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Abstract: In this paper, we will study the adjacent strong edge coloring of series-parallel
graphs, and prove that series-parallel graphs of A(G) = 3 and 4 satisfy the conjecture of
adjacent strong edge coloring using the double inductions and the method of exchanging
colors from the aspect of configuration property. For series-parallel graphs of A(G) > 5,
AG)Y < Xas(G) < A(G) + 1. Moreover, Xas{G) = A(G) + 1 if and only if it has two adjacent
vertices of maximum degree, where A(G) and Xas(G) denote the maximum degree and the
adjacent strong edge chromatic number of graph G respectively.
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1. Introduction

The strong edge coloring of graphs comes from computer science and has a very strong
background. For any graph, it is very difficult to determine its strong edge chromatic number.
For graph G(V, E), its k—edge coloring f is a k-partition E = E; UE;U---U Ey, of edge set E of
G, such that any two edges of E;(i = 1,2, -, k) are non-adjacent. For a k—edge coloring f of G,
if for any u,v € V(G), flu) # fiv], where flu] = {f(vw)luw € E(G)}, then we call f a strong
edge coloring of G(V, E), denoted by k-SEC and x,(G) = min{k|there exists a k — SEC of G}
strong edge chromatic number of graph G. For a k-edge coloring f of graph G, if for any
wv € E(G), flu] # flv], where flu] = {f(uvw)luw € E(G)}, then we call f an adjacent strong edge
coloring of G(V, E), denoted by k-ASEC and X,,(G) = min{k|there exists a k — ASEC of G}
adjacent strong edge chromatic number of graph G. LIU Lin-zhong, ZHANG Zhong-fu, WANG
Jian-fang determined the adjacent strong edge chromatic number of paths, cycles, complete
graphs, completly muti-partite graphs, wheels, outerplanar graphs and Halin graphs in [1] and
put forward the conjecture of adjacent strong edge coloring according to their results: for any
2-connected graph G of [V(G)] > 3, G # Cs, A(G) < X,.(G) < A(G) + 2. MA De-shan, LIU
Lin-zhong, ZHANG Zhong-fu studied the adjacent strong edge coloring of 1-tree graphs in [2].
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A graph is called series-parallel graph (in short SP graph) if it contains no subgraph home-
omorphic to K4. Duffin® showed that a connected SP graph can be obtained from a K3 by
repeatly applying the following operations: duplication or replacing an edge by a path of length
2. Diracl proved that the chromatic number of any SP graph is at most three. Seymourl®!
proved that the edge chromatic number of any SP multi-graph G is max{A(G),n'(G)}, where
7'(G) = max{| E(G[V'))||k: V! CV(G), |V’ |=2k+1,k > 1}. WU Jian-liang etc. studied some
parameters of SP graph!®l.

Unless stated otherwise, all the graphs dealt in this paper are finite, undirected, simple and
loopless. Let G = (V, E) be a graph, where V = V(G) is its vertices set and E = E(G) is its
edges set. For a graph G, we denote the maximum degree, the minimum degree, the degree of
vertex v and the set of vertices adjacent to v by A(G), §(G), dg(v) and Ng(v) respectively, in
short A, &, d(v) and N(v) if no confusion. The terms and notations undefined in this paper can
be found in [7].

In order to prove these main results, we need the following lemmas:

Lemma 1 Let G be an SP graph of §(G) > 2. Then one of the following conditions holds:

(i) G has an edge uv such that d(u) + d(v) = 4.

(ii) G has an edge uv such that d(u) + d(v) = 5.

(iii) G has a 4-vertex w adjacent to two non-adjacent 2-vertices u and v such that N(w)\{u, v} =
(N(w) UN (v))\{w}-

(iv) G has a 4-vertexw adjacent to two non-adjacent 2-vertices u and v such that N (u)\{w} =
N(v)\{w} C N(w).

(v) G has three pairwise non-adjacent 2-vertices u,v and w, such that N(u) = N(v) and
N(u) N N(w) # 0.

Lemma 2 Let G be a 2-connected SP graph of A = 3. If G does not contain (i) and (v)
of Lemma 1, then it must do edge e = wv, such that d(u) + d(v) = 5. Let N(u) = {v,z},
N(v) = {u,y1,y2}. Then z € {y1,y2}.

Proof The notations used here are the same as the ones of Lemma 1. Since G does not contain
(i) and (v) of Lemma 1, so it must do a group vertices satisfying (ii) of Lemma 1. Now we suppose
that this group vertices does not satisfy the conclusion of Lemma 2. Let G* = G ~ {u} +vz. It
is obvious that G* is still a 2-connected SP graph. According to the constructional process of
G*, we know that G* does not contain a group vertices satisfying (i), (ii) and (v) of Lemma 1.

A contradiction! This completes the proof.

Lemma 3 Let G be a 2-connected SP graph of A = 4,5. If G does not contain (i), (iii) and
(iv) of Lemma 1, then one of the following conditions holds:

(a) There exists an edge e = wv, such that d(u) +d(v) = 5. Let N(u) = {v,z}, N(v) =
{u,y1,92}. Then z € {y1,y2}

(b) There exist three pairwise non-adjacent 2-vertices u,v,w, such that N(u) = N(v) =
{z,y} and N(u) N N(w) # 0, zy € E(G).
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The proof of Lemma 3 is similar to the one of Lemma 2.

Lemma 4! For cycle Cy,
, 3, n=0(mod3),
Xas(Cn) = ¢ 4, n#0(mod3), n#S5,
5, n=2>.

Lemma 52 Let G be a 1-tree graph of maximum degree A > 4 and v € V(G), T = G — {v}

be a tree. Then
A, E(G[VaA]) =10,

Xaa(G) ={ A'+1, E(G[Va)) #0.

Lemma 6 Let1,2,3,---,n ben digits. Now we combine n—2 digits of these n digits arbitrarily,
then the number combined may classify into at most two classes: each class contains at least one

same digit.

Proof We see the number combined by n — 2 digits as m x n matrix, where 1 < m < n. The
ith line of the matrix consists of digit ¢ and n — 3 digits which are behind digit ¢ orderly, and

other bits are 0. Its form is as follows:

[1 2 3 4 n—2 0 0
0 2 3 4 e ‘e . e - n_2 n—1 0
0 0 3 4 5 -ev ... A
1 0 0 4 5 - ... eei
1 2 4 .- . n-—-5 0 0 n—-—2 n—1 n
1 2 3 4 5 -~ -+ n-—4 0 0 n—1 n

|1 2 3 4 5 .- . v n~—3 0 0 n |

Obviously, this matrix contains digit n — 2 in the lines 1,2,-.-,n — 2 and digit 1 in the lines

n— 1,n. Thus we may classify the number combined arbitrarily into two classes: class 1 contains
digit 1 and class 2 contains digit n — 2.

Now we give a lemma which is the key section in the proof of theorems. In order to simplify
the proof of theorems, we proof it as a special lemma.

Lemma 7 Letv € V(G), G* = G + {vz,vy}, z,y € V(G). If G has an adjacent strong edge
coloring o : E(G) — C, where when E(G[Va(g)]) = 0, |C| = A(G), when E(G[Va(g))) # 0,
|C| = A(G) + 1, then G* has an adjacent strong edge coloring o* : E(G*) — C*, where when
B(G*[Van)) = 0, [C*] = A(G¥), when B(G*[Vam)) # 0, IC*] = A(G) +1.

Proof We keep the coloring o of G unchanged and extend o to the coloring o* of G*.

Case 1 d(v) = A(G) or A(G) — 1. Then v is the only vertex of maximum degree in G*. Let
o*(vz) € C*\o{v], o*(vy) € C*\o[v]\o*(vz).

Case 2 1 < d(v) < A(G) — 2. Let Ng(v) = {v1,v2,*-,Um},m = dg(v), and let the degree
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of vi;,v4,,- -+, v;, which are the adjacent vertices of v be equal to the degree of v. Then o[v]
must be the subset of ofv;,],olvy,], -, 0(vs,] (Otherwise, if for the vertex v;,, ov] ¢ ofv,].
Namely, there exists at least one color a ¢ o[v;,] in o[v]. Thus however we color the edge vz, vy,
if only it satisfies the proper edge coloring, then we must have o*[v] # o*[v;,]). By Lemma
6, we may classify v;,,v;,, -, v;, into at most two classes: each class lacks the same color.
Without loss of generality, we suppose the absent colors are oy, a2 respectively. Thus we let

o*(vz) = a1,0*(vy) = as.
2. Main results and proofs

The following graphs G are all 2-connected.
Theorem 1 Let G be an SP graph of order p and A(G) = A =p—1. Then na < 2.

Proof Suppose, to the contrary, that na > 3. Without loss of generality, we assume that
d(u) = d(v) = d(w) = A = p — 1, thus u,v,w form a triangle. Vz € V(G) and z # u,v,w, then
uz,vz,wz € E(G). Thus Gl{u,v,w,z}] = K4, a contradiction with the definition of SP graph.
Therefore na < 2.

Theorem 2 Suppose G is an SP graph of order p, and A(G) = A. Then |E(G)| > 2A — 1.

Proof Let v be a vertex of maximum degree in G. Since G is 2-connected, so G — {v} is
connected. Therefore |[E(G*)| > |V(G*)| — 1. Again since G is a simple graph, A < p—1, so
V(G| =|V(G)]—1=p—-12>A. Thus |[E(G)| = |[E(G*)| + A= [V(G*)| -1+ A >2A -1

Theorem 3 Let G be an SP graph of order p, A(G) = A(> 4), |E(G)| =2A — 1. Then

. A, E(G[Va]) =0,
Xas(G) = { A+1, E(G‘[Vi]) # 0.

Proof Let v be a vertex of maximum degree in G. Since G is 2-connected, so G — {v} is
connected. Therefore |E(G —v)| = |[E(G)]— A=A —-12> |V(G —v)] -1 =p—2. Namely,
A > p—1. Again since A <p—1, so A =p— 1. By Theorem 1, there are two possibilities:

(1) na = 1. Since G is 2—connected and E(G) = 2A — 1, s0 G* = G ~ v is a connected
graph of order p — 1 and [E(G*)| = A — 1 = p — 2. By the properties of trees, we know that G*
is a tree. Again by the construct of G*, G is a 1-tree graph. By Lemma 5, X;S(G) = A.

(2) na = 2. we suppose, without loss of generality, that d(u) = d(v) = A, N(u) N N(v) =
{v1,v2,...,vp—2}. Then uv € E(G). Again by the definition of SP graph, we obtain that
vv; € BE(G),4,5=1,2,...,p—2and i # j. Now we give a (A + 1)-adjacent strong edge coloring

7 of G as follows:
m(vy;) =4,i=1,2,...,p—2,
mluv)) =i+ 1,i=1,2,...,p— 2,
m(uv) = p.
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Therefore, x,,(G) < A+1.
R ’ A, E G V = 0,
Obviously, For any graph G, x,,(G) > { A+l EEG}ViB 20,

Therefore, when na = 2, x,,(G) = A+ 1.
Theorem 4 Let G be an SP graph of A = 3. Then x,,(G) < 5.

Proof We will prove the conclusion by induction on the order p(G) of G. Let C = {1,2,3,4,5}.
When p(G) = 4, then G is Fy. It is obvious that the conclusion is true. Suppose that the
conclusion is true for the order p(G) < p(p > 5). For SP graph of order p, by Lemma 2, there
are three possibilities:

Case 1 G has an edge uv such that d(u) + d(v) = 4. Let N(u) = {v,z}, N(v) = {u,y}. Then
T # y(Otherwise z = y is a cut-vertex).

Let G* = G — {u} + vz. By the induction, we know that G* has a 5-adjacent strong edge
coloring o* : E(G*) — C. Now we extend ¢* to a 5-adjacent strong edge coloring o of G. Let

o{uz) = o*(vz). For the coloring of edge uv, there are three possibilities:
Case 1.1 Both z and y are 2-vertices. Then let o(uv) = C\o*[z]\o*[y].

Case 1.2 Either z or y is a 2-vertex. We suppose, without loss of generality, that z is a 2-vertex.
Then let o(uv) € C\o*[z]\c*(vy).

Case 1.3 Neither z nor y is a 2-vertex. Then let o{uv) € C\o*(uz)\o*(vy).

The coloring of other edges is the same to ¢*.

Case 2 G has an edge uv such that d(u) + d(v) = 5.

By Lemma 2, we know that N(u) N N(v) # 0. Let N(u) = {v,z}, N(v) = {u,z,y1}. Since
G is a 2-connected SP graph, so z must be a 3-vertex. Let N(z) = {u,v,z1}.

Let G* = G — {u}. Obviously, G* is a 2-connected SP graph of order less than p. If
A(G*) = 2, then by Lemma 4, G* has a 5-adjacent strong edge coloring o* : E(G*) — C. If
A(G*) = 3, by the induction, G* has a 5-adjacent strong edge coloring ¢* : E(G*) — C. Now
we extend o* to a 5-adjacent strong edge coloring o of G.

Case 2.1 Neither x; nor y; is a 3-vertex. Then let o(uz) € C\o*|z],
o(uv) = C\o*(zz1)\o*(zv)\o* (vy1)\o (uz).

Case 2.2 Both z; and y; are 3-vertices. If o*[z] C o*[z1], then let o(uz) € C\o*[z1]. If
o*[z] ¢ o*[z1], then let o(uz) € C\o*[z]. If 0*[v] C o*[y1] and o(uz) € o*[y1], then let o(uv) =
C\o*[y1]\o*(zz1). If o*[v] C o*[11], but o(uz) & o*[y1], then let o(uv) = C\o*[y1]\o(ux). If
o*[v] ¢ 0*[y1], then let o(uv) = C\o*[v]\o(uz)\o*(xz1).

Case 2.3 Either z; or y; is a 3-vertex. Let z; be a 3-vertex. Similarly to Case 2.2, we first
color edge uz, then let o(uv) = C\o*(zz1)\o*(zv)\o* (vy1)\o(uz).

The coloring of other edges is the same to o*.
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Case 3 G has three pairwise non-adjacent 2-vertices u,v and w, such that N(u) = N(v) and
N(u) N N(w) # 0. Since G is a 2-connected SP graph, so zy & E(G) and y is a 3-vertex.

Let G* = G — {u} + zy. By the induction, G* has a 5-adjacent strong edge coloring o* :
E(G) — C. Now we extend o* to a 5-adjacent strong edge coloring o of G. Let o(uy) = o*(zy),
o(uz) = C\o*[z]. The coloring of other edges is the same to o*.

From the above described, we obtain the following: for any SP graph G of A = 3,
Xas(G) <5. O

Theorem 5 Let G be an SP graph of A = 4. Then x,,(G) < 5.

Proof We prove the conclusion by induction on the order p(G) of G. Let C = {1,2,3,4,5}.
When p(G) = 5, by enumerating all the coloring of G, it is obvious that the conclusion is true.
Suppose the conclusion is true for the order p(G) < p(p > 6). For any SP graph of order p, by
Lemma 3, there are five possibilities:

Case 1 G has an edge uv such that d(u) + d(v) = 4. Let N(u) = {v,z}, N(v) = {u,y}. Then
z # y(Otherwise z = y is a cut-vertex). The proof is the same to Case 1 of Theorem 4.

Case 2 @ has an edge wv such that d(u) + d(v) = 5. By Lemma 3, N(u) N N(v) # 8. Let
N(u) = {v,z}, N(w) = {u,z,y1}. Let G* = G — {u}. Obviously, G* is a 2-connected SP graph
of order less than p. If A(G*) = 3, then by Theorem 4, G* has a 5-adjacent strong edge coloring
o* : BE(G*) — C. If A(G*) = 4, by the induction, G* has a 5-adjacent strong edge coloring
o* : E(G*) — C. Now we extend o* to a 5-adjacent strong edge coloring o of G.

Case 2.1 Let z be a 3-vertex and N(z) = {u,v,z1}. If o(vz) € o*[z1], then let o(uz) €
C\o*[z1], otherwise let o(uz) € C\o*[z]. If y; is a 3-vertex and o*(vz) € o*[y1], o(uz) € o*[y1],
let o(uv) = C\o*[y1]\o(zz1). If ¥ is a 3-vertex, o*(vz) € o*[y1], but o(uz) & 0*[y1], then let
a(uv) = C\o*{y1]\o(uz), otherwise let o(uv) = C\o*(zz1)\o* (vz)\o* (vyr)\o (uz).

Case 2.2 Let z be a 4-vertex and N(z) = {u,v,z1,22}. If neither z1 nor z, is a 4-vertex,
then let o(uz) = C\o*[z]. If either z;, or z is a 4-vertex, we suppose, without loss of gen-
erality, that z; is a 4-vertex. If {oc*(vz),0*(zz2)} C o*[z1), then let o(uz) = C\o*[z1]. If
{o*(vz),0*(z22)} & o*[21], then let o(uz) € C\o*[x]. If both z; and z2 are 4-vertices, let
C..(x) = C\o*(zx1)\o*(zx2), Cpr (z1) = C\o*[21], Cpu (23) = C\0*[23]. Thus C,.(z1),C.u(z2) €
C. . (x)(otherwise however we color the edge uz, if only it is the proper edge coloring, then it also
satisfies the definition of adjacent strong edge coloring). Let o(uz) € C, . (2)\{C.- (1), Ch- (z2)}.
Relet o(vz) = C\o*(zz1)\o* (zz2)\o* (vy1)\o(uz). For the coloring of edge uwv, it is similar to
Case 2.1.

The coloring of other edges is the same to o*.

Case 3 G has a 4-vertex w adjacent to two non-adjacent 2-vertices u and v such that N(w)\{u,v} =

(N(w) UN@)\{w} = {z,9}.



281 WANG Shu-dong, et al: Adjacent strong edge chromatic number of series-parallel graphs 273

Case 3.1 If zy € E(G), then z,y must be 4-vertices. Let N(z) = {u,w,y,z1}, N(y) =
{u,w,y,11}. Let G* = G — {u}. By the induction, G* has a 5-adjacent strong edge coloring
a* : E(G*) — C. Now we extend o* to a 5-adjacent strong edge coloring o of G.

Case 3.1.1 Both z; and y; are 4-vertices. If o*[z] C o*[z1], then let o(uz) = C\o*[z;]. If

o*[z] ¢ o*[z1], then let o(uz) € C\o*[z]. If {o*[y]\c*(vy)} C o*[y1], then let o(vy) = C\o*[y1]-

If {o*[y]\o*(vy)} & o*[y1], then let o(vy) € C\o*(zy)\o*(wy)\o*(yy1)- First we recolor edge

wy: if {o(vy), c*(yn)} C {o(uz), 0*(zz1),0*(wz)}, thenlet o(wy) = C\o*(zz1)\o*(zy)\o* (wz)\o (uz).
If {o(vy), o™ (yy1)} £ {o(ug),0*(z21),0*(wz)}, then let o(wy) = C\o* (yy1)\o* (zy)\o (vy)\o* (wz).
Then we color edge uw: if o(wy) € {o(uz), oc*(zz1)}, thenlet o(uw) = C\o*(zz1)\o*(zy)\o(uz)\o* (wz).
Ifo(wy) & {o(uz),o*(zz1)}, then let o(uw) € C\o(uz)\o*(wz)\o(wy). Then recolor edge vw: if
{o(uw),o*(wz)} C {o(vy),o*(yy1), 0" (zy)}, then let o(vw) = C\o*(yy1)\o* (zy)\o(wy)\o (vy).

If {o(uw), o*(wz)} & {o(vy),o* (yy1), " (zy)}, then let o (vw) = C\o(uw)\o* (wz)\o (wy)\o (vy).

The coloring of other edges is the same to o*.

Case 3.1.2 Either z; or y; is not a 4-vertex. The proof is easy and we omit it.

Case 3.2 zy &€ E(G). Let G* = G — {u,v} + zy. If A(G*) = 3, by Theorem 4, G* has
a 5-adjacent strong edge coloring o* : E(G) — C. If A(G*) = 4, then by induction, G*
has a 5-adjacent strong edge coloring ¢* : E(G) — C. Now we extend ¢* to a 5-adjacent
strong edge coloring o of G. There are two possibilities: let o(uz) = o(vy) = o*(zy). If
o*[w] C o*[z], then let o(uw) € C\o*[z]. If o*[w] ¢ o*[z], then let o(uw) € C\o*[w]\o(uz).
If {o*w],o(uw)} C o*[y], then let o(vw) = C\o*[y]. I {o*[w],o(vw)} ¢ o*[y], then let
o(vw) = C\o*(wz)\o* (wy)\o(uw)\o(vy). The coloring of other edges is the same to o*.

Case 4 G has a 4-vertex w adjacent to two non-adjacent 2-vertices u and v such that N(u)\{w} =
N@w)\{w} ¢ N(w). Let N(u) = N(v) = {z,w}, N(w) = {z,u,v,w1}. Then = must be a 4-
vertex. Let N(z) = {u,v,w,z}.

Let G* = G — {u}. If A(G*) = 3, by Theorem 4, G* has a 5-adjacent strong edge coloring
o* : E(G) — C. If A(G*) = 4, by the induction, G* has a 5-adjacent strong edge coloring
o* : E(G) — C. Now we extend ¢* to a 5-adjacent strong edge coloring o of G. If o*[z] C ¢*[z1],
then let o(uz) € C\o*[z,]. If 0*[z] £ o*[z1], then let o(uz) € C\o*[z]. If 0*[w] C o*[w1], then
let @ = C\o*[w1]. If & = o(uz), then we first exchange the two colors of edge vz and uz, then
let o(uw) = a. If o*w] ¢ o*[w1], then let o(uw) = C\o*(vw)\o*(wwy )\o*(wz)\o(uz). The
coloring of other edges is the same to o*.

Case 5 G has three pairwise non-adjacent 2-vertices u,v and w, such that N(u) = N(v) and
N(u) N N(w) # 0. By Lemma 3, we know that zy € E(G). Again since G is a 2-connected SP
graph, so y is a 4-vertex. Let N(y) = {u,v,z, 1 }. Let G* = G~ {u}. If A(G*) = 3, by Theorem
4, G* has a 5-adjacent strong edge coloring o* : E(G) — C. If A(G*) = 4, then by the induction,
G* has a 5-adjacent strong edge coloring o* : E(G) — C. Now we extend o* to a 5-adjacent
strong edge coloring o of G. If o*[y] C o*[v1], then let o(uy) = C\o*[y1]. U o*y] & o*[w1],
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then let o(uy) € C\o*[y]. If o*[z] C {o*[y},o(uy)}, then let o(uz) = C\o*[y]\o(uy). If
o*[z] & {o*[y],o(uy)}, then let o(uz) € C\o*[z]\o(uy). The coloring of other edges is the same
to o*.

From the above described, we obtain the following: for any SP graph G of A = 4, x;s (G) <
5.0

Theorem 6 Let G be an SP graph of A = 5. Then

. 5, E(G[Va]) =0,
Xas(G) = { 6, E%G{Vﬂ; #0.

Proof We prove the conclusion by induction on the order p{(G) of G. We suppose that
E(G[Va]) = 0, C = {1,2,3,4,5}. When p(G) = 6, G is as Graph 1, by enumerating all the
coloring of G, it is obvious that the conclusion is true. Suppose the conclusion is true for the
order p(G) < p(p > 7). For any SP graph G of order p, by Lemma 3, there are five possibilities.

Case 1 G has an edge uv such that d(u) + d(v) = 4. Let N(u) = {v,z}, N(v) = {u,y}. Then
z # y (otherwise = y is a cut-vertex). The proof is the same to Case 1 of Theorem 4.

Case 2 G has an edge uv such that d(u) + d(v) = 5. By Lemma 3, N(u) N N(v) # 0. Let
N(u) = {v,z}, Nv) = {u,z,y1}. Let G* = G ~ {u}. Obviously, G* is a 2-connected SP graph
of order less than p. If A(G*) = 4, then by Theorem 5, G* has a 5-adjacent strong edge coloring
o* : B(G*) — C. If A(G*) = 5, by the induction, G* has a 5-adjacent strong edge coloring
o* : E(G*) — C. Now we extend o* to a 5-adjacent strong edge coloring ¢ of G:

Case 2.1 z is a 5-vertex. Let o(uz) = C\o*{z]. If y; is a 3-vertex and o*(vz) € o*[y1], then
let o(uv) € C\o*[y1]\o(uz). Otherwise let o(uv) € C\o*[v]\o(uz).

Case 2.2 z is not a 5-vertex. The proof is the same to the one of Case 2 of Theorem 5.

Case 3 G has a 4-vertex w adjacent to two non-adjacent 2-vertices u and v such that N(w)\{x,v} =
(N(w) UN(@)\{w} = {z,y}.

Case 3.1 zy € E(G). Let G* = G — {u}. Obviously, G* is a 2-connected SP graph of or-
der less than p. If A(G*) = 4, then by Theorem 5, G* has a 5-adjacent strong edge coloring
o* : E(G*) — C. If A(G*) = 5, by the induction, G* has a 5-adjacent strong edge coloring
o* : B(G*) — C. Now we extend o* to a 5-adjacent strong edge coloring ¢ of G.

If neither z nor y is a 5-vertex, the proof is the similar to the one of Case 3.1 of Theorem 5.

If either x or y is a 5-vertex, without loss of generality, we suppose that z is a 5-vertex. Let
o(uz) = C\o*[z]. If y is a 4-vertex and o*[w] ¢ o*[y], then let o(uw) = C\o*[w]\o(uz). If y
is a 4-vertex, o*[w] C o*[y] and o(uz) € o*[y], then let o(uw) = C\o*[y]. If y is a 4-vertex,
o*[w] C *[y] and o(uzx) & o*[y], then we first exchange the two colors of edge wz and ux. Since
the color of edge uw is restricted by four colors colored edges wz, wv, wy, uz, so we may color
edge uw according to the proper adjacent strong edge coloring. The coloring of other edges is
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the same to o*.

Case 3.2 zy ¢ E(G). Let G* = G — {u}. Obviously, G* is a 2-connected SP graph of or-
der less than p. If A(G*) = 4, then by Theorem 5, G* has a 5-adjacent strong edge coloring
o* : E(G*) — C. If A(G*) = 5, by the induction, G* has a 5-adjacent strong edge coloring
o* : E(G*) — C. Now we extend o* to a 5-adjacent strong edge coloring o of G. If both = and
y are 5-vertices. Let o(uz) = C\o*[z], o(uw) = C\o*[w]\o(ux). The coloring of other edges is
the same to o*. If at least one of z,y is not a 5-vertex, the proof is the similar to Case 3.2 of

Theorem 5.

Case 4 G has a 4-vertex w adjacent to two non-adjacent 2-vertices u and v such that N(u)\{w} =
N@w)\{w} C N(w).

Let N(u) = N((v) = {z,w}, N(w) = {z,u,v,w1}. Let G* = G — {u}. If A(G*) =4, by
Theorem 5, G* has a 5-adjacent strong edge coloring ¢* : E(G*) — C. If A(G*) = 5, by the
induction, G* has a 5-adjacent strong edge coloring o* : E(G*) — C. Now we extend o* to a
5-adjacent strong edge coloring o of G. If x is a 4-vertex, the proof is the same to Case 4 of
Theorem 5. If z is a 5-vertex, let N(z) = {u,v,w, z1, 22}, then neither z; nor z; is a 5-vertex.
Let o(uz) = C\o*[z]. If w; is not a 4-vertex or w; is a 4-vertex and o*[w] ¢ o*[w1], then let
o(uw) = C\o*[w]\o(uz). If w; is a 4-vertex and o*{w] C o*[wn], then let @ = C\o*[uy]. If
a # o(uz), then let o(uw) = a. If @ = o(ux), then we first exchange two colors of edge vx and
uz, then let o(uw) = a. The coloring of other edges is the same to o*.

Case 5 G has three pairwise non-adjacent 2-vertices u,v and w, such that N(u) = N(v) and
N(u) N N(w) # 0.

Case 5.1 zy ¢ E(G). Let G* = G — {u} + zy. By the induction, G* has a 5-adjacent strong
edge coloring ¢* : E(G*) — C. Now we extend o* to a 5-adjacent strong edge coloring ¢ of G.
Let o(uy) = o*(zy), o(uz) € C\o*[z].

Case 5.2 zy € E(G). Let G* = G — {u}. If A(G*) = 4, by Theorem 5, G* has a 5-adjacent
strong edge coloring o* : E(G*) — C. If A(G*) = 5, by the induction, G* has a 5-adjacent
strong edge coloring ¢* : E(G*) — C. Now we extend ¢* to a 5-adjacent strong edge coloring
o of G. If y is a 4-vertex, the proof is the same to Case 5 of Theorem 5. If y is a 5-vertex, let
o(uy) = C\o*[y], o(uz) = C\o*[z]\o(uy). The coloring of other edges is the same to o*.

For the case of E(G[VA]) # @, the proof is similar to the one of Theorem 7.

Theorem 7 Let G be an SP graph of A > 5. Then

, [ A6, E(G[V,
Xas(G) —{ A(G) +1, EEG{ViB

’

40,

Proof Because the proof is very complicated, here we only consider the proofs of the worst case.
We will prove the conclusion by double inductions on the edge number ¢(G) and the maximum
degree A(G) of G. We suppose that E(G[VA]) #0, C = {1,2,3,---,A, A +1}. For the case of



276 W o B R 5 i @ 25%

E(G[Va]) = 0, the proof is the similar to the one of Theorem 6. When A(G) = 5, by Theorem
6, the conclusion is true. When ¢(G) = 2A(G) — 1, by Theorem 3, the conclusion is true. We
assume that A(G) < A(A > 6) (hypothesis 1) or ¢(G) < g(g > 2A(G)) (hypothesis 2), the
conclusion is true. Now we proof that when A(G) = A and ¢(G) = g, the conclusion is true. For
any SP graph G of order p, by Lemma 1, there are five possibilities:

N AN L
N AN L

Graph 1

\4

\J

f
\{

Case 1 G has an edge uv such that d(u) + d(v) = 4. Let N(u) = {v,z}, N(v) = {u,y}. Then
z # y (otherwise £ = y is a cut-vertex). The proof is the similar to the one of Case 1 of Theorem
4.

Case 2 G has an edge uv such that d(u) + d(v) = 5. Let N(u) = {v,z}, N(v) = {u, z,y1,y2}-

Case 2.1 N(z)NN(v) # 0. Let z = y2. Let G* = G — {u}. Obviously, G* is a 2-connected
SP graph of order less than p. If A(G*) < A, then by the hypothesis 1, G* has a (A + 1)-
adjacent strong edge coloring o* : E(G*) — C. If A(G*) = A, by the hypothesis 2, G* has
a (A + 1)-adjacent strong edge coloring o* : E(G*) — C. Now we extend o* to a (A + 1)-
adjacent strong edge coloring o of G. In the worst case, x is a vertex of maximum degree,
N(z) = {u,v,21,%2, -, Ta~2}, and z; is the vertices of maximum degree, i = 1,2,---,A — 2,
y1 is a 3-vertex. By Lemma 7, we may proceed the proper adjacent strong edge coloring in edge
uz,vz. Then let o(uv) € C\o*[y1]\o(uz)\o(vz).

Case 2.2 N(z)NN(v) = 0. Let G* = G — {u} + vz. By hypothesis 2, G* has a (A + 1)-
adjacent strong edge coloring o* : E(G*) — C. Now we extend ¢* to a (A + 1)-adjacent strong
edge coloring ¢ of G. In the worst case, both y; and y; are 3-vertices and z is a 2-vertex.
Let o(uz) = o*(vz). Now we color edge uv. If {o(vy1),0(vy2)} is a subset of o*[y1](or o*[y2))
(assume o*[y2]\{o(v1), o(vyz)} = C'), then let o(uv) € C\o*[11]\C \o(uz). If {o(vy1), o(vys2)}
is not a subset of o*[y;] and o*[y2], then let o(uv) € C\o*[v].

The coloring of other edges is the same to o*.

Case 3 G has a 4-vertex w adjacent to two non-adjacent 2-vertices u and v such that N(w)\{u,v} =
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(N(w) UN(@)\{w} = {z,y}.

Case 3.1 zy € E(G). Let G* = G — {u,v}. Obviously, G* is a 2-connected SP graph of order
less than p. If A(G*) < A, then by the hypothesis 1, G* has a (A + 1)-adjacent strong edge
coloring o* : E(G*) — C. If A(G*) = A, by the hypothesis 2, G* has a (A + 1)-adjacent strong
edge coloring o* : E(G*) — C. Now we extend o* to a (A +1)-adjacent strong edge coloring o of
G. If both z and y are 4-vertices, the proof is similar to the one of Case 3.1 of Theorem 5. If both
z and y are the vertices of maximum degree, and all the adjacent vertices of z,y are the vertices
of maximum degree. Let N(z) = {u,w,y,21,%2, -, za-3}, N(y) = {v,w,z,v1,¥2," -, Ya-3}-
By Lemma 7, we may proceed the proper adjacent strong edge coloring in edge uz,wz. Simi-
larly, we may also proceed the proper adjacent strong edge coloring in edges vy, wy. Then let
o(wu) € C\o(uz)\o(wz)\o(wy), o(vw) € C\o(wu)\o(wz)\e(wy)\o(vy). The coloring of other
edges is the same as o*.

Case 3.2 zy ¢ E(G). The proof is similar to Case 3.2 of Theorem 5.

Case 4 G has a 4-vertex w adjacent to two non-adjacent 2-vertices v and v such that N(u)\{w} =
N@)\{w} C N(w). Let N(u) = N((v) = {z,w}, N(w) = {z,u,v,ur }. Let G* = G—{u,v}. Ob-
viously, G* is a 2-connected SP graph of order less than p. If A(G*) < A, then by the hypothesis
1, G* has a (A+1)-adjacent strong edge coloring ¢* : E(G*) — C. If A(G*) = A, by the hypoth-
esis 2, G* has a (A + 1)-adjacent strong edge coloring o* : E(G*) — C. Now we extend ¢* to a
(A +1)-adjacent strong edge coloring ¢ of G. In the worst case, z is a vertex of maximum degree.
Let N(z) = {u,v,w, 1,22, -+, Za—3}, and z;,i = 1,2,---, A — 3 be the vertices of maximum de-
gree, wy be a 4-vertex. By Lemma 7, we may proceed the proper adjacent strong edge coloring in
edge uz,vz. Let o(wu) € C\o*[ur]\o(uz)\o*(wz), o(vw) € C\o*(ww1)\o(uw)\o(vz)\o* (w).
The coloring of other edges is the same as o*.

Case 5 G has three pairwise non-adjacent 2-vertices u,v and w, such that N(u) = N(v) and
N(u)NNw) #0.

Case 5.1 zy & E(G). The proof is similar to the one of Case 5.1 of Theorem 6.

Case 5.2 zy € E(G). Let G* = G — {u, v}. Obviously, G* is a 2-connected SP graph of order
less than p. If A(G*) < A, then by the hypothesis 1, G* has a (A + 1)-adjacent strong edge
coloring o : E(G*) — C. If A(G*) = A, by the hypothesis 2, G* has a (A + 1)-adjacent strong
edge coloring o* : E(G*) — C. Now we extend ¢* to a (A + 1)-adjacent strong edge coloring o
of G. In the worst case, y is a vertex of maximum degree. Let N(y) = {u,v,z, 1,92, -, ya-3},
and y;,% = 1,2,---,A — 3 be the vertices of maximum degree. By Lemma 7, we may proceed
the proper adjacent strong edge coloring in edges uy, vy. Let o(uz) € C\o*(zy)\o(uy)\o* (wz),
o(vz) € C\o(vy)\o(wz)\o*(zy)\o(uz). The coloring of other edges is the same as o*.

From the above described, we obtain the following: for any SP graph G of A > 5,

X:zs(G) — { ﬁ(G)a E(G[VA]) =90,

(G)+1, E(G[Va]) #0.
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