1$ 1's in its each column. Hence by Lemma 1.7 $b(\begin{bmatrix} N_1\\N_3\\N_5 \end{bmatrix}) \geq \lceil \frac{3p}{p+2-p_1} \rceil \geq 3$ since $p=\frac{k}{3} \geq \lceil \frac{k}{3} \rceil \geq 4$. Therefore, $b(N_i) \leq 1$ for every $i: 1 \leq i \leq 6$. Without loss of generality, assume $b(N_1) \leq b(N_2)$ and $b(N_3) \leq b(N_3)$ and $a_1 \geq a_2 \geq a_3$.

Without loss of generality, assume $b(N_1) \leq b(N_2)$ and $b(N_3) \leq b(N_5)$ and $q_1 \geq q_2 \geq q_3$.

If $N_1 = O$. Then $N_5 \sim J$ or $\begin{bmatrix} J \\ O \end{bmatrix}$, and hence $q_2 = q_3 = 1$ and N_6 has zero rows. It follows that $N_2 = J$ and $q_1 = 1$, which implies $k = 2q = 2(q_1 + q_2 + q_3) = 6$, contradicting $k \geq 11$.

If $b(N_1) = b(N_2) = 1$. Then $N_1 \sim J$ or $\begin{bmatrix} J \\ O \end{bmatrix}$ or [J O]. If the previous two hold, then

If $b(N_1) = b(N_2) = 1$. Then $N_1 \sim J$ or $\begin{bmatrix} J \\ O \end{bmatrix}$ or $[J \ O]$. If the previous two hold, then $q_1 = q_2 = 1$ and so $q_3 = 1$. Thus $k = 2(q_1 + q_2 + q_3) = 6$, contradicting $k \geq 11$. Hence $N_1 \sim [J \ O]$ and so $p_1 \leq 2$.

Similarly, $N_2 \sim [J \ O]$ and $p_2 \leq 2$.

If $p_1 < 2$ or $p_2 < 2$, then $k = 3p = 3(p_1 + p_2) \le 9$, contradicting $k \ge 11$.

Suppose $p_1 = p_2 = 2$, then

$$\left[\begin{array}{ccc} N_1 & N_2 \\ N_3 & N_4 \\ N_5 & N_6 \end{array}\right] \sim \left[\begin{array}{cccc} J & O & J & O \\ O & * & O & * \\ O & * & O & * \end{array}\right].$$

It follows $b(\bar{A}_4[1,2,3,4|3,4,5,6]) = 4$, a contradiction. Therefore Proposition 2.11 holds.

Proposition 2.12 $(s, l) \neq (2, 4)$.

Proof Suppose (s, l) = (2, 4). Then k = 4p = 2q and

where $q=q_1+q_2+q_3+q_4$ and $p=p_1+p_2$. If $b(Q_i)=2$ for some $i(1\leq i\leq 8)$, assume $b(Q_2)=2$, then $[Q_1 \ Q_2]$ is a $p\times 2q$ (0,1)-matrix without zero column and there are just q_4+2 1's in its each row. Hence by Lemma 1.7 $b([Q_1 \ Q_2])\geq \lceil \frac{2q}{q_3+2}\rceil = \lceil \frac{2q}{q+2-q_1-q_2-q_4}\rceil \geq \lceil \frac{2q}{q-1}\rceil = 3$, which induces $b(\bar{A}_5)\geq 4$, a contradiction. Hence $0\leq b(Q_i)\leq 1$: $1\leq i\leq 8$. Without loss of generality, suppose $b(Q_1)\leq b(Q_2)$ and $q_1\geq q_2\geq q_3\geq q_4$.

If
$$Q_1=O$$
, then $b\left(\left[egin{array}{c}Q_3\\Q_5\\Q_7\end{array}\right]\right)=1$ and $\left[egin{array}{c}Q_3\\Q_5\\Q_7\end{array}\right]$ has no zero column. Hence $\left[egin{array}{c}Q_3\\Q_5\\Q_7\end{array}\right]\sim$

 $\begin{bmatrix} J_{p_2+2,q} \\ O \end{bmatrix}$, which implies $q_1 + q_2 + q_4 = 2$ or $q_1 + q_3 + q_4 = 2$ or $q_2 + q_3 + q_4 = 2$, impossible.

If $b(Q_1) = 1$, then $Q_1, Q_2 \sim [J \ O]$, and so $p_1 \le 2, p_2 \le 2$.

If
$$p_1 = 2$$
, then $\begin{bmatrix} Q_1 \\ Q_3 \\ Q_5 \\ Q_7 \end{bmatrix} \sim \begin{bmatrix} J_{p,v} & O \\ O & Q_{31} \\ O & Q_{51} \\ O & Q_{71} \end{bmatrix}$. If Q_{31} , Q_{51} or Q_{71} has zeroes, say, Q_{31} has

zeroes, then $b(\bar{A}_5[1,2,6,7|4,5,6])=4$, a contradiction. Hence Q_{31} , Q_{51} and Q_{71} has no zeroes. Thus $Q_{31}=Q_{51}=Q_{71}=J_{p,q-v}$, which induces $3p=p+2-p_1$ or 2p=0, impossible.

Similarly, we will get a contradiction if $p_2 = 2$. Thus $p_1 = p_2 = 1$, which means $k = 4(p_1 + p_2) = 8$, contradicting $k \ge 11$. Therefore Proposition 2.12 holds.

The all above shows that $b(A) \geq 4$ for every $A \in \Lambda(2k-2,k)$ if $k \geq 11$.

3. Corollaries

Corollary 3.1 $3k-4+\lfloor \frac{k-2}{2} \rfloor \leq M(2k-2,k) \leq 4k-9$ holds for $k \geq 11$.

Proof By Lemma 1.6 we have $M(2k-2,k) \ge 3k-4+\lfloor \frac{k-2}{2} \rfloor$. On the other hand, by Theorem 2.1 and Lemma 1.1 we have $M(2k-2,k) \le 2(2k-2)-1-4=4k-9$. Thus Corollary 3.1 holds. \square

Corollary 3.2 M(16,9) = 28.

Proof From the proof of Proposition 2.9, we obtain a matrix

with stair number b(B) = 3. Hence s(B) = 32 - 1 - b(B) = 28, and hence $M(16, 9) \ge 28$. On the other hand, by Lemma 1.8, $M(16,9) \le 32 - 2 - \lceil \frac{16}{9} \rceil = 28$. Thus M(16,9) = 28.

Therefore, the conjecture $M(2k-2,k)=3k-4+\lfloor\frac{k-2}{2}\rfloor$ does not hold for k=9.

References:

- [1] CHEIN M, HABIB M. The jump number of dags and posets: An introduction [J]. Ann. Discrete Math., 1980, 9: 189-194.
- [2] STEINER G, STEWART L. A linear time algorithm to find the jump number of 2-dimensional bipartite partial orders [J]. Order, 1987, 3(4): 359-367.
- [3] BRUALDI R A. Matrices of zeros and ones with fixed row and column sum vertor [J]. Linear Algebra Appl., 1980, 33: 159-231.
- [4] BRUALDIR A, JUNG HC. Maximum and mimmum jump number of posets from matrices [J]. Linear Algebra Appl., 1992, 172: 261-282.
- [5] YOU LIN, WANG TIAN-MING. Counter-examples to the Conjecture $M(2k, k+1) = 3k-1 + \lfloor \frac{k-1}{2} \rfloor$ [J]. J. Math. Res. Exposition, 2002, 22(2): 194-196.
- [6] CHENG B, LIU B. Matrices of zeros and ones with the maximum jump number [J]. Linear Algebra Appl., 1998, **277**: 83-95.

具有固定行列和 k 的阶为 2k-2 的 (0,1)- 矩阵的最大跳跃数

游 林 1 , 王 夭 明 2 (1. 海南师范大学组合与信息科学实验室, 海南 海口 571158; 2. 大连理工大学应用数学系, 辽宁 大连 116024)

摘要: 1992 年 Brualdi 与 Jung 首次引出了最大跳跃数 M(n,k), 即每行每列均含 k 个 1 的阶为 n 的 (0,1)- 矩阵的跳跃数的极大数,给出了满足条件 $1 \le k \le n \le 10$ 的 (0,1)- 矩阵的最大跳跃数 M(n,k) 的一个表,并提出了几个猜想,其中包括猜想 $M(2k-2,k)=3k-4+\lfloor\frac{k-2}{2}\rfloor$. 本文证明了当 $k \ge 11$ 时,对每个 $A \in \Lambda(2k-2,k)$ 有 $b(A) \ge 4$. 还得到了该猜想的另一个反例.

关键词: (0,1)- 矩阵; 跳跃数.