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Abstract: We study Lie ideals in unital AF C*-algebras. It is shown that if a linear manifold
L in an AF C*-algebra A is a closed Lie ideal in A, then there exists a closed associative ideal
I and a closed subalgebra E; of the canonical masa D of A such that [A,]] C L Cc I + Ey,
and that every closed subspace in this form is a closed Lie ideal in A.
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1. Introduction

Let A be an associative complex algebra, then under the Lie multiplication |z, y] = zy — yz,
A becomes a Lie algebra. A Lie ideal in A is a linear manifold L in A for which [a, k] € L for
every a € A and k € L. In many instances, there is a closed connection between the Lie ideal
structure and the (associative) ideal structure of A. This connection has been investigated for
prime rings in [1], in [2] for B(H), the set of bounded operators on a Hilbert space H, in (3] for
certain von Nuemann algebras, in [4,5) for nest algebras, TUHF algebras and TAF algebras, and
in [6] for UHF algebras. It is interesting to determine the closed Lie ideals in AF C*-algebras.
In [6}, Marcoux had pointed out this problem. In this paper, we give it a groupoid description.
It is shown that if a linear manifold L in an AF C*-algebra A is a closed Lie ideal in A, then
there exist a closed associative ideal I and a closed subalgebra E; of the canonical masa D of A
such that [A,7] € L C I + Ej, and that every closed subspace in this form is a closed Lie ideal
in A.

2. Closed Lie ideals in AF C*-algebras

Let A= m be a unital AF (approximately finite) C*-algebra, where Ap, C Ap41 for
all n > 1 and each A,, is a finite dimensional C*-algebral’=9,

A canonical masa D of A is a maximal abelian self-adjoint subalgebra of A such that
D, = ApnN D is a masa of A, for all n, and D = U D,,.

In addition to the presentation for A described above, we shall make use of coordinization
for A. For the convenience of the reader, we provide a brief sketch of the most relerant aspects
of coordinization.
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Since A is an AF C*-algebra, it is a groupoid C*-algebra. The groupoid can be realized as a
topological equivalence relation on the maximal ideals space X of D. So D & C(X). It is possible
to pick a system of matrix units {ef} : 4,j,n} for A such that, for each n, {ef; : ¢,j} are the
matrix units for A, which generate A, and each e}; can be written as a sum of {e%.+l 4,7} The
matrix units are all normalizing partial isometries for D. (A partial isometry v is normalizing
for D if v* Dv C D and vDv* C D). The action of a normalizing partial isometry on D induces a
partial homeomorphism on X and the equivalence relation G is exactly the union of the graphs
of all the partial homeomorphisms induced by normalizing partial isometries. The multiplication
on G is defined for these pairs of elements (z,y) and (w, z) for which w = y; the product for
a composable pair is given by (z,¥)(y, z) = (z, 2). Inversion is given by (z,y)~! = (y,z). The
topology on G is the one obtained by declaring that each such graph is an open subset of G. It
turns out that these are also closed and in fact, compact. This description makes it clear that
the groupoid is independent of the presentation, but a very hardy fact is that G is the union of
the graphs of the matrix units in the presentations.

The elements of A can be identified with elements of Co(G) (but not all elements of Cq(G)
correspond to elements of A). We will need the formula for multiplication: if f and g are elements
of A viewed as functions in Cp(G), then

fo(zy) =D (=, w)9(w,y),

where u varies over the equivalence class of z (which is the same as the equivalence class of
y). Note, in particular, that if g. € D, then the support of g is in {(z,z) : £ € X} and

fo(z,y) = f(=,v)9(y,y) and gf(z,y) = g(z, ) f(z,y).
We will use frequently the spectral theorem for bimodules(19),

Theorem 2.111°1 If B C A is any closed bimodule over D, then the spectral of B, spec(B) =
{(z,y) € G : f(z,y) # 0 for some f € B} has the property that B = {f € A : supp(f) C
spec(B)}.

With this terminology, spec(D) = {(z,z) : £ € X}. It is customary to identity spec(D)
with X by writing z in place of (z, z).

If I is a closed ideal of A, then I is a bimodule over D. The spectral of I, spec(I) is an
ideal subset of G (i.e. G -spec(I) -G C spec(I)). Consequently, if (z,y) € G \ spec(I), then
(z,z),(y,y) € G\ spec(J). Let A/I denote the quotient C*-algebra of A with respect to I, 7 :
A — A/I be the canonical quotient map. When I # A, denote Er = {f € D: f(z,z) = f(v,y)
whenever (z,y) € G \ spec(I)}; when I = A, denote E; = 0.

Proposition 2.2 Ej is a closed subalgebra of D, and E; + I = n~Y(Z(A/I)), where Z(A/I) is
the center of A/I.

Proof Clearly, E; is a subalgebra of D. Let {f,} be a sequence in E; such that lim f, = f.
Since D is closed, f € D. Because Gelfand transform is an %-isomorphism, f,(z) converges
to f(x) uniformly on X. Since fu(z,z) = f.(y,y) whenever (z,y) € G \ spec(I), we have
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f(z,z) = f(y,y). Thus f € Ep, and Ej is closed.

Fix f € E1, g € A. If (z,y) € G\ spec(]), then f(z,z) = f(y,y), and (fg — gf)(z,y) =
f(z,2)9(z,y) — 9(z,9)f(y,y) = 0. By Theorem 2.1, fg — gf € I. Consequently, n(f)m(g) =
7(g)7(f). This implies that n(f) € Z(A/I). Thus Er + I C n~Y(Z(A/I)).

On the other hand, fix f € #71(Z(A/I)), so n(f) € Z(A/I). Since 7(D) is a masa of A/I,
we have 7(f) € n(D). Thus there exists f; € D such that f — f1 € I. Let (z,y) € G\spec(I), by
Theorem 2.1. Then there exists h € A\ I such that h(z,y) # 0. Since n(f1)w(h) = n(R)n(f1),
we have fih — hfy € I. Thus (fih — hfi)(z,y) =0, i.e. fi(z,z)h(z,y) = h(z,y)f1(y,y). Since
h(z,y) # 0, we obtain fi(z,z) = fi(y,y). Thus fi € E;. So f = fi+g € Er +I. Thus
Er+1=n"Y(Z(4/I)).

Lemma 2.3 If A is a C*-algebra and I is a closed ideal in A, then [A, 1] = IN[4, A].
Proposition 2.4 [A, I+ E[] C [A,1].

Proof By Lemma 2.3, we only prove [4,E;] C I. In fact, if f € A, g € Ey, and (z,y) €
G\spec(I), then (fg—gf)(=,y) = f(z,z)9(z,y)—9(z, ) f (y,y) = 0. By Theorem 2.1, fg—gf € I.

We will use a classical result of Herstein!!! as follows.

Theorem 2.51) Let A be a ring with no non-zero locally nilpotent ideals. Suppose that in A,
2x = 0 implies that x = 0. Suppose further that U is a Lie ideal of A and also an associative
subring of A. Then, either U contains a non-zero ideal of A or U is contained in the center of A.

The kind of rings stated in Theorem 2.5 includes all C*-algebras.

Theorem 2.6 Let A be a unital AF C*-algebra A. If L is a closed Lie ideal in A, then there
exist a closed associative ideal I and a closed subalgebra Er of the canonical masa D of A such
that [A,I] C L C I+ Ej. On the other hand, every closed subspace in this form is a closed Lie
ideal in A.

Proof Let U(L)={z € A:[z,A] C L}. Then U(L) is a Lie ideal and subring of A, containing
L, and is closed since L is closed. Hence either U(L) C Z(A) or there exists a non-zero ideal
I cUWL). YU(L) c Z(A), then L C Z(A) and I = {0} in the theorem. Otherwise, let
I be a maximal non-zero ideal of A in U(L). Since U(L) is closed, so is I. We claim that
I CcU(L) C E; +1I. In fact, if U(L)/I # 0 in A/I, then U(L)/I is a Lie ideal and subring
in A/I, and is either contained in the center of A/I, or contains a non-zero ideal K of A/I.
In the first case, by Proposition 2.3, I ¢ U(L) C n~}(Z(A/I)) = E; + I. Consequently,
[A,I] C [A,U(L)] € L C Er+I. Since L is closed, we have [4,1] ¢ L C E1 + I. In the second
case, let J = 7~!(K), note that I # J and I C J C U(L) + I = U(L), which is impossible since
J is an ideal of A contained in U(L) and I is maximal in this kind of ideals of A.

If L is a closed subspace of A, and there exists a closed ideal I of A such that {A,I] C L C
Er+ 1, then, by Proposition 2.4, [A, L] C [A, Er + I} = [A,I] C L. This implies L is a closed Lie
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ideal of A.
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WE: AXHART AF C*- REPIA Lie BAE, EH TR AF C*- ¥ A PHLRERE L
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