Vol.25, No.2 May, 2005

Article ID: 1000-341X(2005)02-0287-05

Document code: A

## On $\partial$ -reducible Heegaard Splittings

MA Ji-ming<sup>1</sup>, LEI Feng-chun<sup>2</sup>

(1. Dept. of Math., Jilin University, Changchun 130012, China;

2. Dept. of Math., Harbin Institute of Technology, Heilongjiang 150001, China )
(E-mail: majiming2000@sohu.com)

Abstract: In this paper, we shall prove that any Heegaard splitting of a  $\partial$ -reducible 3-manifold M, say  $M = W \cup V$ , can be obtained by doing connected sums, boundary connected sums and self-boundary connected sums from Heegaard splittings of n manifolds  $M_1, \dots, M_n$ , where  $M_i$  is either a solid torus or an irreducible,  $\partial$ -irreducible manifold.

Key words: connected sum; boundary connected sum; self-boundary connected sum.

MSC(2000): 57N10, 57M50. CLC number: O189.3

## 1. Introduction

Let M be a compact 3-manifold such that each component of  $\partial M$  is not a 2-sphere. If there is a 2-sphere in M which does not bound any 3-ball, then we say M is reducible; otherwise, M is irreducible. If there is an essential disk D in M, then we say M is  $\partial$ -reducible; otherwise, M is  $\partial$ -irreducible.

Let M be a compact 3-manifold. If there is a closed surface S which separates M into two compression bodies W and V with  $\partial_+W=\partial_+V=S$ , then we say M has a Heegaard splitting, denoted by  $M=W\cup_S V$  or  $M=W\cup V$ . In this case, S is called a Heegaard surface of M. We call g(M)=g(S) the genus of M if g(S) is minimal among all Heegaard surfaces of M.

A Heegaard splitting  $M=W\cup_S V$  is said to be reducible if there are two essential disks  $D_1\subset W$  and  $D_2\subset V$  such that  $\partial D_1=\partial D_2$ ; otherwise, it is irreducible. A Heegaard splitting  $M=W\cup_S V$  is said to be  $\partial$ -reducible if there is an essential disk D which intersects S in only one essential simple closed curve in S; otherwise, it is  $\partial$ -irreducible. A Heegaard splitting  $M=W\cup_S V$  is said to be weakly reducible if there are two essential disks  $D_1\subset W$  and  $D_2\subset V$  such that  $\partial D_1\cap\partial D_2=\emptyset$ ; otherwise, it is strongly irreducible.

Now there are some results on reducibilities of Heegaard splittings. For example, W. Haken proved that any Heegaard splitting of a reducible 3-manifold is reducible; A. Casson and C. Gordon gave a disk version of Haken's lemma, that say, any Heegaard splitting of a  $\partial$ -reducible 3-manifold is  $\partial$ -reducible, they also show that if M has a weakly reducible Heegaard splitting  $W \cup V$  then either  $W \cup V$  is reducible or M contains an essential closed surface of genus at least one.

Received date: 2004-04-10

Foundation item: the National Natural Science Foundation of China (10171024, 10171038)

In this paper, we shall consider Heegaard splittings of  $\partial$ -reducible manifolds, and give a more fined disk version of Haken's lemma as follows:

Theorem 1 1) Any Heegaard splitting of a  $\partial$ -reducible manifold M, say  $M = W \cup V$ , can be obtained by doing connected sums, boundary connected sums and self-boundary connected sums from Heegaard splittings of n manifolds  $M_1, \ldots, M_n$ , where  $M_i$  is either a solid torus or an irreducible,  $\partial$ -irreducible manifold.

2) The set  $\{M_1, \ldots, M_n\}$  is unique up to homeomorphism.

## 2. The proof of Theorem 1

The definitions of connected sum and boundary connected sum are standard. Now we define self-boundary connected sum.

Let M be a compact,  $\partial$ -reducible 3-manifold, and D be an essential disk in M. Suppose that D is non-separating in M, but  $\partial D$  is separating in  $\partial M$ . Now  $M' = M - D \times (0,1)$  is a connected manifold such that  $\partial M'$  contains at least two components  $F_1$  and  $F_2$ . We may assume that  $D \times \{0\} \subset F_1$  and  $D \times \{1\} \subset F_2$ . In this case, we say that M is a self-boundary connected sum of M', denoted by  $M = M' \sharp_{\partial}$ .

let  $M' = W' \cup V'$  be a Heegaard splitting of M', such that  $F_1, F_2 \subset \partial_- V'$ . Now suppose that  $\alpha_1, \alpha_2$  are two unknotted, properly embedded arcs in V' and  $\beta$  is a unknotted, properly embedded arc in  $D \times [0,1]$  such that  $\partial_1 \alpha_1, \partial_2 \alpha_2 \subset \partial_+ V'$ , and  $\partial_2 \alpha_1 = \partial_1 \beta$  and  $\partial_1 \alpha_2 = \partial_2 \beta$ . Then  $\gamma = \alpha_1 \cup \beta \cup \alpha_2$  is a properly embedded arc in  $V' \cup D \times [0,1]$ . Let  $N(\gamma)$  be a regular neighborhood of  $\gamma$  in  $V' \cup D \times [0,1]$ . It is easy to see that  $W = W' \cup N(\gamma)$  is a compression body and the closure of  $V' \cup D \times [0,1] - N(\gamma)$ , denoted by V, is also a compression body. Hence  $M = W \cup V$  is a Heegaard splitting of M. We say  $W \cup V$  is a self-boundary connected sum of  $W' \cup V'$ , denoted by  $W \cup V = (W' \cup V') \sharp_{\partial}$ .

**Lemma 2.1**<sup>[1]</sup> Any Heegaard splitting of a  $\partial$ -reducible 3-manifold is  $\partial$ -reducible.

The proof of Theorem 1 We first prove Theorem 1(1).

Suppose that  $M = W \cup_S V$  is a Heegaard splitting of a  $\partial$ -reducible 3-manifold. If the genus of  $M = W \cup_S V$  is one, then M is a solid torus and  $M = W \cup_S V$  is a trivial Heegaard splitting of M. So we may assume that the genus of  $M = W \cup_S V$  is at least two.

By Lemma 2.1, there is an essential disk D such that D intersects S in an essential simple closed curve in S. We may assume that  $D_W = D \cap W$  is a disk and  $A_V = D \cap V$  is an annulus. That means that  $\partial D \subset \partial_- V$ . Now there are three cases:

#### Case 1 D is separating in M.

Now  $M-D\times (0,1)$  contains two components  $M_1$  and  $M_2$ ,  $D_W$  separates W into two compression bodies  $W_1$  and  $W_2$  and  $A_V$  separates V into two components  $V_1$  and  $V_2$ . We assume that  $W_1, V_1 \subset M_1, W_2, V_2 \subset M_2, D \times \{0\} \subset \partial M_1, D \times \{1\} \subset \partial M_2$ . Let  $N((D \cap W) \times \{0\})$  be a regular neighborhood of  $(D \cap W) \times \{0\}$  in  $W_1$  and  $N(D_W \times \{1\})$  be a regular neighborhood

of  $D_W \times \{1\}$  in  $W_2$ . Then  $V' = V_1 \cup N((D \cap W) \times \{0\})$  and  $V'' = V_2 \cup N(D_W \times \{1\})$  are two compression bodies. We denote by W' the closure of  $W_1 - N(D_W \times \{0\})$  and W'' the closure of  $W_2 - N(D_W \times \{1\})$ . Then W' and W'' are two compression bodies. Hence  $W' \cup V'$  is a Heegaard splitting of  $M_1$  and  $W'' \cup V''$  is a Heegaard splitting of  $M_2$ . By definition,  $W \cup V$  is a boundary connected sum of  $W' \cup V'$  and  $W'' \cup V''$ .

Case 2 D is non-separating in M, but  $\partial D$  is separating in  $\partial M$ .

Claim 1  $D_W$  is non-separating in W.

**Proof** Suppose, otherwise, that  $D_W$  is separating in W. Then  $\partial D_W$  is separating in  $\partial_+W = \partial_+V$ . Since W and V are two compression bodies,  $D_W$  is separating in W and  $A_V$  is separating in V. Hence D is separating in M, a contradiction.

Now  $M-D\times (0,1)$  is a manifold M'. Since  $D_W$  is a non-separating disk in  $W,W-D_W\times (0,1)$  is a compression body, say  $W^*$ . Let  $N(D_W\times \{0\})$  be a regular neighborhood of  $D_W\times \{0\}$  and  $N(D_W\times \{1\})$  be a regular neighborhood of  $D_W\times \{1\}$  in  $W^*$ . Then  $(V-D\times (0,1))\cup N(D_W\times \{0\})\cup N(D_W\times \{1\})$  is a compression body, say V', in M'. Note that the closure of  $W^*-(N(D_W\times \{0\})\cup N(D_W\times \{1\}))$ , say W', is also a compression body. By definition,  $W\cup V$  is a self-boundary connected sum of  $W'\cup V'$ .

Case 3 D is non-separating in M, and  $\partial D$  is non-separating in  $\partial M$ .

Claim 2  $\partial D_W$  is non-separating in  $S = \partial_+ V = \partial_+ W$ .

**Proof** Suppose, otherwise, that  $\partial D_W$  is separating in S. Let  $V^*$  be the manifold obtained by attaching a handlebody H to V along  $\partial_-V$  such that  $\partial D$  bounds a disk  $D^*$  in H. Then  $V^*$  is also a compression body and  $A_V \cup D^*$  is a disk in  $V^*$ . Since  $\partial D_W$  is separating in S,  $A_V \cup D^*$  is separating in  $V^*$ , but  $D^*$  is non-separating in H, a contradiction.

## Claim 3 There is an annulus A such that

- 1) one boundary component of A lies in  $\partial_+ V$  and the other lies in  $\partial_- V$ , and
- 2) A intersects the annulus  $A_V$  in only one essential arc in both A and  $A_V$ .

**Proof** Suppose that  $\partial_1 A_V = \partial D$  and  $\partial_2 A_V = \partial D_W$ .

Now since  $\partial_1 A_V$  in  $\partial_- V$  is a non-separating curve, there is a curve in  $\partial_- V$ , say c, such that  $|\partial_1 A_V \cap c| = 1$ . Then c, together with a simple closed curve in  $\partial_+ V$ , cobound an annulus, say A such that  $\partial_1 A = c$  and  $\partial_2 A \subset S = \partial_+ V$ . We may assume that  $|A \cap A_V|$  is minimal among all such annuli. Now we prove  $|A \cap A_V| = 1$ .

Note that A and  $A_V$  are incompressible in V. Hence  $A \cap A_V$  is a set of arcs. Since c intersects  $\partial_1 A_V$  in one point, there is only one arc, say a, in  $A \cap A_V$ . which is essential in both A and  $A_V$ .

Suppose that  $|A \cap A_V| > 1$ . Let b be an arc in  $A \cap A_V$  which is outermost in  $A_V$ , then it, with a sub-arc of  $\partial_2 A_V$ , cobound a disk E in  $A_V$  such that intE is disjoint from A. Now b, with

a sub-arc of  $\partial_2 A$ , cobound a disk E' in A. Thus  $A' = (A - E) \cup E'$  is also an annulus, but A' can be isotoped so that  $|A' \cap A_V| < |A \cap A_V|$ , a contradiction.

By Claim 3, there is an annulus A which intersects the annulus  $A_V$  in only one arc. We may assume that  $\partial D \subset F \subset \partial_- V$ . Now let  $N = N(A \cup A_V)$  and  $A^*$  be the closure of  $\partial N(A \cup A_V) - \partial_- V \cup \partial_+ V$ . Then  $A^*$  is also an annulus in V. We may assume that  $\partial_1 A^* \subset \partial_+ V$  and  $\partial_2 A^* \subset F$ . Since the genus of  $M = W \cup_S V$  is at least two,  $\partial_1 A^*$  is an essential, separating, simple closed curve in  $\partial_+ V$ . Since  $\partial_1 A^*$  is coplanar to  $\partial D_W$  in S,  $\partial_1 A^*$  bounds a disk S in S. Now there are two subcases:

#### Case 3.1 F is a torus.

In this case,  $\partial_2 A^*$  bounds a disk  $B^*$  in F. Now let  $P = B \cup A^* \cup B^*$ . Then P is a 2-sphere which intersects  $\partial_+ V$  in an essential simple closed curve. That means that  $M = W \cup V$  is a connected sum of two Heegaard splittings  $M_1 = W_1 \cup V_1$  and  $M_2 = W_2 \cup V_2$ .

#### Case 3.2 $g(F) \ge 2$ .

Now  $\partial_2 A^*$  is an essential, separating, simple closed curve in  $\partial_- V$ .  $A^* \cup B$  is an essential disk which intersects  $\partial_+ V$  in an essential, simple closed curve. By Case 1 and Case 2,  $W \cup V$  is a boundary connected sum or a self-boundary connected sum of Heegaard splittings.

Now by induction, we can prove Theorem 1(1).

Now we prove that Theorem 1(2).

By Kneser-Milnor's theorem, we may assume that M is irreducible. By (1),  $M = W \cup V$  can be obtained by doing boundary connected sums and self-boundary connected sums from Heegaard splittings of n manifolds  $M_1, \ldots, M_n$  along  $n^*$  disks  $D_1, \ldots, D_{n^*}$  where  $M_i$  is either a solid torus or an irreducible,  $\partial$ -irreducible manifold. In this case, n is the number of boundary connected sums and  $n^* - n$  is the number of self-boundary connected sums. Note that  $D_1, \ldots, D_{n^*}$  are essential disks in M. Furthermore,  $\partial D_i$  is separating in  $\partial M$ .

Without loss of generality, we may assume that  $\partial_{-}V$  contains only one component F. Then  $\partial D_{i} \subset F$  for  $1 \leq i \leq n^{*}$  satisfying the following conditions:

- 1)  $\partial D_i$  is separating in F,
- 2) each component of  $F \cup \partial D_i$  is not a planar surface; otherwise, one component of  $M \cup D_i$  is a 3-ball, and
- 3) if c is a separating, simple closed curve in F such that c bounds a disk in M and  $c \cap (\bigcup_{i=1}^{n^*} \partial D_i) = \emptyset$ , then one component of  $F c \cup_i \partial D_i$  is a planar surface.

By Dehn's lemma,  $V = V^* \cup_{\partial_- V^*} M^*$  where  $V^*$  is a compression body with  $\partial_+ V^* = F$  and  $M^*$  is irreducible,  $\partial$ -irreducible. Furthermore,  $D_i \subset V^*$ . Hence  $D_i$  is separating in  $V^*$ . In this case, it is possible that  $M^*$  is not connected. Since  $\partial_- V^*$  is incompressible in M,  $D_i$  can be isotoped so that  $D_i$  is disjoint from  $\partial_- V^*$ . Hence each component of  $V^* - \cup_i D_i$  is either a solid torus or  $F_i \times I$  where  $F_j$  is a component of  $\partial_- V^*$ .

Now if  $M=W\cup V$  can be obtained by doing boundary connected sums and self-boundary connected sums from Heegaard splittings of m manifolds  $M'_1,\ldots,M'_m$  along  $m^*$  disks  $D'_1,\ldots,D'_{m^*}$  where  $M'_i$  is either a solid torus or an irreducible,  $\partial$ -irreducible manifold. By the above argument,

 $D'_i$  is separating in  $V^*$  such that

- 1)  $\partial D_i'$  is separating in F,
- 2) each component of  $F \bigcup \partial D'_i$  is not a planar surface, and
- 3) if c is a separating, simple closed curve in F such that c bounds a disk in M and  $c \cap (\cup_i \partial D'_i) = \emptyset$ , then one component of  $F c \cup_i \partial D'_i$  is a planar surface.

Since  $V^*$  is a compression body, n=m and  $n^*=m^*$  and  $V^*-\cup D_i$  is homeomorphic to  $V^*-\cup D_i'$ .

## References:

- [1] CASSON A J, GORDON C McA. Reducing heegaard splittings [J]. Topology Appl., 1987, 27: 275-283.
- [2] HAKEN W. Some Results on Surfaces in 3-Manifolds [M]. 1968 Studies in Modern Topology pp. 39–98 Math. Assoc. Amer.
- [3] KNESER H. Geschlossene Flächen in dreidimensionalen Mannig-flatigkeien , Jahresbericht der Deut. Math. Verein., 1929, 38: 248–260.
- [4] MILNOR J. A unique factorization theorem for 3-manifolds [J]. Amer. J. Math., 1962, 84: 1-7.

# 边界可约的 Heegaard 分解

马继明1, 雷逢春2

(1. 吉林大学数学学院, 吉林 长春 130012; 2. 哈尔滨工业大学数学系, 黑龙江 哈尔滨 150001)

**摘要**:本文证明了任意边界可约流形的 Heegaard 分解都是 n 个不可约的、边界不可约的三维流形的 Heegaard 分解通过连通和、边界连通和及边界自连通和运算而得到.

关键词: 连通和; 边界连通和; 边界自连通和.