Vol.25, No.4 Nov., 2005

JOURNAL OF MATHEMATICAL RESEARCH AND EXPOSITION

Article ID: 1000-341X(2005)04-0593-10

Document code: A

Littlewood-Paley Operators on Weighted Lipschitz Spaces

TAN Chang-mei

(Dept. of Math., Western Chongqing University, Yongchuan 402168, China)
(E-mail: cmtan@cqwu.edu.cn)

Abstract: Littlewood-Paley operators, the g-function, the area integral and the function g_{λ}^{\star} , are considered as operators on weighted Lipschitz spaces. It is proved that the image of a weighted Lipschitz function under one of these operators is either equal to infinity almost everywhere or is in weighted Lipschitz spaces.

Key words: Littlewood-Paley operator; weighted Lipschitz spaces; weighted norm inequality,

MSC(2000): 42B25 CLC number: 0174.2

1. Introduction

A nonnegative function w defined on R^n is called a weight if it is locally integrable. We denote by |E| the Lebesgue measure of E, and $w(E) = \int_E w(x) dx$. We use χ_E for the characteristic function of E. If Q is a cube in R^n , dQ stands for the cube concentric with Q and having edge length d times as long. Throughout this paper, the letter C will denote a constant which may change from line to line.

A weight w is said to belong to the Muckenhoutp class A_p , 1 , if there exists a constant C such that

$$\frac{w(Q)}{|Q|} \left(\frac{w^{-\frac{1}{p-1}}(Q)}{|Q|} \right)^{p-1} \le C$$

for all cube $Q \subset \mathbb{R}^n$. The class A_1 is defined by replacing the above inequality by

$$\frac{w(Q)}{|Q|} \le C \operatorname{ess inf}_{x \in Q} w(x).$$

We shall say that a weight w satisfies a doubling condition if there exists a constant C such that

$$w(2Q) \leq Cw(Q)$$

for all cube $Q \subset \mathbb{R}^n$. Given p > 1, we shall say that $w \in \mathbb{R}H(p)$, if w satisfies a reverse Hölder condition, that is,

$$\left(\frac{1}{|Q|}\int_{Q}w^{1+\delta}\mathrm{d}x\right)^{\frac{1}{1+\delta}}\leq C_{0}\frac{1}{|Q|}\int_{Q}w\mathrm{d}x$$

for all cube $Q \subset \mathbb{R}^n$. δ will be called the reverse Hölder constant.

Received date: 2003-11-05

Foundation item: The Scienctific Research Fund of Chongqing Municipal Education Commission (021201)

In [1], E.Harboure, O.Salinas and B.Viviani introduced the weighted Lipschitz spaces.

Let w be a weight and $-1 \le \beta < 1/n$. We say a locally integrable function f belongs to $\mathcal{L}_w(\beta)$ if there exists a constant C such that

$$\frac{1}{w(Q)|Q|^{\beta}}\int_{Q}|f(x)-f_{Q}|\mathrm{d}x\leq C$$

for all cube $Q \subset \mathbb{R}^n$, where $f_Q = (1/|Q|) \int_Q f(x) dx$. The smallest constant C satisfying this inequality will be denoted by $||f||_{\mathcal{L}_w(\beta)}$.

We denote by $\bar{\mathcal{L}}_w(\beta)$ the space of the locally integrable functions f such that the inequality

$$rac{1}{\left(w^{rac{1}{1+eta}}(Q)
ight)^{1+eta}}\int_{Q}|f(x)-f_{Q}|\mathrm{d}x\leq C$$

holds for a fixed constant C and for all cube $Q \subset \mathbb{R}^n$. The smallest constant C will be called $||f||_{\bar{\mathcal{L}}_{w}(\beta)}$.

Let us observe that for $\beta = 0$, both of the spaces $\mathcal{L}_w(\beta)$ and $\bar{\mathcal{L}}_w(\beta)$ coincide with one of the versions of weighted bounded mean oscilation space, introduced by Muckenhoupt and Wheeden in [2]. Moreover, for the case $w \equiv 1$, the above definitions give the known Lipschitz integral spaces for β in the range $0 < \beta < 1/n$, and the Morrey spaces for $-1 < \beta < 0$.

For $x \in \mathbb{R}^n$ and y > 0, the Poisson kernel for the upper half-plane, \mathbb{R}^{n+1}_+ , is $P(x,y) = C_n y/(y^2 + |x|^2)^{-(n+1)/2}$. The Poisson integral of f is $u(x,y) = \int_{\mathbb{R}^n} f(z) P(x-z,y) dz$.

Given a point $x \in \mathbb{R}^n$, define the cone at x by $\Gamma(x) = \{(z,y) \in \mathbb{R}^{n+1}_+ : |z-x| < y\}$. The g-function g(f), the Lusin area integral s(f), and the Littlewood-Paley function g^*_{λ} are defined by

$$g(f)(x) = \left\{ \int_0^\infty y |\nabla u(x,y)|^2 dy \right\}^{1/2},$$

$$s(f)(x) = \left\{ \iint_{\Gamma(x)} y^{1-n} |\nabla u(z,y)|^2 dz dy \right\}^{1/2},$$

and

$$g_{\lambda}^{*}(f)(x) = \left\{ \iint_{R_{+}^{n+1}} (y/(y+|z-x|))^{\lambda n} y^{1-n} |\nabla u(z,y)|^{2} dz dy \right\}^{1/2},$$

where $\nabla u(x,y) = \left(\frac{\partial u}{\partial x_1}(x,y), \dots, \frac{\partial u}{\partial x_n}(x,y), \frac{\partial u}{\partial y}(x,y)\right)$.

The boundedness of Littlewood-Paley operators in Lipschitz spaces is already sufficiently discussed [3,6,4,5]. Qiu^[7] have considered the Littlewood-Paley operators on weighted bounded mean oscilation space.

Let Tf be one of the Littlewood-Paley operators g(f), s(f), g_{λ}^* , for weighted Lipschitz spaces, then we get the following conclusions.

Theorem 1 Let $w \in A_1$, $-1 \le \beta < 1/n$, $\lambda \ge (2+\delta)/(1+\delta) + 2/n$ and $f \in \mathcal{L}_w(\beta)$, then either $Tf(x) = \infty$ a.e., or $Tf(x) < \infty$ a.e. and there is a constant C independent of f and x such that

$$||T(f)||_{\mathcal{L}_w(\beta)} \le C||f||_{\mathcal{L}_w(\beta)}$$

where δ is the weight w's reverse Hölder constant.

Theorem 2 Let $w \in A_1$, $0 \le \beta < 1/n$, $\lambda \ge (2+\delta)/(1+\delta) + 2/n$ and $f \in \bar{\mathcal{L}}_w(\beta)$, then either $Tf(x) = \infty$ a.e., or $Tf(x) < \infty$ a.e. and there is a constant C independent of f and x such that

$$||T(f)||_{\bar{\mathcal{L}}_{w}(\beta)} \le C||f||_{\bar{\mathcal{L}}_{w}(\beta)},$$

where δ is the weight w's reverse Hölder constant.

2. Some lemmas

The proofs of the theorems are based on the following lemmas.

Lemma 1 Let $w \in A_1$, $-1 \le \beta < 1/n$, $\max\{1, 1+\beta\} , <math>f \in \mathcal{L}_w(\beta)$, and Q be a cube centered at x_0 , having edge length r. There is a constant C depending on n, β so that for y > 0

$$\int_{R^n} \frac{|f(x) - f_Q|}{y^{np} + |x - x_0|^{np}} dx \le C y^{n - np} (y^{n\beta} + r^{n\beta}) \max \left\{ \frac{w(Q)}{|Q|}, \frac{w(\frac{y}{r}Q)}{|\frac{y}{r}Q|} \right\} ||f||_{\mathcal{L}_w(\beta)}, \tag{1}$$

and for $d \ge 1$

$$\int_{\mathbb{R}^n} \frac{|f(x) - f_Q|}{y^{n+d} + |x - x_0|^{n+d}} dx \le Cy^{-d} (y^{n\beta} + r^{n\beta}) \max \left\{ \frac{w(Q)}{|Q|}, \frac{w(\frac{y}{r}Q)}{|\frac{y}{r}Q|} \right\} \|f\|_{\mathcal{L}_w(\beta)}. \tag{2}$$

Proof Arguing as in [8]. Let Q_k be the cube concentric with Q and having edge length $2^k r$, then we have

$$\begin{split} |f_{Q_k} - f_{Q_{k-1}}| & \leq \frac{1}{|Q_{k-1}|} \int_{Q_{k-1}} |f(x) - f_{Q_k}| dx \leq C \frac{w(Q_k)|Q_k|^{\beta}}{|Q_{k-1}|} \|f\|_{\mathcal{L}_w(\beta)}, \\ \int_{Q_k} |f(x) - f_Q| \mathrm{d}x & \leq \int_{Q_k} |f(x) - f_{Q_k}| \mathrm{d}x + |f_{Q_k} - f_Q||Q_k| \\ & \leq W(Q_k)|Q_k|^{\beta} \|f\|_{\mathcal{L}_w(\beta)} + C|Q_k| \sum_{j=1}^k \frac{w(Q_j)|Q_j|^{\beta}}{|Q_j|} \|f\|_{\mathcal{L}_w(\beta)} \\ & \leq C \|f\|_{\mathcal{L}_w(\beta)} \sum_{j=1}^k 2^{(k-j)n} w(Q_j) |Q_j|^{\beta}. \end{split}$$

Hence

$$\begin{split} & \int_{R^n} \frac{|f(x) - f_Q|}{r^{np} + |x - x_0|^{np}} \mathrm{d}x \\ & = \int_{Q} \frac{|f(x) - f_Q|}{r^{np} + |x - x_0|^{np}} \mathrm{d}x + \sum_{k=1}^{\infty} \int_{Q_k \backslash Q_{k-1}} \frac{|f(x) - f_Q|}{r^{np} + |x - x_0|^{np}} \mathrm{d}x \quad \text{where } Q_0 = Q \\ & \leq r^{-np} \int_{Q} |f(x) - f_Q| \mathrm{d}x + \sum_{k=1}^{\infty} (2^{k-1}r)^{-np} \int_{Q_k} |f(x) - f_Q| \mathrm{d}x \\ & \leq C r^{-np} w(Q) |Q|^{\beta} ||f||_{\mathcal{L}_w(\beta)} + C ||f||_{\mathcal{L}_w(\beta)} \sum_{k=1}^{\infty} (2^k r)^{-np} \sum_{j=1}^k 2^{(k-j)n} w(Q_j) |Q_j|^{\beta}. \end{split}$$

Since $w \in A_1$, we have $w(Q_j) \leq Cw(Q_j \setminus Q_{j-1})$ and $w \in A_{p-\beta}$ $(p-\beta > 1)$,

$$\int_{R^n} \frac{w(x)}{r^{n(p-\beta)} + |x-x_0|^{n(p-\beta)}} \mathrm{d}x \leq C r^{n-n(p-\beta)} \frac{w(Q)}{|Q|}.$$

We have^[8]

$$\sum_{k=1}^{\infty} (2^{k}r)^{-np} \sum_{j=1}^{k} 2^{(k-j)n} w(Q_{j}) |Q_{j}|^{\beta}
\leq C \sum_{j=1}^{\infty} \sum_{k=j}^{\infty} 2^{-(k-j)(p-1)n} (2^{j}r)^{-np} w(Q_{j} \setminus Q_{j-1}) |Q_{j}|^{\beta}
\leq C \sum_{j=1}^{\infty} (2^{j}r)^{-np} w(Q_{j} \setminus Q_{j-1}) (2^{j}r)^{n\beta}
\leq C \sum_{j=1}^{\infty} \int_{Q_{j} \setminus Q_{j-1}} \frac{w(x)}{r^{n(p-\beta)} + |x-x_{0}|^{n(p-\beta)}} dx
\leq C \int_{\mathbb{R}^{n}} \frac{w(x)}{r^{n(p-\beta)} + |x-x_{0}|^{n(p-\beta)}} dx \leq C r^{n-n(p-\beta)} \frac{w(Q)}{|Q|}.$$

Thus

$$\int_{R^{n}} \frac{|f(x) - f_{Q}|}{r^{np} + |x - x_{0}|^{np}} dx \leq Cr^{-np} w(Q) |Q|^{\beta} ||f||_{\mathcal{L}_{w}(\beta)} + Cr^{n-n(p-\beta)} \frac{w(Q)}{|Q|} ||f||_{\mathcal{L}_{w}(\beta)}
\leq Cr^{n-n(p-\beta)} \frac{w(Q)}{|Q|} ||f||_{\mathcal{L}_{w}(\beta)}.$$
(3)

To complete the proof of (1), let R be the cube concentric with Q and having edge length y. If y > r, let k satisfy $2^k r \le y < 2^{k+1} r$, then $w(R) \le w(2^{k+1} Q) \le Cw(\frac{y}{r} Q)$. Hence, by (3)

$$\int_{R^{n}} \frac{|f(x) - f_{Q}|}{y^{np} + |x - x_{0}|^{np}} dx
\leq \int_{R^{n}} \frac{|f(x) - f_{R}|}{y^{np} + |x - x_{0}|^{np}} dx + |f_{R} - f_{Q}| \int_{R^{n}} \frac{1}{y^{np} + |x - x_{0}|^{np}} dx
\leq Cy^{n-n(p-\beta)} ||f||_{\mathcal{L}_{w}(\beta)} \frac{w(R)}{|R|} + y^{n-np} |f_{R} - f_{Q}|
\leq Cy^{n-n(p-\beta)} ||f||_{\mathcal{L}_{w}(\beta)} \frac{w(\frac{y}{r}Q)}{|\frac{y}{r}Q|} + y^{n-np} |f_{R} - f_{Q}|.$$

Arguing as in [3], we have

$$|f_R - f_Q| \le C(y^{n\beta} + r^{n\beta}) \frac{w(Q)}{|Q|} ||f||_{\mathcal{L}_w(\beta)}.$$
 (4)

Hence,

$$\int_{B^n} \frac{|f(x) - f_Q|}{y^{np} + |x - x_0|^{np}} \mathrm{d}x \le C y^{n - np} (y^{n\beta} + r^{n\beta}) \max \left\{ \frac{w(Q)}{|Q|}, \frac{w(\frac{y}{\tau}Q)}{|\frac{y}{\tau}Q|} \right\} \|f\|_{\mathcal{L}_w(\beta)}.$$

When y < r, by exchanging y and r, we shall get the same estimate as above. Thus, we finish the proof of (1).

Taking p = (n+d)/n in (1), (2) follows. This completes the proof of Lemma 1.

Remark 1 Repeating the argument of the proof of Lemma 1, for $f \in \bar{\mathcal{L}}_w(\beta)$, we can prove

Let $w \in A_1$, $0 \le \beta < 1/n$, $1/(1+\beta) , <math>f \in \bar{\mathcal{L}}_w(\beta)$ and Q be a cube centered at x_0 , having edge length r. There is a constant C depending on n, β so that for y > 0

$$\int_{R^{n}} \frac{|f(x) - f_{Q}|}{y^{np(1+\beta)} + |x - x_{0}|^{np(1+\beta)}} dx
\leq C y^{n-np(1+\beta)} (y^{n\beta} + r^{n\beta}) ||f||_{\bar{\mathcal{L}}_{w}(\beta)} \left\{ \max \left(\frac{w^{\frac{1}{1+\beta}}(Q)}{|Q|}, \frac{w^{\frac{1}{1+\beta}}(\frac{y}{r}Q)}{|\frac{y}{r}Q|} \right) \right\}^{1+\beta},$$

and for d > 0

$$\int_{R^{n}} \frac{|f(x) - f_{Q}|}{y^{n+d} + |x - x_{0}|^{n+d}} dx
\leq C y^{-d} (y^{n\beta} + r^{n\beta}) ||f||_{\bar{\mathcal{L}}_{w}(\beta)} \left\{ \max \left(\frac{w^{\frac{1}{1+\beta}}(Q)}{|Q|}, \frac{w^{\frac{1}{1+\beta}}(\frac{y}{r}Q)}{|\frac{y}{r}Q|} \right) \right\}^{1+\beta}.$$

Lemma 2 Let $w \in A_1$, $f \in \mathcal{L}_w(\beta)$ and Q be a cube. There are constants C_1 and C_2 such that for t > 0

$$w(\lbrace x \in Q : |f(x) - f_O||Q|^{-\beta}w(x)^{-1} > t \rbrace) \le C_1 \exp(-C_2 t)w(Q).$$

Proof The proof of Lemma 2 is based on the method of John and Nirenberg^[2]. We omit the details.

Lemma 3 Suppose that $w \in A_1$, $-1 \le \beta < 1/n$ and $f \in \mathcal{L}_w(\beta)$. Let Q be a cube centered at x_0 with edge length r, and $h(x) = (f(x) - f_Q)\chi_{Q^c}(x)$. If there is an $x' \in dQ$ such that $s(h)(x') < \infty$, where $d = (8\sqrt{n})^{-1}$, then there is a constant C so that for every $x \in dQ$ $s(h)(x) < \infty$ and

$$|s(h)(x)-s(h)(x')|\leq C\frac{w(Q)}{|Q|}|Q|^{\beta}||f||_{\mathcal{L}_{w}(\beta)}.$$

Proof Arguing as in [4], with minor changes in the proof one can obtain the present lemma. we omit the proof for brevity.

Remark 2 For g-function g(f), we also have the similar results as Lemma 3.

Lemma 4 Under the hypothesis of Lemma 3, if there is an $x' \in dQ$ such that $g_{\lambda}^{*}(h)(x') < \infty$, where $\lambda \geq (2+\delta)/(1+\delta) + 2/n$ (δ is w's reverse Hölder constant), there exists a constant C, such that for all $x \in dQ$ $g_{\lambda}^{*}(h)(x) < \infty$ and

$$|g_{\lambda}^*(h)(x)-g_{\lambda}^*(h)(x')|\leq C\frac{w(Q)}{|Q|}|Q|^{\beta}||f||_{\mathcal{L}_w(\beta)}.$$

Proof Let $J_k = \{(z, y) \in \mathbb{R}^{n+1}_+ : |z| < 2^{k-2}r, \ 0 < y < 2^{k-2}r\}, \ k \ge 0$. For $x \in dQ$, we have

$$\begin{split} g_{\lambda}^{*}(h)(x) & \leq \left\{ \iint_{J_{0}} \left(\frac{y}{y + |z|} \right)^{\lambda n} y^{1-n} |\nabla h(x + z, y)|^{2} \mathrm{d}z \mathrm{d}y \right\}^{1/2} + \\ & \left\{ \iint_{R_{+}^{n+1} \setminus J_{0}} \left(\frac{y}{y + |z|} \right)^{\lambda n} y^{1-n} |\nabla h(x + z, y)|^{2} \mathrm{d}z \mathrm{d}y \right\}^{1/2} \\ & = G^{-} + G^{+}. \end{split}$$

Arguing as in [4] we have

$$G^{-} \leq C \left\{ \iint_{J_{0}} \left(\frac{y}{y + |z|} \right)^{\lambda n} y^{1-n} \left(\int_{Q^{c}} \frac{|f(t) - f_{Q}|}{(r + |t - x_{0}|)^{n+1}} dt \right)^{2} dz dy \right\}^{1/2}$$

$$\leq C \left\{ \int_{0}^{r} \int_{|z| < r} \left(\frac{y}{y + |z|} \right)^{\lambda n} y^{1-n} \left(r^{-1+n\beta} \|f\|_{\mathcal{L}_{w}(\beta)} \frac{w(Q)}{|Q|} \right)^{2} dz dy \right\}^{1/2}$$

$$\leq C \frac{w(Q)}{|Q|} |Q|^{\beta} \|f\|_{\mathcal{L}_{w}(\beta)}.$$

And as for G^+ , we have

$$G^+ \leq g_{\lambda}^*(h)(x') + \tau$$

where

$$\tau = \left\{ \iint_{R_{+}^{n+1}\setminus J_{0}} \left(\frac{y}{y+|z|} \right)^{\lambda n} y^{1-n} |\nabla h(x+z,y) - \nabla h(x'+z,y)|^{2} dz dy \right\}^{1/2}$$

$$\leq C \left\{ \sum_{k=1}^{\infty} (2^{k}r)^{-\lambda n} \iint_{J_{k}\setminus J_{k-1}} y^{\lambda n+1-n} \left(\iint_{Q^{c}} |\nabla p(x+z-t,y) - \nabla p(x'+z-t,y)||f(t) - f_{Q}| dt \right)^{2} dz dy \right\}^{1/2}$$

$$\leq C \left\{ \sum_{k=1}^{\infty} (2^{k}r)^{-\lambda n} (A_{k} + B_{k}) \right\}^{1/2}, \tag{6}$$

where

$$\begin{split} A_k &= \int\!\!\int_{J_k \backslash J_{k-1}} y^{\lambda n+1-n} \\ & \left(\int_{Q_{k+1}^c} |\nabla p(x+z-t,y) - \nabla p(x'+z-t,y)| |f(t) - f_Q| \mathrm{d}t\right)^2 \mathrm{d}z \mathrm{d}y, \\ B_k &= \int\!\!\int_{J_k \backslash J_{k-1}} y^{\lambda n+1-n} \\ & \left(\int_{Q_{k+1} \backslash Q} |\nabla p(x+z-t,y) - \nabla p(x'+z-t,y)| |f(t) - f_Q| \mathrm{d}t\right)^2 \mathrm{d}z \mathrm{d}y. \end{split}$$

By the same reason as in [4], we have

$$A_{k} \leq Cr^{2} \iint_{J_{k} \setminus J_{k-1}} y^{\lambda n+1-n} \left((2^{k}r)^{-2} [(2^{k}r)^{n\beta} + r^{n\beta}] \frac{w(Q)}{|Q|} \|f\|_{\mathcal{L}_{w}(\beta)} \right)^{2} dz dy$$

$$\leq Cr^{2} (2^{k}r)^{\lambda n+2n\beta-2} \left(\frac{w(Q)}{|Q|} \|f\|_{\mathcal{L}_{w}(\beta)} \right)^{2}. \tag{7}$$

As for B_k we have

$$B_k \le Cr^2 \left(\int_{Q_{k+1}} |f(z) - f_Q|^s dz \right)^{2/s},$$
 (8)

where $1/s = \lambda/2 - 1/n$, $(2+\delta)/(1+\delta) + 2/n < \lambda < 1 + (2+\delta)/(1+\delta) + 2/n$. We will prove that there is a constant C such that

$$\left(\int_{Q_{k+1}} |f(z) - f_Q|^s dz \right)^{2/s} \le C (2^{k+1} r)^{\lambda n + 2n\beta - 2} \left(\|f\|_{\mathcal{L}_w(\beta)} \frac{w(Q)}{|Q|} \right)^2. \tag{9}$$

Note

$$\left(\int_{Q_{k+1}} |f(z) - f_Q|^s dz\right)^{2/s} \le C \left(\int_{Q_{k+1}} |f(z) - f_{Q_{k+1}}|^s dz\right)^{2/s} + C|f_{Q_{k+1}} - f_Q|^2 |Q_{k+1}|^{2/s}.$$
(10)

For the first term in the above inequality, by Hölder inequality, we have

$$\left(\int_{Q_{k+1}} |f(z) - f_{Q_{k+1}}|^{s} dz\right)^{2/s} \\
\left(\int_{Q_{k+1}} \left(|f - f_{Q_{k+1}}|w^{-1}\right)^{s} w^{s-1} w dz\right)^{2/s} \\
\leq \left(\int_{Q_{k+1}} \left(|f - f_{Q_{k+1}}|w^{-1}\right)^{2} w dz\right) \left(\int_{Q_{k+1}} w^{\frac{s}{2-s}} dz\right)^{(2-s)/s} \quad (s < 2). \tag{11}$$

For the first integral in the above inequality, we have

$$\int_{Q_{k+1}} (|f - f_{Q_{k+1}}| w^{-1})^{2} w dz$$

$$= |Q_{k+1}|^{2\beta} \int_{Q_{k+1}} (|f - f_{Q_{k+1}}| |Q_{k+1}|^{-\beta} w^{-1})^{2} w dz$$

$$= |Q_{k+1}|^{2\beta} \int_{0}^{\infty} tw(\{x \in Q_{k+1} : |f - f_{Q_{k+1}}| |Q_{k+1}|^{-\beta} w^{-1} > t\}) dt$$

$$\leq C|Q_{k+1}|^{2\beta} \int_{0}^{\infty} t \exp(-t/||f||_{\mathcal{L}_{w}(\beta)}) dt \, w(Q_{k+1}) \quad \text{(by Lemma 2)}$$

$$\leq C|Q_{k+1}|^{2\beta} ||f||_{\mathcal{L}_{w}(\beta)}^{2} w(Q_{k+1}). \tag{12}$$

For the second integral in (11), since $1/s = \lambda/2 - 1/n$, and $(2+\delta)/(1+\delta) + 2/n \le \lambda$, it follows

that $s/(2-s) \leq 1+\delta$. By Hölder inequality, we have

$$\left(\int_{Q_{k+1}} w^{\frac{s}{2-s}} dz\right)^{(2-s)/s} \leq \left(\frac{1}{|Q_{k+1}|} \int_{Q_{k+1}} w^{1+\delta} dz\right)^{1/1+\delta} |Q_{k+1}|^{(2-s)/s}
\leq C \frac{1}{|Q_{k+1}|} \int_{Q_{k+1}} w dz |Q_{k+1}|^{(2/s)-1}
\leq C \frac{w(Q_{k+1})}{|Q_{k+1}|^2} |Q_{k+1}|^{\lambda-2/n}.$$
(13)

Therefore, by (11), (12), and (13), we obtain

$$\left(\int_{Q_{k+1}} |f - f_{Q_{k+1}}|^{s} dz \right)^{2/s} \leq C |Q_{k+1}|^{\lambda + 2\beta - 2/n} \left(||f||_{\mathcal{L}_{w}(\beta)} \frac{w(Q_{k+1})}{|Q_{k+1}|} \right)^{2} \\
\leq C (2^{k+1}r)^{\lambda n + 2n\beta - 2} \left(||f||_{\mathcal{L}_{w}(\beta)} \frac{w(Q)}{|Q|} \right)^{2}.$$

As for the second term on the right in (10), by (4), we have

$$|f_{Q_{k+1}} - f_Q|^2 |Q_{k+1}|^{2/s} \le C \left((2^{k+1}r)^{n\beta} + r^{n\beta} \right)^2 \left(||f||_{\mathcal{L}_w(\beta)} \frac{w(Q)}{|Q|} \right)^2 |Q_{k+1}|^{\lambda - 2/n}. \tag{15}$$

Thus, by (15), (14), and (10), it follows that

$$\left(\int_{Q_{k+1}} |f - f_Q|^s dz\right)^{2/s} \le C(2^{k+1}r)^{\lambda n + 2n\beta - 2} \left(\|f\|_{\mathcal{L}_w(\beta)} \frac{w(Q)}{|Q|} \right)^2,$$

so (9) holds.

Thus, by (9) and (8) we have

$$B_k \le Cr^2 (2^k r)^{\lambda n + 2n\beta - 2} \left(\|f\|_{\mathcal{L}_w(\beta)} \frac{w(Q)}{|Q|} \right)^2. \tag{16}$$

Thus, by (6), (7) and (16), we get

$$\tau \leq Cr \|f\|_{\mathcal{L}_{w}(\beta)} \frac{w(Q)}{|Q|} \left\{ \sum_{k=1}^{\infty} (2^{k}r)^{-\lambda n} (2^{k}r)^{\lambda n + 2n\beta - 2} \right\}^{1/2} \\
\leq C \frac{w(Q)}{|Q|} |Q|^{\beta} \|f\|_{\mathcal{L}_{w}(\beta)},$$

which completes the proof of Lemma 4.

Remark 3 For $f \in \tilde{\mathcal{L}}_w(\beta)$, we also have the similar results as lemma 3 and Lemma 4.

3. The proofs of the theorems

We only prove Theorem 1. Theorem 2 can be dealt with quite similarly.

Let Tf be one of the Littlewood-Paley operators. $|E| = |\{x \in \mathbb{R}^n : Tf(x) < \infty\}| > 0$. Let x_0 be a density point of E, and Q' be a cube with center x_0 . Set Q = (1/d)Q' (then Q' = dQ). We write f as

$$f(x) = f_Q + [f(x) - f_Q]\chi_Q(x) + [f(x) - f_Q]\chi_{Q^c}(x)$$

$$= f_Q + g(x) + h(x).$$

Since $Tf_Q \equiv 0$, we have

$$Tf(x) \le Tg(x) + Th(x) \tag{17}$$

and

$$Th(x) \le Tf(x) + Tg(x). \tag{18}$$

For $w \in A_1$, we have $w \in A_2$ and also $w^{-1} \in A_2$. It follows that

$$||T(g)||_{L^{2}(w^{-1}dx)}^{2} \leq C||g||_{L^{2}(w^{-1}dx)}^{2} = C \int_{Q} |f - f_{Q}|^{2}w^{-1}dx$$

$$= C|Q|^{2\beta} \int_{Q} (|f - f_{Q}||Q|^{-\beta}w^{-1})^{2} w(x)dx$$

$$= C|Q|^{2\beta} \int_{0}^{\infty} tw(\{x \in Q : |f - f_{Q}||Q|^{-\beta}w^{-1} > t\})dt$$

$$\leq C|Q|^{2\beta} \int_{0}^{\infty} t \exp(-ct/||f||_{\mathcal{L}_{w}(\beta)})w(Q)dt \text{ (By Lemma 2)}$$

$$\leq C|Q|^{2\beta}||f||_{\mathcal{L}_{w}(\beta)}^{2}w(Q). \tag{19}$$

Thus $T(g)(x) < \infty$ a.e. on R^n . Taking $x' \in Q' \cap E \subset dQ$ such that $T(f)(x') < \infty$ and $T(g)(x') < \infty$. By (18), we have $T(h)(x') < \infty$. Using lemmas 3 and 4, it follows that $T(h)(x) < \infty$ for all $x \in dQ = Q'$.

By (17), T(f)(x) is finite for almost every $x \in Q'$, and, consequently, for almost every $x \in R^n$.

Let Q' be any cube and Q = (1/d)Q'. By (19), we have

$$\int_{Q} |T(g)(x)| dx \leq C(w(Q))^{1/2} ||T(g)||_{L^{2}(w^{-1}dx)} \leq C|Q|^{\beta} ||f||_{\mathcal{L}_{w}(\beta)} w(Q).$$

Choose an $x' \in dQ$ such that $T(h)(x') < \infty$. Then, it follows from Lemmas 3 and 4 that

$$\int_{Q'} |T(f)(x) - T(h)(x')| \mathrm{d}x \le \int_{Q} |T(g)(x)| \mathrm{d}x + \int_{Q'} |T(h)(x) - T(h)(x')| \mathrm{d}x$$

$$\le C ||f||_{\mathcal{L}_{w}(\beta)} |Q|^{\beta} w(Q) \le C ||f||_{\mathcal{L}_{w}(\beta)} |Q'|^{\beta} w(Q').$$

This completes the proof of the Theorem 1.

Remark 4 For Marcinkiewicz integral $\mu(f)^{[6]}$, we also have the similar results as Theorems 1

and 2.

References:

- [1] HARBOURE E, SALINAS O, VIVIANI B. Boundedness of the fractional integral on weighted Lebesque and Lipschitz spaces [J]. Trans. Amer. Math. Soc., 1997, 349: 235-255.
- [2] MUCKENHOUPT B, WHEEDEN R L. Weighted bounded mean oscillation and the Hilbert transform [J]. Studia Math., 1976, 54: 221-237.
- [3] KURTZ D S. Littlewood-Paley operators on BMO [J]. Proc. Amer. Math. Soc., 1987, 99: 657-666.
- [4] LU Shan-zheng, TAN Chang-mei, YABUTA K. Littlewood-Paley operators on the generalized Lipschitz spaces [J]. Georgian Math. J., 1996, 3(1): 69-80.
- [5] TAN Chang-mei. Littlewood-Paley operators and Marcinkiewicz integral on generalized Campanato spaces[J]. Approx. Theory and Appl., 1995, 11(4): 35-44.
- [6] QIU Si-gang. Boundedness of Littlewood-Paley operators and Marcinkiewicz integral on ε^{α,p} [J]. J. Math. Res. Exposition, 1992, 12(1): 41-50.
- [7] QIU Si-gang, LIU Zhen-hong. Littlewood-Paley operators on the space of functions of weighted bounded mean oscillation [J]. J. Math. Res. Exposition, 1991, 11(3): 401-407.
- [8] MUCKENHOUPT B, WHEEDEN R L. On the dual of weighted H¹ of the half-space [J]. Studia Math., 1978,
 63: 57-79.
- [9] MUCKENHOUPT B, WHEEDEN R L. Norm inequalities for the Littlewood-Paley function g_{λ}^{*} [J]. Trans. Amer. Math. Soc., 1974, 191: 95–111.
- [10] TAN Chang-mei. Littlewood-Paley operators on weighted Lorentz Spaces [J]. Acta Math. Sinica, 2001, 44(3): 449-552. (in Chinese)
- [11] TAN Chang-mei. The Littlewood-Paley operaters on Orlicz spaces with weights [J]. Acta Math. Sci. Ser. A Chin. Ed., 2004, 24(1): 81-87.

加权 Lipschitz 空间上的 Littlewood-Paley 算子

谭昌眉 (渝西学院数学系, 重庆 永川 402168)

摘要:本文研究了加权 Lipschitz 空间上的 Littlewood-Paley 算子.,证明了一个加权 Lipschitz 函数在 Littlewood-Paley 算子下的象或者几乎处处等于无穷或者仍是一个加权 Lipschitz 函数.

关键词: Littlewood-Paley 算子; 加权 Lipschitz 空间; 加权模不等式.