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Abstract: Each vertex of a graph G = (V, E) is said to dominate every vertex in its closed
neighborhood. A set S C V is a double dominating set for G if each vertex in V is dominated
by at least two vertices in S. The smallest cardinality of a double dominating set is called the
double dominating number dd(G). In this paper, new relationships between dd(G) and other
domination parameters are explored and some results of (1] are extended. Furthermore, we
give the Nordhaus-Gaddum-type results for double dominating number.
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1. Introduction

Let G = (V,E) be graph with |V| = n and |E| = m . Each vertex of a graph is said
to dominate every vertex in its closed neighborhood. A set S C V is a dominating set if each
vertex in V is dominated by some vertex of S. The domination number (G) is the minimum
cardinality of dominating set. Set S is a double dominating set for G if every vertex in V is
dominated by at least two vertices in S. The minimum cardinality of a double dominating set
is the double domination number, denoted by dd(G). We refer to a minimum dominating set as
~-set and a minimum double dominating set as a dd-set.

A graph G is claw-free if it does not contain any K 3 as an induced subgraph. The degree,
neighborhood and closed neighborhood of a vertex z in the graph G are denoted by d(z), N(z)
and N[z] = N(z) U {z}, respectively. For X C V, we write N(X) = UzexN(z) and N[X] =
N(X)UX. Let 6(G) and A(G) denote the minimum degree and the maximum degree of the
graph G. The graph induced by X C V is denoted by G[X]. Let C,, and K -1 denote a cycle
and star with n vertices, respectively. Let diam(G) denote the diameter of G, and let d(u,v)
denote the shortest distance between u and v.

Frank Harary and Teresa W. Haynes!!! initiate the study of double domination in graph.
They present bounds and some exact values for dd(G) and explore some relationships between
dd(G)and other domination parameters. In this paper, new relationships between dd(G) and
other domination parameters are explored and some results of [1] are extended. Furthermore,
we give the Nordhaus-Gaddum-type results for double dominating number.
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2. New relationships between double domination number and other
domination parameters

We consider relationships between dd(G) and the domination number v(G) as follows.

Lemma 1! For any graph G with no isolated vertices, y(G) < dd(G) — 1 and this bound is

sharp.
But if G is claw-free, we can improve the bound.

Theorem 2 Let G be a claw-free graph, then 4(G) < %i-(gl and the bound is sharp.

Proof Let X be a dd-set of G, and let S’ be a y-set of G[X]. For @; = (V\ X))\ N(5') , let
Q2 be a maximal independent set in G[@,]. Firstly, we claim that no two vertices in Q2 have a
common neighbor in X. Otherwise, assume that two vertices q, ¢’ € Q2 have a common neighbor
z € X. For y € S'NN(z), the graph Glg, ¢’, z,y] is an induced claw in G which is a contradiction.
Hence, no two vertices in @2 have a common neighbor in X. Since every vertex in Q2 has at
least 2 neighbors in X, we obtain |Q2| < K’-E—lﬂ It is obvious that the set S = S'UQ2 is a

dominating set of G. So,

dd(G) +~(G[X])

Y(G) <18 =18 +1Q2| < +18| = .

1X| - 15]
2

2
Since the minimum degree of G[X] is at least 1, it follows that
X| dd(G
e < E1 - 249,

Hence,

dd(G) + 25 3dd(G)
7(G) < 5 ==

The bound is sharp as can be seen by the graph G with vertex set V(G) = {y:|]1 <1 < 4}U{g;;]1 <

i < j < 4} and edge set E(G) = {y1y2, Y3y, 413923, 423024, 924G14, G1aq13} U {Gij¥s, Gi5y5]1 < i <
j < 4}. Clearly, G is claw free and dd(G) =4, 7(G) =3=4x 3.
S. T. Hedetniemi and Renu Lasker(? define a connected dominating set S of G to mean S

is a dominating set and G[S] is connected. The minimum cardinality taken over all connected
dominating sets is called the connected domination number of G, denoted by 7.(G).

Frank Harary and Teresa W. Haynesl! show that no particular inequality holds between
dd(G) and ~.(G) by some examples.

Lemma 31 dd(Cp) = [2] <n—2=7(Cn) forn > 9; dd(K1 ) =m+1>1 = 7(K1,m) for
m > 1; dd(Cs) = 4 = v.(Cs).
However, we can obtain a general relationship between dd(G) and 7.(G) by a method of [4].

Theorem 4 For every connected graph G = (V, E), 7.(G) < 2dd(G) — 2.

Proof Let G be connected, and X C V be a double dominating set of size dd(G). Following
[4], we construct a connected dominating set C' from a double dominating set X by adding in
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every step at most 2 vertices to the double dominating set X such that at least two component
of G[X] form a connected component in G{X’], where X" is the union of X and the new vertices.
This keeps X := X’ a double dominating set and we get a connected dominating set after at
most number of components of X minus 1 steps (Note that two vertices connecting at least two
components of G{X] ever exist, since otherwise X would not be a double dominating set!)

Now since G[X] has at most %—l components, thus we get a connected dominating set C O X
by adding at most 2( L%—lj —1) < | X| — 2 vertices, consequently,

7(G) < 21X| - 2 = 2dd(G) — 2.

3. Nordhaus-Gaddum-type results for double dominating number

Nordhaus and Gaddum provided some best possible bounds on the sum of the chromatic
numbers of a graph and its complement in [5]. A corresponding result for the domination number
was presented by Jaeger and Payanl®): If G is a graph of order n > 2, then v(G) +v(G) < n+1.
An improved upper bound is due to Joseph and Arumugam: If G is a graph of order n such that
neither G nor G has isolated vertices, then v(G) + v(G) < =,

We now prove some best possible bounds on the sum of double domination numbers of a

graph and its complement.

Lemma 51! Let G be a graph with no isolated vertices. Then 2 < dd(G) < n and these bounds

are sharp.
Lemma 6! Let G be a graph with §(G) > 2 and n 5 3,5. Then dd(G) < | %] +¥(G) - 1.
Theorem 7 IfG is disconnected and with no isolated vertices, then dd(G) < 4.

Proof If G is disconnected, then let the components of G be G1,G2, -+,Gy. If w > 3 and
v; € V(G;) for i = 1,2,3, then {v;,v2,v3} is a double dominating set of G, so dd(G) < 3. If
w = 2, since G is a graph with no isolated vertices, |[V(G;)| > 2 for i = 1,2. Let vy1,v12 € V(Gy)
and vg1,v22 € V(G2), then {v11,v12,v21,v22} is a double dominating set of G. So dd(G) < 4.

Theorem 8 Let G be a connected graph. If the diameter of G is at least 4, then dd(G) < 4.

Proof If G is connected, let u,v be two vertices of G such that the distance from u to v is
diam(G), and assume the vertices sequence of the distance to be u = vov;---vg = v. Hence
d > 4 and {vo,v1,v4-1,vq} is a double dominating set of G. Sodd(G) <4.

Theorem 9 Let G be graph with no isolated vertices and A(G) < n — 1. If the diameter of G
or G is more than 2, Then dd(G) + dd(G) < n + 4.

Proof Since G is a graph with no isolated vertices and A(G) < n — 1, G is a graph with no
isolated vertices and A(G) <n — 1.
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Case 1 G or G is disconnected. Without loss of generality, we assume that G is disconnected.
Then by Lemma 5 and Theorem 7, dd(G) + dd(G) < n +4.

Case 2 Both G and G are connected. If the diam(G) > 4 or diam(G) > 4 , then by Lemma 5
and Theorem 8, dd(G) + dd(G) < n +4.

Case 3 Both G and G are connected with diam(G) = 3 and diam(G) = 3. Let u,v be
two vertices of G such that d(u,v) = 3, and let the family W = {V, 1, V2, V3} be the level
decomposition of G with respect to u, where V; = {z : d(u,z) =i} for i = 0,1, 2, 3. It is obvious
that {u} =V and v € V3.

Case 3.1 There exist two vertices u and v with d(u,v) = 3 such that the level decomposition of
G with respect to either u or v, say u, satisfy |V3| > 2. If there exists a vertex s € V3 such that
s is adjacent to only one vertex of V2, say t € V5, and let w € V3 and w # s, then {u,s,t,w} isa
double dominating set of G. So dd(G) < 4. By Lemma 5, the theorem holds. If every vertex of
V3 is adjacent to at least two vertices of Vo, then let Va; = {2 € V4 : there exists at least a vertex
y € V3 such that y is not adjacent to z} and Va2 = {z € V2 : z is adjacent to every vertex of V3}.
So Vo U Va2 U V3 is a double dominating set of G and Vo U V; U Va; U Vas is a double dominating
set of G, so
dd(G) < [Vo| + |Vi| + |[Vau| + V22|

and
dd(G) < |Vo| + |Va| + | Vaa.

Hence
dd(G) + dd(G) < [Vol + [Vl + [Var| + |Vaz| + Vol + [Va] + [Vaz| = [V(G)| + |Vzo| + 1.

If |Va2] < 3, then the theorem holds. If |Vao] > 3, then let s,t € Vop and w € V. So VoUWV U
Va1 U {s,t,w} is a double dominating set of G, dd(G) < |Vo| + |V1| + |Va1| + 3. Hence,

dd(G) + dd(G) < |Vo| + [VA| + [Var| + 3+ [Vo| + V3] + |Vaz| = n + 4.

Case 3.2 For arbitrary two vertices 4 and v with d(u, v) = 3, the level decomposition of G with
respect to arbitrary vertex u or v, say u, has |Va| = 1. That is to say Vp = {u} and V3 = {v}.

Case 3.2.1 Either d(u) =1 or d(v) = 1; Without loss of generality, we assume d(u) = 1. Hence
[Vol = |V1] = |V3| = 1. Let Vo1 = {z € V2 : z is not adjacent to v}, and let Va2 = V2 — V5. Since
Vaz # 0, let t € Vaz. So, VoUW UV;2UV; is a double dominating set of G and VoUV; UVz UVaU{t}
is a double dominating set of G, so

dd(G) < |Vol| + [Va| + |Va1| + [V3]| +1

and
dd(G) < |Vo| + |Vi| + [Vae| + V3.



3 CHEN Xue-gang, et al: Some new results of double domination in graphs 455

Hence
dd(G) + dd(G) < Vol + Vil + |Var| + [Va| + 1 + Vo + |Va| + [Vaa| + V3| = n + 4.

Case 3.2.2 d(u) > 2 and d(v) > 2. That is to say |V1| > 2 and |V3| > 2. We have the following
claims:

Claim 1 For each vertex s € Vi, d(s) > 2. Otherwise assume s € V; and d(s) = 1, then
d(v, s) > 4, which is a contradiction.

Claim 2 For each vertex s € V3, d(s) > 2. Otherwise if there exists a vertex s € Vz and d(s) = 1,
then d(v, s) > 3. So both u and s have distance from v at least 3, which is a contradiction.

Claim 3 For each vertex s € Vi, there exists at least a vertex ¢ € V5 which is adjacent to s.
The proof is similar to that of Claim 2.

Let Vo) = {z € V, : z is not adjacent to v}, Vi3 = {z € Vi : z is adjacent to at least a
vertex Va1 }, Vag = Vo = Vop, Vip = V4 = W43,

Claim 4 For each vertex s € Va1, there exists at least a vertex t € Vo, which is adjacent to s.
The proof is similar to that of Claim 2.

Claim 5 For each vertex s € V(G), we can assume that dz(s) > 2. Clearly, dg(u) > 2 and
dg(v) > 2. If there exists a vertex s € V] such that dg(v) = 1, then there exist rwo verties
w,t € V; such that d(s,w) > 3 and d(s,t) > 3 in G. Then replace G with G, by Case 3.1, the
theorem holds.

If |Va1] < 2, then (G) < 4. Clearly, 7(G) < 2. By Lemma 6, dd(G) < [2] +7(G) -1 <
(3] +3,dd(@) < (3] +7(@) - 1< [2]+1. So

dd(G) +dd(G) < n+4.

Hence, we can assume that [V21| > 3. If there exists a vertex s € Vi; UVz; such that s is adjacent
to all vertices of Vi3 U Vo, then 4(G) < 3. With a similar way as above, the theorem holds. If
for arbitray vertex s € Vi; U Vaa, there is a vertex ¢t € Vj2 U Vo1 such that s is not adjacent to ¢,
then by Claim 4, Vp U Vi3 U Va3 UV is a double dominating set of G and VoUVia UV UV is a
double dominating set of G. So

dd(G) < |Vo| + |Va1] + |Vaz| + [V3]

and
dd(G) < |Vo| + |Viz| + |Vau| + [V4).

Hence,

dd(G) + dd(G) < [Vo| + [Var] + |Vaa| + (V3| + Vol + [Vaal + [Var| + [Va| = n + 2.
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