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Abstract: A k-adjacent strong edge coloring of graph G(V, E) is defined as a proper k-
edge coloring f of graph G(V, E) such that f[u] # f[v] for every uv € F(G), where flu] =
{fuw)|uw € E(G)} and f(uw) denotes the color of uw, and the adjacent strong edge chro-
matic number is defined as x4.(G) = min{k| there is a k-adjacent strong edge coloring of
G}. In this paper, it has been proved that A < x4,(G) < A + 1 for outer plane graphs with
A(G) > 5, and Xas(G) = A + 1 if and only if there exist adjacent vertices with maximum
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1. Introduction

The coloring problem is one of the most important problems of graph theory. As an exten-
sion to classical coloring problem, the strong coloring problems, which were first presented by
M.Aigner, et al.02l and F.Harary!9, is of significance in both theory and practice. Although it
is more difficult than the classical coloring problem, some meaningful results about vertex dis-
tinguishing edge coloring were obtained recently. For example, M.Aigner, et al.l'2, O.Favaron,
et al.l% and A.C.Burns!”l studied the strong edge-coloring for general graphs and obtained some
results. C.Bazgan, et al.l4! studied the vertex-distinguishing proper coloring of graphs with large
minimum degree and [5] of general graphs. P.N.Balister, et al.[¥! studied the vertex distin-
guishing colorings of graphs with A(G) = 2. P.Wittmann!!? studied the vertex-distinguishing
edge-colorings of 2-regular graphs.

As an extension of vertex distinguishing edge coloring of graphs, Z.Zhang and L.Liul*3
have studied the adjacent vertex distinguishing edge coloring ( also says the adjacent strong
edge coloring) of graphs, presented the adjacent vertex distinguishing edge coloring conjecture
and finally obtained the adjacent vertex distinguishing edge chromatic number of some special
graphs. Furthermore, graphs such as fan graph, wheel graph, tree, Halin-graph, 1-tree, 1-outer
plane graphs, series-parallel graph, plane graph with high-degree and so on, have also been
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obtained in other papers. In this paper, we study the adjacent strong edge coloring of cuter
plane graphs.

Let G(V,E) be a graph with vertices set V(G) and edges set E(G). GIS] denotes the
subgraph of graph G(V, E) induced by set S C V(G) or § C E(G). N(v) denotes the adjacent
vertices set of vertex v € V(G), N{v] = N(v) |J{v}. Vi is the vertices set of graph G(V, E) with
k-degree, where k is a positive integer.

A Ek-proper edge coloring f is an assignment of k colors to the edges set E(G) such that
arbitrary adjacent edges are assigned with distinct colors.

Definition 1.1{79 A k-vertex distinguishing edge coloring, which is abbreviated to k-VDEC, is
a proper k-edge coloring f of graph G(V, E) such flu] # f[v] for every u,v € V(G), where f[u],
says meeting colors set of vertex u, is defined as a set {f(uw)|luw € E(G)} and f(uw) denotes
the color of uw. The vertex distinguishing edge chromatic number of graph G(V, E) is defined
as x,(G) = min{k| there is a k-VDEC of G}.

Definition 1.2113) A k-adjacent strong edge coloring, which is abbreviated to k-ASEC, is a
proper k-edge coloring f of graph G(V, E) such that f[u] # f[v] for every uv € E(G), where
f[u], says meeting colors set of vertex u, is defined as a set {f(uw)luw € E(G)} and f(uw)
denotes the color of edge uw. The the adjacent strong edge chromatic number of graph G(V, E)
is defined as x/,(G) = min{k| there is a k-ASEC of G}.

For outer plane graph G(V, E), we have proved A(G) < x,,(G) < A(G) + 1, and x5,(G) =
A(G) + 1 if and only if there are at least two adjacent vertices with maximum degree. In this
paper, we only prove the conclusion for A(G) > 5.

Definition 1.3 Let G(V, E) be a plane graph, if all vertices of G are on the boundary of one
face fo, then G is called outer plane graph, and the face fq is called the outer face (the others

interior face).
About the x4 ,(G), based on some results about some special graphs, we have proposed a

conjecture as follows:

Conjecture 1.103 If G(V,E) is a connected graph with [V(G)| > 3 and G # Cs(5-cycle).
Then
A(G) < X0e(G) < A(G) +2.

The other terminologies we refer to [14].

2. Main results

Lemma 2.105 Let G(V, E) be a 2-connected outer plane graph with A(G) > 4. Then at least
one of the following statements holds in graph G(V, E},

1. There exist two adjacent vertices u and v of degree 2.

2. There exist two vertices v and v of degree 2 adjacent to one vertex w of degree 4.
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3. There exists one vertex u of degree 2 adjacent to one vertex v of degree 3.

Lemma 2.2 Let G(V, E) be an outer plane graph with A(G) = 5. If the statement 1 of Lemma
2.1 does not hold in G(V, E), and all statements 2 and 3 of Lemma 2.1 which hold in graph
G(V, E) satisfy following two conditions:

(i) all such vertices u, v, w, wy, we of statement 2 of Lemma 2.1 satisfy that uw,, vws €
E(G), d(w1) = d(w2) = 5, where u, v and w € V(G) are the vertices in the statement 2 of
Lemma 2.1, and d(u) = d(v) = 2, d(w) = 4, wu,wv € E(G), {w1,ws} = N(w) \ {u,v};

(ii) all such vertices u, v and w of statement 3 of Lemma 2.1 satisfy that d(w) = 5,
wv € E(Q), d(v1) > 4, where u , v and w € V(G) are the vertices in the statement 3 of Lemma
2.1, d(u) = 2, d(v) = 3, wv € E(G), w # v is another adjacent vertex of u, and v; = N(v)\ {w,u}.
Then at least one of the following statements will hold in G(V, E):

1. There is at least a group of such vertices u, v, w, w; and wy, which satisfy the condition (i),
that there is a vertex w' € N(wq) \ {u, w} or w' € N(w.) \ {v,w} with degree d(w') < 4.

2. There is at least a group of such vertices u, v, w and v, which satisfy the condition (ii),
that there is a vertex w’ € N(w) \ {u,v} = {w1, w2, w3} with degree d(v') < 4.

3. If the statements 1 and 2 of Lemma 2.1 do not hold. Then there is at least a group of
such vertices u, v, w and vy satisfy the condition (ii) that d(vy) = 4 and there is a vertex
vg € N(v1) \ {v} with degree d(vg) = 2, or d(vi) = 5 and there exist z,y € N(vy) \ {v}
with degree d(z) = 2, d(y) = 3 and zy € E(G).

Proof Let G’ be a graph obtained from G(V, E) by deleting all such « and v which satisfy the
condition (i) of Lemma 2.1 and all such u which satisfy the condition (ii) of Lemma 2.1. Then
G’ is also an outer plane graph. If all statements 1,2 and 3 of Lemma 2.2 do not hold, then it
follows from the condition of Lemma 2.1 that the statements 1,2 and 3 of Lemma 2.1 do not
hold in graph G’. That is a contradiction. Thus, the lemma is proved. O
We quote Va = {v|v € V and d(v) = A(G)}, V4 = {v|v € V(Go) and dg, (v) = A(G)}.

Lemma 2.3 Let G(V, E) be a 2-connected outer plane graph with A(G) < 4 and |V (G)| > 3,

then
4<x0(G) <5

and x,,(G) =5 if and only if E(G[Va]) # 0.
Theorem 2.1 Let G(V, E) be a 2-connected outer plane graph with A(G) = 3, then x,,(G) = 4.

Lemma 2.4 Let G(V, E) be a 2-connected outer plane graph with A(G) = 5. If E(G[Va]) = 0,
then x.,(G) = A(G) =5.

Proof It is obvious that x/,(G) > 5. We now prove x,,(G) < 5 by using induction method on
p=|V(G)|. Let C ={1,2,3,4,5} be a set of five colors.
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If [V(G)| = 6, then G(V,E) is a fan graph Fg. By enumeration, the conclusion is true.
Assume that the conclusion is true when |V(G)| < p. We prove the conclusion is true for
|[V(G)| = p. In the following, we denote fo[z] = {fo(zy)|zy € E(Go), where f; is a 5-ASEC of
Go}.

Case 1. Assume that the statement 1 of Lemma 2.1 holds, and d(u) = d(v) = 2, uwv € E(G),
ug, Vo are the another adjacent vertex of u and v, respectively. We define a new graph as

Go = G — {u} + {uov}.

It is clear that Gy is also a 2-connected outer plane graph, where |V(Go)| = [V(G)| - 1 < p,
A(Go) = 5 and E(G[V{]) = 0. By the induction hypothesis, there exists a 5-ASEC fo of Go. we
now prove there exists a 5-ASEC f of G on the basis of fo. Let f(uuo) = f(uov).

Subcase 1.1. If d(uo) > 3 and d(vg) > 3, then let f(uv) € C \ {f(uuo), f(vvg)}. Obviously, f
is a 5-ASEC of G.

Subcase 1.2. If d(ug) = d(vo) = 2, then let f(uv) € C\ {foluo] U fo[vo]), where | fo[uo] U folvo]l
< 4, obviously, f is a 5-ASEC of G.

The cases of d(ug) = 2 and d(ve) > 3 or d(ug) > 3 and d(vp) = 2 can be proved with the
same method, and the proof is omitted.

Case 2. If statement 1 of Lemma 2.1 does not hold, but statement 2 of Lemma 2.1 holds.
Assume that d(u) = d(v) = 2, d(w) = 4, uw,vw € E(G), u; # w and v; # w are another one
adjacent vertex of u and v, respectively, and wy, w2 ¢ {u,v} another two adjacent vertices of w.
Then it follows from the assumption that d(u;) > 3, d(v;) > 3.

Subcase 2.1. If {u1,v1} ({w1, w2} = 0, we define a new graph as
Go = G — {u,v} + {wuq, wv1 }.

Then Gy is also a 2-connected outer plane graph, where |[V(Go)| = |[V(G)| — 2 < p, A(Go) =5
and E(G[V}]) = 0. By the hypothesis of induction, there exists a 5-ASEC fo of Go. We now
define a 5-ASEC f of G on the basis of fo. Firstly, let fuui) = fo(wu1), flvv1) = fo(wvy),
fluw) = fo(wv1), f(wv) = fo(wuy). It is obvious that f is a 5-ASEC of G.

Subcase 2.2. If uy ¢ {wi, w2} and v; € {wi, w2}, without lose of generality, assume that

v) = wo. We define a new graph as
Go=G — {u} + {'U,1’w}.

Then Gy is also a 2-connected outer plane graph, where [V(Go)| = |[V(G)| —1 < p, A(Go) =5
and E(G[V}]) = 0. By the hypothesis of induction, there exists a 5-ASEC fo of Go. We prove
there exists a 5-ASEC of G on the basis of fy. Firstly, let f(uu1) = fo(wus).

Subcase 2.2.1. If fo(wu1) # fo(vws), then let fluw) = fo(ww), f(wv) = fo(wu;). Obviously,
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fis a 5-ASEC of G.

Subcase 2.2.2. If folwui) = fo(vws), we firstly let f(vwsz) = folwws), flwws) = fo(wev) (ie.
to exchange the colors of vws and wws). Then let f(uw) = fo(wwsz). Obviously, f is a 5-ASEC
of G.

Subcase 2.3. If {ui,v1} = {wi,w.}, without lose of generality, we assume that u; = w,

V1 = Wa.

Subcase 2.3.1. If wiws ¢ E(G). The proof is easy for the case d(w;) = d(w;) = 3. Hence we
can assume that d(w;) > 4 and d(ws) > 4.

Subcase 2.3.1.1. If d(uwy) = 4 or d(w2) = 4, we define a new graph as
Go=G~ {u,'v} + {'U)]’LUQ}.

Then Gy is also a 2-connected outer plane graph, where [V(Go)| = |[V(G)| — 2 < p, A(Gp) =5
and E(G[V4]) = 8. By the hypothesis of induction, there exists a 5-ASEC fo of Gg. We now
prove there exists a 5-ASEC f of G on the basis of fy. Firstly, let f(wiu) = f(wav) = folwyws).

Then we have

fo(wrwz) € ((fo[wi] \ {fo(ww:}) U{f(wlu)}) ﬂ((fO[wﬂ \ {fo(wiwz)}) U{f(wﬂ})
fo(wwr) # fluwr) = flvws) = fo(wiwe), fo(wwe) # fluwr) = flvwa) = fo(wiws)

If fo(wwa) € (folwi] \ {fo(wiwa)}) U{f(wiu)}, then let

flwu) € C\ (folwn) \ {fo(wrw2)}) [ {F (wru)}.
If fo(wwsz) ¢ (folwi] \ {fo(wiw2)}) U{f(w1v)}, then let

flwu) € C\{f(wiw), folwws), fo(wws)}.

L If {f(uw), fo(ww1)} C (folwa] \ {fo(wrw2)}) U{f(vw2)}, then let

F(wv) € C\ (folws] \ {fo(wrwz)}) [ J{f (vw2)}.
2. If {f (vw), fo(ww1)} & (folwe] \ {fo(wrwz)}) U{f (vw2)}, then let

f(wv) € C\{f(uw), fo(wwr), fo(wws), f(vws)}.
The colors of other elements are the same as fy. Obviously, f is a 5-ASEC of G.

Subcase 2.3.1.2. If d(w1) = 5,d(w2) # 5 (the proof of d(w;) # 5 and d(wz) = 5 is same), we
define a new graph as
Go = G — {u, v} + {wyws}.

We can easily redefine a 5-ASEC of G with similar method as Subcase 2.3.1.1, and the proof is

omitted here.

© 1995-2005 Tsinghua Tongfang Optical Disc Co., Ltd. All rights reserved.
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Subcase 2.3.1.3. If d(w;) = d(wz) = 5, we define a new graph
Go =G — {u}.
Since E(G[Va]) = 0, hence we can let

fluw) € C\ folwi], f(uw) € C\ {f(uw1), folww:), fo(wws), fo(wv)}.
Obvicusly, f is a 5-ASEC of G.

Subcase 2.3.2. If wyw; € E(G), then we have d(w;) # 5 or d(ws) # 5, and d(w;) > 4,
d(wz) > 4.

Subcase 2.3.2.1. If d(w,) = 4, d(w2) = 4, we define a new graph as
Go =G — {u,w,v}.
It is easy to redefine a 5-ASEC f of G, and the proof is omitted.

Subcase 2.3.2.2. If d(w;) = 5, d(w2) = 4, assume that {y1} = N(wz) \ {w1,w,v}. We define a
new graph as

Go =G — {v}.
Then Gy is also a 2-connected outer plane graph, where [V(Go)| = |[V(G)| — 1 < p, A(Gp) =5
and FE(G[V4]) = 8. By the hypothesis of induction, there exists a 5-ASEC f; of Go. We now
prove there exists a 5-ASEC f of G on the basis of fp.

Subcase 2.3.2.2.1. If folws] C fofy1], then let f(vwz) € C\ folyi].

Subcase 2.3.2.2.1.1. If { fo(ww,), fo(wwa), fo(uw)} C { fo(wws), fo(wrws), fo(way1), f(vws)},
then let f(wv) € C\ fo[ws]. Obviously, f is a 5-ASEC of G.

Subcase 2.3.2.2.1.2. If { fo(ww, ), fo(wws), fo(uw)} & {fo(wwa), fo(wiwsz), fo(way), flvws)},
then let f(wv) € C\ ({folwwr), folwws), fo(uw)} U{f(vw2)}). Obviously, f is a 5-ASEC of G.

Subcase 2.3.2.3. Since E(G[Va]) = 0, hence the case of d(w;) = d(w2) = 5 will not occur.

Case 3. If both statements 1 and 2 of Lemma 2.1 do not hold, then 3 of Lemma 2.1 must
hold. Assume that d(u) = 2 and d(v) = 3, wv € E(G), wu € E(G) (w # v, and d(w) > 3),
and {vy,v2} = N(v) \ {u}. For this case, we can prove that there is a group of vertices u,v,w
such that wv € E(G), that is w € {v,,v2}. Otherwise we define a new graph G’ by deleting all
such vertex u from G and adding edge wv into G. Obviously, G’ is also an outer plane graph,
by the assumption of Case 3, all statements 1, 2 and 3 of Lemma 2.1 do not occur in G, that is
a contradiction.

Hence we assume that all such u,v,w satisfy wv € E(G), that is w € {v;,v,}. Without
lose of generality, we assume that w = vo, that is all such w, u and v satisfying wv € E(G). We

define a new graph as
Go =G — {u}
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If Va = |w|, then A(Gq) = 4, by Lemma 2.1, there exists a 5-ASEC fo of G. Otherwise Gy is a
2-connected outer plane graph, and where |V(Go)| = |[V(G)| —1 < p, A(Go) = 5, E(G[V4]) = 0.
By the hypothesis of induction, there exists a 5-ASEC fy of Gy. We now prove that there exists
a 5-ASEC f of G.

Subcase 3.1. When d(w) = 3, the proof is easy, and omitted here.

Subcase 3.2. If d(w) = 4, wi,ws ¢ {u,v} are another two adjacent vertices of w and satisfy
d(w,) = d(w;) = 4 (the proof for the case of d(w) # 4 or d(ws) # 4 is more easy).

Subcase 3.2.1. If fo[’w] C fo[’wl] nfo[’LUQ] and f()[w1] #* fo[’wz], then |f0[w1] ﬂfo[’lﬂg]l = 3. Let
Flww) € (C\ (folwi] () folwa])) \ {fo(vvr)},
Flwu) € (C\ (folwr] () folwa])) \ {f(wv)}.

Subcase 3.2.1.1. If d(v;) # 3, then let f(uwv) € C\ {f(wu), f(wv), fo(vv1)}. Obviously, f is a
5-ASEC of G.

Subcase 3.2.1.2. When d(v;) = 3.
L If {f(wv), fo(vv1)} € folvi], then let f(uv) € C\ {f(wu), f(wv), fo(vv1)}-
2. If {f(wv), fo(vv1)} C fo[wv1], then let

fluv) € C\ ({f(wu)} | folvn]), (because |{f(wu)}|folu]l < 4).
Obviously, f is a 5-ASEC of G.

Subcase 3.2.2. If folw] C folwi]N folwe] and folwi] = fo[ws], then let f(wu) € C\ fo[ws).
The colorings of uv is similar to Subcases 3.2.1.1 and 3.2.1.2.

Subcase 3.2.3. If folw] ¢ folwi] N fo[ws], without lose of generality, we assume that folw] ¢
folws] and folw] C folwi]. Letting f(wu) € C \ folw], and the colorings of uv is similar to
Subcases 3.2.1.1 and 3.2.1.2.

For the cases of fo[w] ¢ folw:] and folw] & fo[ws], the proof is easy, and omitted here.

Subcase 3.3. If all such w satisfy d(w) = 5, because E(G[VA]) = @, we can let

fwu) € C\ foluw]-

The edge v can be easily colored with the same method as Subcases 3.2.1.1 and 3.2.1.2. Thus,
the conclusion is true.
From what discussed above, we known that if E(G[Va]) =0, then x,,(G) = A(G) =5. O

Theorem 2.2 Let G be an outer plane graph with A(G) = 5. If E(G[Va]) # 0, then X\ (G) =
AG)+1=6.

© 1995-2005 Tsinghua Tongfang Optical Disc Co., Ltd. All rights reserved.
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Proof It is obvious that x.,(G) > A(G) + 1 = 6. We now prove x,,(G) < A(G) +1 =6 by
using induction on p = |V(G)|. By enumeration, the conclusion is true for the outer plane graph
with order |[V(G)| = 8 and E(G[Va]) # 0. The proofs except the Subcase 2.3.2.3 and Subcase 3.3
are the same as that of Theorem 2.1, hence we only prove the Subcase 2.3.2.3 and Subcase 3.3.
C ={1,2,3,4,5,6} denotes a set of six colors, and the same notations as the Subcases 2.3.2.3

and 3.3 of Theorem 2.1 are used.

Subcase 2.3.2.3. If d(w;) = d(wz) = 5, by the Lemma 2.2, we assume there is at least one
vertex in N(wy) \ {u, w} which the degree is less than 5. Without lose of generality, we assume
N(wy) \ {u,w} = {z,y, 2z} and d(z) < 4. We define a new graph

Go =G — {u}.

If [Val = 2 and w € Va, then A(Go) = 4, by Theorem 2.1, there exists a 6-ASEC fo of G.
Otherwise Gy is a 2-connected outer plane graph, |V(Go)] = |V(G)| — 1 < p, A(Gp) = 5 and
E(G[Va]) = 0. By the hypothesis of induction, there exists a 6-ASEC fy of Go. We define a
6-ASEC f of G on the basis of fy.

L 1If folz] = folu),
(a) If folw:) C foly) = fol2], then let
flwnu) € C\ folel, fluw) € C\{f(wr), fo(wrw), fo(wws), fo(wv)}.
Obviously, f is a 6-ASEC of G.
(b) If folwr] & folyl = folz], then let
f(wru) € C\ folwi], f(uw) € C\ {f(wrw), fo(wrw), fo(wws), fo(wv)}.
Obviously, f is a 6-ASEC of G.
2. 1f folz] # folyl,
(a) If folw1] € folyl N fol2], then [fo[2] N foly]| = 4. Let
flwwr) € (C\ (folz] N foly])) \ {fo(wws)},
Flwr) € (C\ (fol2] N folu)) \ {fo(ww)},

fluw) € C\ {f(wru), f(wiw), fo(wws)},
flww) € C\ {f(uw), f(wrw), f(wws), fo(vwa)}.

Obviously, f is a 6-ASEC of G.
(b) If folwi] Z foly] N folz], then fofw:] & fo[2] or folw1] & foly]-
L I folwi] € folz] and folw1] Z foly], then let

fluwy) € C\ folwi], f(wu) € C\ {f(wrw), fo(wrw), fo(wws), fo(wv)}.

Obviously, f is a 6-ASEC of G.

© 1995-2005 Tsinghua Tongfang Optical Disc Co., Ltd. All rights reserved.
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ii. If folwi] C fol2] and folwi] & foly] (the proof of folwn] & fo[z] and folwi] C foly]
is similar), then let

fluws) € C\ fol2], f(wu) € C\ {f(wiw), fo(wiw), folwwz), fo(wv)}.

Obviously, f is a 6-ASEC of G.

Subcase 3.3 If the statements 1 and 2 of Lemma 2.1 do not occur in G, we assume that all such
vertices w satisfies d(w) = 5. The other notations are the same as in Subcase 3.3 of Theorem
2.1.

Subcase 3.3.1. If there exists at least one vertex w’ in N(w) \ {u,v} = {w;,we,ws} such that
d(w’) < 4, without lose of generality, we assume that w’ = ws. We consider graph

Go =G — {u}.

If {Val = 2 and w € Vj, then A{Gp) = 4. By Theorem 2.1, there exists a 6-ASEC fy of G.
Otherwise Gy is a 2-connected outer plane graph, |V(Go)| = [V(G)| — 1 < p, A(Gp) = 5 and
E(G[Va]) = 0. By the hypothesis of induction, there exists a 6-ASEC fo of Go. We define a a
6-ASEC f of G on the basis of fj.

Subcase 3.3.1.1. When { fo(ww; ), fo(wws), fo(wws), fo(wv)} C folw1] N folws).

1. If folwi] # folwz], then let

Fwv) € (C\ (folwr] N folwz))) \ {fo(ver)}, f(wu) € (C\ (folwa] N folwz])) \ {fo(wv)},
f(uv) € C\ {f(wu), f(wv), fo(ver), fo(vrvt), folvrvs)}-

2. If folwi] = folws), then let
f(wu) € C\ folwr], f(wv) € C\ {f(wu), f(wv), fo(vvr), fo(viv), fo(vrvs)}-

Obviously, f is a 6-ASEC of G.

Subcase 3.3.1.2. When { fo(ww:), fo(ww2), fo(wws), fo(wv)} & folwi] () fo[ws).

1. If {fo(ww1 ), fo(wwz), fo(wws), folwv)} ¢ folwa], {folwwy), fo(wws), folwws), fo(wv)} ¢

folwz], the proof is easy.

2. If {fo(ww), fo(wws), fo(wws), fo(wv)} C folwn], {fo(wwr), folwws), folwws), fo(wv)} ¢
fo[ws), then let

f(wu) € C\ folwi], f(wv) € C\ {f(wu), f(wv), fo(vvr), fo(viv]), fo(vivh)}.

Obviously, f is a 6-ASEC of G.

© 1995-2005 Tsinghua Tongfang Optical Disc Co., Ltd. All rights reserved.
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Hence we can assume that all the adjacent vertices of w, except u and v, are degree 5.
Subcase 3.3.2. All the adjacent vertices of w, except u and v, are degree 5.

Subcase 3.3.2.1. If d(v;) = 3, it follows from above assumption that wv; ¢ E(G) (otherwise
there is an adjacent vertex of w which distinct to u,v and the degree is less than 5). Define a

graph as
Go = G — {u} + {wwn1 }

where |V(Go)| = |[V(G)| — 1 < p, A(Go) = 5. By the hypothesis of induction, there exists a 6-
ASEC fy of Go. We now prove that there exists a 6-ASEC f of G. Firstly, let f(wu) = fo(ww).
Assume that v] and v are another adjacent vertices of v;.

Subcase 3.8.2.1.1. If {fo(vv1), fo(v1v}), folrivd)} # folvi], {folver), fo(vivy), fo(vivh)}
# fo[vh], then let f(uv) € C'\ ({F(wu), fo(wv)} U folv1]). Obviously. f is a 6-ASEC of G.

Subcase 3.3.2.1.2. The other subcases can be proved as follows
1. if {fo(v1v}), fo(viv)} & folil, {fo(v191), fo(vivh)} & folvyl, easily to prove.

2. if {fo(v1v1), fo(vivd)} ¢ folvil, {fo(vavy), fo(vivg)} C folvg), then let f(vwi) € C'\
(fO[vé] U{fO(wUI)}a f(uv) eC \ {f(wu),fo(wv), f(UUl), fO(vl'v:IlLfO(’Ulvé)}' ObViouSIY7 f
is a 6-ASEC of G;

3. if {fo(v1v}), fo(v1vh)} C fo[vi], {fo(v191), fo(viva)} C folvs), then let

f(vv1) € C\ (fo[vi] U folvg] U{fo(wr1)}), wherel(folvi] U folva]| < 4
fluw) € C\{f(wu), fo(wv), f(vv1), fo(vrv1), fo(vrva)}-

Obviously, f is a 6-ASEC of G.

Subcase 3.3.2.2. If d(v1) = 4, the edges of G can be colored as follows.

Subcase 3.3.2.2.1. If wy; € E(G), the proof is similar as that of Subcase 3.3.1 (i.e. the case
of there are at most two adjacent vertices of degree 5 of w). Hence we can assume that all such
w, u, v and v; satisfy wu; ¢ E(G).

Subcase 3.3.2.2.2. If all such w, u, v and v; satisfy wv; ¢ E(G), and {wy, w2, w3} = N(w) \
{u,v}, it follows from the Lemma 2.1, the statements 2 and 3 of Lemma 2.1 must occur.

Subcase 3.3.2.2.2.1. If the statement 2 of Lemma 2.1 occurs, the proof is similar as that of
Subcase 3.3.1.

Subcase 3.3.2.2.2.2. If statement 2 of Lemma 2.1 does not occurs, and statement 2 and 3 of
Lemma 2.1 occur. We assume that {z,y, 2} = N(v1) \ {v}, and d(z) = 2. We define a graph as

Go = G — {u} + {wnr }.
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Then Gy is also an outer plane graph, where |V(Go)| = |[V(G)| -1 < p, A(Go) = 5 and
E(G[V4]) # 0. By the hypothesis of induction, there exists a 6-ASEC fo of Gp. We now prove
there exists a 6-ASEC of G. Let f(wu) = fo(wv:). The other elements can be colored with
similar method as Subcase 3.3.1.

Subcase 3.3.2.3. If statement 3 of Lemma 2.1 occurs and d(v;) = 5. We assume that z #
v1,y # v are two adjacent vertices of v; and d(z) = 2,d(y) = 3,zy € E(G). We consider graph

Go = G —~ {z},

where the definition of z,y and z is the same as that in Subcase 3.3.2.2.2.2, the proof is similar

to that of Subcase 3.3.1 (i.e. there exists at most two adjacent vertices of w are degree 5).
From what stated above, the proof is completed. O
Using the same method, we can prove the following theorems.

Theorem 2.3 For 2-connected outer plane graph with A(G) > 6

v [ AG),  EG[Val)=0
Xas(G) —{ A(G) +1, E(G{Vi]) #0

2
ki

Combining Lemmas 2.3 and 2.4, and Theorems 2.1, 2.2 and 2.3, we can prove the following

theorem.
Theorem 2.4 For 2-connected outer plane graph G(V, E) (G # Cs),

) [ A@©), E(G[Va]) =0,
Xas(G) = { AG) +1, EEG%ViB # 0.
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RAENDT 5 B9 FEERISRIORE

;"U%I@ 17 gﬁl‘gﬁ 1) E}%ﬁ“ 2
(1. ZHZSEREEERER, HM ZHM 730070; 2. PEBHERVABEFRLT, LK 100080 )

WE: B G(V,E) iy— k- IEW PRI k- 43RG E Y HOYXER w e B(G) & flu] #
flo), HF flu] = {f(ww)luw € E(G)}, f(uw) FRmill uw BRE. FHH x;,(G) = min{k| FFE
k- B G HMiRASE ) WA G (ERIAREA AR, ASGER T XMBEREAR/NF 5 89|
EH A < x6e(G) S A+ 1, H x5,(G) = A+ 1 BEAUHTFEATHIBAE .

XEE: SMTEEL SAMRhRe; SRLRe.
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