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1. Introduction

Let G C R? be a bounded and simply connected domain with smooth boundary 8G, g :
8G — S8' = {z € R%|z| = 1} be a smooth map satisfying deg(g,0G) = 0. Consider the
asymptotic behavior of some weak solution u. of the problem

—div(|VulP?Vu) = Eipu(l —Juf?), on G, (1.1)
ulog =9, (1.2)

(where £ € {0,1) and p > 2) as ¢ — 0.
We know that the minimizer of p-Gingburg-Landau functional

Eu,G) = % /G [Vu(f’+zi; /G (1 - [u?)?

on the function class W = {u € W'P(G, R?);ulsg = g} exists and satisfies (1.1) and (1.2) in
the weak sense. Maybe the weak solution of (1.1) and (1.2) is not unique. We will consider the
solution which is the limit of the minimizer u7 of the regularized functional

1
B w6 = [(vup+rp+ o [a-wP? re@)
pJg 4e? Jg
on W as 7 — 0. Namely, there exists a subsequence uZ* of the minimizer u] such that as 7, — 0,

ul* — i, in WY“P(G,R?), (1.3)
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where i, is a minimizer of E(u,G) on W. Obviously, the minimizer 4. is a weak solution of
(1.1) and (1.2). It is named the regularizable solution. In this paper, we will set up the global
C* convergence for this regularizable solution ..

It is not difficult to prove that the minimizer u exists and solves the system

-div(v<v-2>/2w)=€lpu(1—|u|2), on G, (1.4)

where v = |Vu|? + 7. Moreover, it also satisfies the maximum principle: (uZ| <1 onG.

The limit u, may be introduced as follows. In virtue of deg(g,dG) = 0, we can see that
there exists a function g € C°(8G, R) such that g = (cos p, singg). It is easily obtained that
the problem

—div(|VelP~?Vyp) =0 on G; ¢loc = o (1.5)

has a unique solution ® € W'?(G, R). Let u, = (cos ®,sin®) on G. Thus u, € W*P(G, $?)
and uplog = g. On the other hand, from the uniqueness of the solution of (1.5) it follows that

the solution of
~div(|VuP~?Vu) = u|Vul’, on G (1.6)

is also unique in W}?(G,S")H. Noticing that the p-energy minimizer, i.., the solution of
min{ [ [VulP;u € W3 P(G,S)} satisfies (1.6), we know that it is precisely up.

When p = 2, the C**(G) convergence of the minimizer of E(u, G) was given in {1]. Ifp > 2,
it was shown that®3], as ¢ — 0,

ET(UZ,G) S ET(U’IHG) S C: (17)
lim[uf| =1, in C(G,R?), (1.8)
e —up, in WYP(G,R*) and Cu%(G,R?), (1.9)

for some a € (0,1). Here u, is the p-energy minimizer on G with the boundary value g. We also
want to know whether the global convergence can be derived at least in C* sense. In this paper,
we will prove

Theorem 1.1 Assume that deg(g, 8G) = 0, and that u. is a regularizable solution of (1.1) and
(1.2). Then ase — 0, u; — up, in C*(G, R?), Va € (0,1).

We shall set up a series of the gradient estimates of u7 near the boundary 4G in Sections 2
and 3, then based on the results we shall complete the proof of Theorem 1.1 in §4.

2. Estimate for ||Vul||z:qp)

Both 3G and the value g are smooth, so we try to set up the gradient estimate of Vu] near
boundary. Denote Q3 = Uz,cacB(To, 3R) NG where R is a sufficiently small constant. In view
of deg(g,0G) = 0, we know that @y € C®(9G, S?) is a function such that g = (cos o, sin ),
and it is easily seen that the problem Ay = 0 on G; ¢|sc = o has a unique solution ¥ € C=(G).
Let U = (cos ¥,sin¥) on G. Thus U € C®(G,8B) and Ulse = g. Extend the domain G to a
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domain Gy such that G CC Gy and U can be defined smoothly on Gy. Denote w = uT — U, then
w = 0 on 8G. Define 0 as the odd shunt of w on Gp \ G, which implies u7 solves (1.4) on Gp.

Theorem 2.1 Assume u = ul is a minimizer of E"(u,G), zo € 8G and R > 0. Then for any
I > 1, there exists a constant C' = C(Qr) (independent of €,7), such that ||Vul||1(qz) < C.

Proof Since u is defined on Gy and it is smooth on Gy \ G, we may differentiate (1.4) with
respect to z;(j = 1,2),
1
—('U(p—z)/zuzi)zazj = e—p(u(l - lulz))zr (2.1)

Here and in the sequel, double indices indicate summation.

Let ¢ € C§°(B(z0,3R)) be a function such that ¢ = 1 on B(zo,R), { = 0 on G\
B(z0,2R),0 < ¢ <1,|V¢| < C = C(R) on B(zo,3R). Denote I'r = G N B(zo, R). Integrating
over I'sp the inner product of the both sides of (2.1) with (u — U)z,;¢? we obtain

- [ aveoarvnXDeg . / (0P 20,5, (X — V), e,
8T3r
1
== [ (ul-|u?)z¢* - V),
€% Jrer
Summing up for j = 1,2 and computing the term of the left side yield
- / div(v®=2/2vy )a(“ )(zds
8T3r

since ¢ = 0 on 8B(zo,3R) and div(v?P~?/2Vy) = Lu(ju? — 1) = 0 on 8G, where v is the unit
outside norm vector on 8T'3g; and

2
- p—2 -
sz(p 2)/2Zlvu:cj|2 + 1 »/I‘ sz(p 4)/2|V'U|2

Tsr

<[ S - - el
Tsr j=3

2| (‘U(p—z)/z Z’Ufz;)zj U — U)chgxd |+
Isr j=1

¢? ZU“. WP~/ Vuy, | + Vu(oP~2/2), )| —ka (2.2)

Tsrn  j= k=1

Noticing U is smab‘th, and applying the Young inequality we have that for any § € (0,1),

nedf (o2 S|V 4 2 [ ueormwopt

Jj=1

5| (P24 00). (2.3)

Tsr
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And moreover,

1 —2
J2 =/ 1¢¢z. [Ev(p—z)/zvz.’ + z D) o 4)/2"’3;,‘“::.-“11((::4"'
Tsr

p—2
2

v(p—z)/zum.‘zj ij + U(p—4)/2”z,- Ug, U:cj CCm]I

2
<[ vV vul2¢? 4+ / Co@=D2X " Tu, 1] + C(5)] / w241 (24)
Tar Tar

Isr j=1

Finally, we will prove the following conclusion

2
J1 <O o O/2|gy)2? +-/r sz(”"z)/zzIVuz,PH
3R

FSR j=1
C(6) / »P+2/2 4 o,
Tsr
In fact,
h= [ a-WPIa - o [ e

€P Jrgn 2eP Tan *

1 1 4

_P/ (1- I'U«Iz)uszmjcz - —P/ - |u|2)zquzicz = ZIk

€P Jran €% Jran k=1
Clearly,

L<0 and <Lt / (1 — [uP)C2(IVaf? +1).
€P Tar

For Iy, noting 1 — [u|?> = 0 on 8G and ¢ = 0 on 8B(zo, 3R), we have

1 1
h=gf (- [ul?) Uz, - 5 /F - [ul?) (wUz,¢?)s,
1
= —— 1 — [u]?)(uUs,¢?)s,.
/rm( [ul?) (wUs,¢?)e,

ep
Substituting (2.7) and (2.8) into (2.6) yields
1 1 &
J < 0[25 fr m(1 — B3|Vl +1) + > /G (1 - |u?):= CkZ::SIk.

To estimate I, using (1.4) and (1.7) we obtain that for any & € (0,1),

1
5 [ Q=P < [l Duleanoe2vu)
€% Jrsn Tsr

2
<4 / v @ D/2)7y|2¢2 + / (2yP=-2/2 IVu,,.|2] +C pP+2)/2
Csr T'sr 1

j= Tsr
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Substituting this and Ig < C (which is implied by Proposition 2.3 in [3]) into (2.9) we derive
(2.5). Substituting (2.3)—(2.5) into (2.2) and choosing § small enough yield

2
sz(p-z)/zzlvuzjlz + / o=/ yy2
T'anp

ar =1

<c[ ez e / PV + C. (2.10)
Y

Carn

Now we estimate [, (2v(P+?/2. Take ¢ = (¥9v(P+2/2 in the interpolation inequality
felize < ColliVellr + lleliza)llelzz®, g€ (1,2),a=2(1-1/q). (2.11)
Thus,

/2 <0 / (2 y+2)/20yal1-0) / (2ay@+2)/20 4
Tar T

Tsr SR

/ /1| clu®+2/2 / D21y, (2.12)
Tar Tsr

Since p > 2, we can choose g € (1 + 2/p,2) and hence 1’;—’(’13 < 2. By using (1.7) we have that
both fi. (*/w@P+2/20 and fi. (#/9°1|V(|v®*+D/2 are bounded. Thus, (2.12) gives

G2 < 01+ / ¢/ y(P+2/24-1 Gy )ea

Tsr T'sr

<C+0( / P2 wy)2)9e/2( / ¢Y 9242/ a-P/2)a/2 (2.13)
T3r Tar

Since g € (1 + f—,, 2), we have & < 1, ’1;'—2 —~ & < £. Thus, using the Holder inequality and (1.7),
we obtain fi, (¥9"2p®HD/e~r/2 < C(fi, vP/2)2e+D/Pa=1 < C. Hence, from (2.13),we have
for any 6 € (0,1),
CPtA/2 < C(6) + 6/ ¢ P-9/2|\vy)?,

Fsr

Fsr
since & < 1. Combining the inequality above with (2.10) we derive

2
Fo=D2Y " [V, 2 + / o912 7y2 < ¢ (2.14)
Isr j=1 Tar
or [r.. ¢?Vwf?> < C, where w = vP/4. Since (1.7) implies Jron Clwl* < C we have (w €
W12(Tag, R), and thus the embedding inequality gives f. . (Cw)* < C(1) for any I > 1, which
implies (2.1) since ( =1 on .

Remark Using the embedding theorem and Theorem 2.1 we can see that there exists ap € (0,1)
which depends on R such that for any a € (0,00}, ||4Zllca@zy < C. This is not sufficient to
derive the C* convergence for all a € (0,1). To prove that the unform estimate above holds for
any a € (0,1), we have to establish the upper bound of [[Vul||x(ag) 80d || 2 (1 - JuZ])]| 2o (n2z)-

3. Estimate for ||Vul||L=@p)



386 % B K 5 W ® 254

Theorem 3.1 Assume u? is a minimizer of E"(u,G). Then for any R € (0,1), there exists a
constant C > 0 (independent of g,7), such that

IVul|lLo(@r) < C. (3.1)

Proof Given any zg € 8G. r > 0 is sufficiently small. Denote Qr, = GNB(Z0,Tm ), Tm =T+ 55
We may choose 7,0 € (0,1) such that ¢ < |Qm| < 1. Choose (n € C§°(B(zo,7m), R) such that
¢m = 1 on B(Zo,Tm+1), |Vlm| < Cr~12™ (m = 1,2,---). Integrate over Q,, the inner product
of the both sides of (2.1) with ¢%v®(u — U)z,;(b > 1). Then

‘/ div(v®~2/?vy )6(“ U)<2 ds+ f O P (<R (R v T
BQm

/ (w1 = [ul?))a, CB0* (= Uy

Here v is the unit outside norm vector on Q.. We also have [, div(vP=2/2Vu) Aucl)(2ds =
0. Noting that

(vbuz.)z.(v(”_z)/zuz. ) = p(P+26-2)/2,, i L+
2b-2 -9
e\ ——b(pz ) yo+26-0/2(7 702,
and for any & € (0,1), |(v®Ug, )z, (0P~2/2ug,),,| < SI(b) + C(8)[u®+20-2/2 4 I(b - 1)], where

- +2b-2 _
I(b) := /Q Lo+ HD/2 3 v, [2 4 B2 /Q o2y,

we also obtain

I(b) <6I(b) + CI(b—1) +C / VufPo @202 y o [ y@r2-nrze2 4
Qm Qm

1 2442 () b1 1 o b )
E—,;/Qm(l ~ [ul*)m (v +1)+€_"|/om w(1 — |uf?)5,v°Us, 2,

by the similar argument in the derivation of (2.2) and the dealing with Js, J5. Combining this
with

1 - . -
& [, G-t s [ (v
< 0(6)/Q C’2nv(p+2b+2)/2+6‘/; Czlv(p+2b—2)/2|Aul2+

C(8)(p +2b—2 1) 2b—2
ol 2 : Q G oraayz y B+ 2 2 ! / o292 00,
we have

- +2b-2 _
I(b) =/;2 2 ylPt2e—2)/2 Z qulez + p__Z__/; (2 p(p+20-4)/27y 2

<C / [Vm |20PH/2 4 C(p + 25— 2) / Y PH2ED/2(2
Qm o

1
[ = P0G+ €16 - 1), (32)
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as long as § > 0 sufficiently small. Here the constants C is independent of b, m, € and 7.
To estimate | [ (1 — |u[?)z,v°Us, (2|, we will integrate by parts. Noticing 1 — |u[? = 0
on 8G and ¢, = 0 on 8B(zo,Tm), we have

1 1
Ul = S [0 )T ) (33)

Substituting |1 — |u|?| = ]%[Idiv(v(”‘z)/ 2Vu)| into (3.3), and using Holder inequality, we can
see that for any § € (0,1),

[ = eV,
<SI0)+CEN [ v 414 [ B DTG4 16 -1)
Substituting this into (3.2) and choosing § > 0 sufficiently small, we obtain
1(b) <C /Q V202 1 1)+
Clp+2b—2) /Q @WEHB+D/2 L 132 L CI(b—1) +C. (3.4)

If b=1, from (2.14) it is led to J(0) < C. Hence

) <c /Q [Vin[2(v®PH /2 £ 1) 4 C(p+ 26— 2) /Q (PR+D/2 4 1)¢2 4 C.
If for some [ > 1,

Imn<c /Q IVen2@®H/2 1) + C(p+ 21 - 2) /Q (u®HAD/2 1 1)¢2 + C,
then from (3.4) it follows that
It+1)<C /Q |Vém [2@@H2HD/2 4 1) + Clp+2(1+1) — 2) /Q (D2 L 12 4 C
by using Young inequality. The argument above means that for any b > 1,

16 < C| /Q (Ve P@P2972 4 1) + (p+ 26— 2) /Q (P2 L 1) 2 11] (3.5)

To estimate [, C2vPt2+2)/2 we take o = ¢2/9y(P+26+2)/24 ip the interpolation inequality
(2.11). Now, the constant C, in (2.11) depends on the domain Q.. Noticing the choosing of
r,o € (0,1) such that o < |Qm| < 1, where @m = B(%0,7m),Tm = T + 3=, We can see that

© 1995-2005 Tsinghua Tongfang Optical Disc Co., Ltd. All rights reserved.
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C, = C.(c) may be independent of m. Then we obtain
/ ng o (PH26+2)/2 <c( f (fz;l/qv(pnl»z)/zq)q(l—a).
Qm Qm

2
( /Q CHay(P+2o+2)/2g 4 p / C,"‘;,/q_IIVCm[v(”+2b+2)/2"+

p+ gz +2 A (29 (P+2042)/28-1 |7y e

< C(./Q Cgl/qv(p+2b+2)/2q)q(1-—a)[(g)qa(/q C,z,./q_lIVlev(p+2b+2)/2q)q°‘]+

2
(p+§z+ )qa(/Q (2 2y (P+2+2)/20-1 |7y | )9 +C(/Q (Y ayPt2+D/20)0 (3 6)

Now we estimate all integrals on the right side of (3.6). In the computing we need to notice that
ge(l+ %,2), which implies ¢ > 1 + ;43—23 or 2*2-'—:—1’ < E’;—z'!. We have

/Q (21,2422 < / WP+ 242/20 < ( /Q PH/2Y(PH2642) /P4 2),

/ IV [uPFRHD/20 < ¥( P2+ 2042) a4 25),
m Qm

g;a’n/qv(ﬁ2b+2)/2q—l 2l
Qm
<( /Q (2 yPH2=4)/2|7[2)1/2( / L PF20)/2) 2042/ (alp+26)-1/2,

m

Combining these inequalities with (3.5) and (3.6) yields

2m m -
L < C[(T)Z(Iz + 1) + (ZT)anzl+2/(P+2b) + (?_’_‘%)qalftxhg-{-ﬂ(}ﬁ%) qa/2’ (3.7)

where I = [, (G o@t2-0/2|gy? I, = lo.. v@+2)/2 Let p+ 2b = s™, w = vPH2)/4 = oo™ /4
with s > 2 to be determined later. Then (3.7) becomes

om om .y m 2 ™_ oo
B < OIS B+ 1)+ () B /7 4+ (S Syl /e el

Using the Young inequality to treat the last term on the right side yields

C( 3";;‘ 2)anfa/2I21+2/(a"')—qa/2
<6l + 0(5)(%)2@/(2_(,@ [20¥2/(™)~ga/2)/(2~e0)

Thus we obtain
2m m m
b SOOI (B + 1)+ (B¢
(L2 yraed 2=g0) (043167 =0/2)/ 3-ee) 38
2q ‘ |
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By the embeding theorem, we have for any s > 1

oo <CON[ G+ [ 196ufu? + [, carmar

<C(s)l(1 +(—) )Iz+( e

which, by using (3.8) turns out to be

/Q(c w <O+ (7 + ) + 1)+ (A yen
(2 *%*Ié“*”"f == (3.9)

If there exists a subsequence of positive integers {m;} with m; — oo, such that I, =
me‘ v*T < 1, then letting m; — oo yields immediately

V]| Lo (Qoo ) < C(r)- (3.10)

Otherwise, there must be a positive integer mg such that I, = fQ T > 1, for m > my. Since

1+& L)2—qa =1+ 8—,,.2—5 > 14 £ > 1, the power of the last term in (3.9) is higher

than those of the other terms. Now we compare the coefficients of the terms in (3.9). we have

(22)? > 1,(%35)? > (%2)% and, if we choose s > 2¢(2) %" and r < 1, then (’—2(‘1‘3)52—«0‘ =
m 2%—12 m

(’—25;—2) == > (£2)%. Therefore the coefficient of the last term in (3.9) is larger than those of

the other terms. Hence we have

[, G < CICE PG g

or

Qm+1

m

with some constant Cp > 0,C2 = 5—37,0’1 = s@HHEDs Using an iteration lemma in [3]
(Proposition 4.2), we also reach the estimate (3.10) by applying the local estimate (Proposition
3.1 in [3]) and Theorem 3.1. Thus the proof of Theorem 3.1 is completed.

4. Completion of the proof

Theorem 4.1 Let 97 = &(1 — |[uZ|?). Then there exists a constant C > 0 independent of
g, 7 € (0,&9) with €9 > 0 small enough, such that

”¢:”L°°(6,R) <C. (4.1)
Proof Consider the inner product of the both sides of (1.4) with u
1
—div(e®= /2 Vu)u = - [ul*(1 - [uf?) = ul*,
where u = u7,% = 97. Combining this and V¢ = —Zu - Vu with
—div(v®2/2Vu)u = —div(v®P D/ 2y . Vu) 4+ vP=D/2| 7y

© 1995-2005 Tsinghua Tongfang Optical Disc Co., Ltd. All rights reserved.
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yields |u|2 = v®=2/2|Vu|? + £div(vP~2/2V4). Using (1.8) we further obtain
P
%1/) < vP=22|yy)? 4 %dw(v@’-?)/?vw), Ve, T € (0,€0). (4.2)

Since (z) = 0 on 8G, the point zo where 1) achieves its maximum must be in G. Hence, at zo,
Vi = 0, A9 < 0 and div(v®=2/2V4) = v(P=D/2 Ay + 529(P~9/2Vy V) < 0, so we derive (4.1)
from (4.2) by using the local estimate (Proposition 4.1 in [3]) and Theorem 3.1.

To complete the proof of the theorem, we need to apply a result in [2]. Now according
to Theorem 4.1 the right hand side of (1.4) is bounded on G uniformly in £,7 € (0,&0). Thus
applying Theorem 1 and Line 19-21 in Page 104 of [2] yields that for any 3 € (0,1) one has

"u:”ca(a) <C, (4.3)

where the constant does not depend on €,7 € (0,¢0). From this it follows that there exist a
function u. and a subsequence uZ* (ex,7x — 0, as k — 00) of u, such that limg o0 u7* = u. in
C*(G,R?), a € (0,8). (1.3) and (1.9) imply that u, = u,. By the fact that any subsequence
of ul contains a subsequence convergent in C%(G, R?) and the limit is the same function u,, we

may assert
lim u?l =u,, in C*(G,R?). (4.4)

e,7—0

On the other hand, for any € € {0,e9) as a regularizable solution of (1.1) and (1.2), 4, is the
limit of some subsequence uZ* of uT in W1P(G, R2). For large k, ul* satisfies (4.3) and hence it
contains a subsequence, where for simplicity we suppose it is 7* itself, such that limg_,oo ul* = w
in C*(G, R?), where the function w must be %, by (1.3). Combining this with (4.4) we finally
obtain lime—,0 e = up, in C*(G, R?) and complete the proof of the theorem.
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