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Abstract: In this paper, we introduce a new mapping in connection to a recent generalization
of Hadamard’s inequalities for convex functions which gives a continuous scale of refinements
of the mentioned inequalities. Some applications are also mentioned.
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For refining the famous Hadamad’s inequalities

f(a—zi—b)sﬁ/:f(x)dxsf(a);f(b),

in which f : [a,b] — R be a convex function, Dragomir.S.S. established a mapping as followsl1l:
Let f: [a,b] — R be a convex function, F : [0,1] — R be defined by

1 b pb
F(t)=W/a/af(tx+(l—t)y)dzdy.

Then
@) F(r+1/2)=F(1/2—7) for all 7 in [0,1/2];
(ii) F is convex on [0,1];

(iii) We have
sup F(t)=F(0)=F(1)=—-1-—/bf(z)dz
t€[0,1] b-aJ, ’
. _ 1 bt (z+y .
r-rom=is [ [1(55) o

(iv) The following inequality is valid:

/(45 =r (2)

(v) F decreases monotonically on [0,1/2] and increases monotonically on [1/2, 1};
(vi) For another mapping in [1]

H(t)=ﬁ£bf(tx+(1:t)a;b)m, te(0,1],

Received date: 2003-09-29

© 1995-2005 Tsinghua Tongfang Optical Disc Co., Ltd. All rights reserved.



400 B ¥ B K 5 F ®R 25%

we have the inequality H (t) < F (¢) for all t € [0,1]. By using this mapping F, Dragomir S.S.
has proved some specific inequalities!!.

In a recent paper(?l, Wang L.C. generalized the inequalities (1) as follows: Let f : [a,b] — R
be a convex function, for p,q € (0,1), with p+ g =1 and § = pa + ¢b, then

f (pa +gb) < (/f(x)dx+ /f(m)dz) < pf (a) +af (b). (3)

b-a

If f is a strictly convex function, the two inequalities in (3) are strict.

The main purpose of this paper is to introduce a new mapping in connection to the left
inequality of (3) which is a generalization of the mapping F and gives a continuous scale of
refinements of this inequality. Some applications are also mentioned.

Theorem Let f : [a,b] — R be a convex function. Let mapping F : [0,1] — R be defined by
_ 1 p? § L
F(f) =—t —2/ [ £a+a-0y)dnsy + / / f(tz+ (1 — t) ) dady +
(b—a) |9° Ja Ja ¢ Ja
£ b ¢ b pb
//f(ta:+(1—t)y)d:cdy +% [ [ £zt -y dsey )
a JE P Je Je
in which p,q and £ are as in (3). Then F has the following properties:
(i) F(r+1/2)=F(1/2—7) for all T in [0,1/2);
(ii) F is convex on [0,1]. If f is strictly convex on [a,b], F is strictly convex on [0, 1];

(iii) We have

sup F(t) =F(0) =F(1) =

Sup FO=F ( /f(z)dz+ /f(a:)d:c)
Jdaf F(0) =F(1/2) = (qu/ ( +y)ddy // (z+y)dxdy+
// (“y)dxd L[ () onm)

(iv) The following inequality is valid:

Ff(pa+gb) <F(1/2).

If f is strictly convex on [a,b], the inequality is strict.

(v) F decreases monotonically on [0,1/2] and increases monotonically on [1/2,1). If f is
strictly convex on [a, b], the corresponding monotony of F is strict.

(vi) For another mapping in connection to the inequalities (3)

H(t) =

(/f(qtm+(1—t)€)dx+q/ f(Pt$+(1—t)€)d$)
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we have the inequality H (t) < F (t), for all t € [0, 1].
If f is strictly convex on [a, b], the inequality for all ¢ in [0, 1) is strict.

P D) =g (B [ ((+2) o (3o ) e
[ L1(( ) (r) ) s
// (( )“(a‘“’) )““"‘“
—// (r+2)es (3-)o)aes]
s B L L ()= (rrd) )asas
[Lr(G)e(+3)
[L1(G)er (r3)w)

(ii) For a,B € (0,1) with a + =1, t;,t2 € [0,1] and z,y € {a,b], by the convexity of f,

f((oty + Bt2)+ (1 — (oty + Bt2))y) = f(a(az + (1 — t1) y) + B (t2z + (1 — £2) )

<af(tiz+ (1 —t)y) +Bf(taz+ (1 —t2)y).

Substituting this relation in (4), we have

F (aty + Bt2) < oF (t) + BF (t2).

So F is convex on [0, 1].

(6)

If f is strictly convex on [a, ], the inequalities (5) and (6) are strict, so F is strictly convex

on [0, 1].
(iii) For all z,y on [a,b) and t on [0, 1], we have

fz+(Q-t)y) <tf(z)+(Q-t) f(y).
Then by (4), we get

§ ¢
F(t)s(j;_l—a);[z—:/ [ tr@+0-9f @) sy +
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b pé
/E/G(tf(x)+(1—t)f(y))dxdy+
£ b
/ /g (tF (@) + (1~ 1) f (3)) dady +

b b
1%2 /E /6 (tF @)+ (1 -1)f (y))dxdy]

2 p€ b
=bia[%/a f(x)dx+qt/€ f(z)dz +
¢
(l—t)p/ f(m)dx+tp/€f(x)dm+

b b
q(l—»:>/£ f(z)dz + q;f/g f(x)dx]

3 b
= (2/ f(a:)dawf,/5 f(w)d:v) ~F(0)=F().

Since f is convex on {a, b}, for all ¢ on [0,1] and z,y on [a, b}, we have

£(3) <50 e+ a-99)+ F(a =Dz +a)).

Then by (4), we get

P(5) e [ (55 amoe [ [ 1(52) e
// (+y)ddy+—// (x+y>dxd}

E(b_’"[ //f(t:z:+ —t)y)d:cdy+//ftx+(1—t)y)d:cdy+

/a/{f(tx+(1—t)y)dxdy+F/€/€f(tx+(1-t)y)dxdy+

2 r§ ré b ¢
%5/0/0f((l—t)w+ty)dxdy+/6/af((1—t)x+ty)dxdy+
§ b 7 L
/afff((l—t)ﬂty)dxdw?/f/{f((l_tmty)dzdy}
2 r€ € b €
=(—b—_17)2-[5—2/a/;f(t:z:+(1—t)y)da:dy+/;/f(tx+(1—t)y)dxdy+

§ rb qz b b
/a/Ef(tfc+(1—t)y)dxdy+p/5/sf(tx+(1—t)y)dzdyJ
=F(t).
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(iv) By using Jensen’s inequality for double integrals, with simple computations, we have

[ (55 mz - (e [ [ (55) =)
=g (b—a)’ f(““)

/:[f(x;y>dxdy_>_(b—§)(€—a)f(m/:/:(x;y)dxdy)

2£+a+b)
)d:z:dy)

=pq(b-a)’ f( 1
) )

// 125 dotr= €~ - f)f((e D= 5//(
2§+a+b)’
[ [

=pq(b-a)’ f( 1

Y dzty 2 (- g)f((b = (5

= (b-a) f(“”)

therefore
F(;) f(§+a>+ f(2£+a+b>+qu<2§+4a+b> f(§+b)
2pf (3e+2) +of (o4 7) 2 1 0av ). )

If f is strictly convex on [a, b], the inequalities (7) are strict.
(v) Since F (t) is convex on [0, 1], we have for t1,t2 € (1/2,1},; < ta,

Fto)-Ft)) = .\ 1
Tamn B =gTp

/:/sf+(t1z+(l—tl)y)(x—y)drcdy+

2 prE rE
[2—2/ / f+ iz +(1-t)y) (z-y) dedy+

fff:f+(t1x+(1—tl)y)(a:—y)d:cdy+

b pb
+:_’);/E/€f+(tx+(1—t)y)(x—y)dxdy}- ®)

By the convexity of f on [a, ], we deduce
(z-y)(1—-2t)
) 2

).

£(55Y) - stz + a1 -t)0) > fr b+ @ -}y

for all z,y on [a,b] and t; € (1/2,1), which is equivalent to

@0 sz + @ -0)0) 2 5 (Fa+ -0y - 1 (25
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Integrating the inequality (9) on [a,£] x [a,&},[¢,b] x [a,€],[a,€] x [§,b] and [£,b) x [¢,b]
respectively, and substituting them in (8), we can obtain

F(t2) - F (t)
ta —t

> F+ (t1) 2 2t12— 1 [F(tl) -F (%)] 20, ti1e (1/2, 1), (10)

which shows that F increases monotonically on [1/2, 1].

The fact that F decreases monotonically on [0,1/2] follows from the above conclusion by
using statement (i).

If £ is strictly convex on [a, b], because of the monotony of F on [1/2, 1], the right inequality
in (10) is strict, and so F increases monotonically strictly on (1/2,1). Therefore, F increases
monotonically strictly on [1/2, 1], and decreases monotonically strictly on [0, 1/2] correspondingly.
So the monotonies of F on [0,1/2] or on [1/2,1] are both strict.

(vi) By using Jensen’s integral inequality, after simple computations, for all ¢ in (0,1) we

F(t)>bla [p—z/-ff(m]iT)/e(tx+(1—t)y)dy)dx+
q/bf(w—/ (tz+(1- t)y)dy)dz+
P/ﬁf(m——)/ (tx+(1—t)y)dy)dx+
—/ (p(b /(ta:+(1 t)y)dy) ]

=bi [%/af(t:c+(1—t)€+a)d:c+q/f(tz+(1—t)€+a)dx+

p/f (tz+(1—t)§+b>d:z+—/ (tx+(1-t)§+b)dx]

[ /f(tx+(1—t)§)dz+§/€ f(tx+(1—t)£)dx]

have

2

2

( /gf(qtm+(1 —t)E)dx+q/ff(ptx+(l—t)§)dx)
=H (t). ’
If f is strictly convex on [a, ], for ¢t € [0,1) the above inequalities are strict, so we have
F(t)>H(t), te[o,1).
The proof is complete.

Remark It is clear that the mapping F is just a special case of the mapping F for p = ¢ =1/2.
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Corollary Let the assumptions of Theorem hold. Then for all t € [0,1], we have

3 b
f(pa+qb)sﬁ(§)sf(t)sb—f;(§/ f(ac)obc+§/€ f(x)dx). (1)

If f is strictly convex on [a, b], then the left inequality and the right inequality in (11) are
strict.
Let f(z) = z" (r > 1), we have

(b- a) [ //(Hy) dzdy +2//( y)rdxdy+
// (m+y)dzdy]

gm[ //(tz+(1—t)y) dxdy+//(tx+(1—t)y) dzdy

(b 1a) [ //(tz+(1't)y) d”dy+//(tz+(1—t)y) dzdy +

[l/El(tx"‘(l_t)y)r-*-;—z/;L(tz+(1—t)y)r@dy]

1 g g P "
— br+1 + ( _) r+1 _ __ar-H) .
<=7 (5 a7 2)" T
Which has generalized and refined the inequality

a+b\" bl —grtl
(T) <otine-g ">V

Let f(z) = €* in (11), we have
2 s, b rE 2 b b
< ?iz-/ / e-?“dxdy+2//e—¥"dxdy+-q—2f/e—?‘dxdy
(b—a) |9 Ja Ja £ Ja p°Je Jg
b
<L |7 / ¢ / ® et -0vgzay + / / ¢ etotU-Odndy +
—(b—a)2 q2 a Ja £ Ja
£ b e [t
/ / et:l:-{-(l—t)ydzdy +_/ / eta:+(l-t)ydxdy
a P2 £ JE
1 (q b+ (P 2) epa+qb_£ea> .
“b—a q p q

Which has generalized and refined the inequality
ot 22

b—a
Let f(z) =2, 0<a<bin (11), we have

2 €t b 6 o
LIPS . ”—2// 2 da:dy+2//——d:cdy+
patgb (b-a)* \¢*Ja Jo TH+Y e Ja THY

(pa+gb)" <

epatab
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g’/b/bxiydxdy)-(b e ( f/tw+d(xldzt)y+
/ / (2] +d(xld-lit / / tz +d(mldf t)y *
L[ [ oty <its (Gmoe (B-2)me-2ima).

Which has generalized and refined the inequality

2 < Inb~Ina
a+b b—a °
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