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1. Introduction

Throughout this paper, R will represent an associative ring with center Z(R). As usual
the commutator zy — yz will be denoted by [z,y]. We often use basic commutator identities
[y, 2] = [z, 2]y + z[y, 2] and [z, yz] = [z,y]z + y[z, 2]. Recall that R is prime if aRb = 0 implies
a =0or b=0, and is semiprime if aRa = 0 implies @ = 0. An additive map d : R — R is called
a derivation if (2y)* = z% + zy¢ holds for all z,y € R. A derivation d is inner if there exists
a € R such that z¢ = [a,z] for all z € R.

The theory of commuting and centralizing maps on (semi-)prime rings was motivated by
the results of Posnerfl] and was developed by Vukman!? and Breasar®=3l. Posner’s second
theorem states that if there exists a nonzero centralizing derivation on a prime ring R, then
R is commutative. Many people have extended this result in various ways and obtained many
powerful results. In the representative works, the work of Vukman!? and Bresar®=% should be
mentioned at least. Vukman!? proved that if d is a derivation of a 2-torsion free prime ring such
that {[z%,x],2z] = O for all z € R, then d = 0 or R is commutative. Bresarl¥l generalized this
result by showing that the same conclusion holds for each additive map. Moreover, Bresarl®!
described all commuting traces of biadditive maps on certain prime rings. I.N.Herstein!® proved
that if there exists a nonzero derivation d on a prime ring R such that the map x —s (z9)? is
commuting on R, then R may be noncommutative. That is, the following relation

[z4, 7}z + 2%z%,2) =0, z€R

does not imply that d = 0. There arises the question of whether we can obtain some similar
results when the Jordan Version of the above relation holds on a noncommutative prime ring R.
This leads to our work, which can be considered as an extension of Posner’s second theorem.
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2. Main results

Theorem 1 Let R be a 2-torsion free noncommutative prime ring and d be a derivation of R.
If [x%,z)z% = O for all x € R, then d = 0.

Proof We define a map F(,-) : R x R — R by the relation
F(z,y) = [%,9]+v%2], zyeR

Obviously, F(z,y) = F(y,z) for all z,y € R and F(-,-) is additive in two variables. Moreover, a
simple calculation shows that the relation

F(zy,2) = F(z,2)y + zF(y, 2) + %[y, 2] + [z, 2]y
holds for all z,y, z € R. Let us write f(z) for F(z,z) briefly. Then
flz) =2[z% 2], z€R

1t is easy to see that f(z +y) = f(z) + f(y) + 2F(z,y) for all -,y € R. Now the assumption of
the theorem can be written as follows:

f(z)z®=0, zeR. (1)
The linearization of (1) gives

0= flz+y)(z+1)* = (f(z) + fy) + 2F(z,y))(z* + )
= f(z)z?® + f(x)y* + F)z? + )y + 2F (z,y)z? + 2F (=, y)y",

which reduces to
f(@)y? + fy)z? + 2F (z,y)x® + 2F(z,y)y* =0, z,yeR. (2)
Replacing = by —z in (2), we obtain
f@)y? ~ Fy)a? + 2F (z,y)2® ~ 2F(z,9)y" =0 <,y € R, (3)
since f(z) = f(—z). Combining (2) with (3), we have
f(@)y* +2F (z,y)2° = 0, (4)

since R is 2-torsion free.
Let y be yz in (4), we obtain f(x)(yz)? + 2F(z,yz)z® = 0. Expanding it, we have

f(@)y?z + f(z)yz® + 2F(z, )2z + 2yF (z, 2)2? + 29°%z, 7]z + 2y, 7)2%2% = 0.
It follows from (4) that f(z)y? = —2F(z,y)z? and 2F(z, z)z¢ = ~ f(x)2%. Hence, we get

2F(z, y)[z,xd] + [f(z), y]zd + 2yd[z, a:]md +2[y, x]zd.'z:d =0. (5)
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Replacing z by z¢ in (5), we obtain
[f(:c),y]:cdn + 2[y,z:]:cdzmd =0, z,y€R. (6)
Substituting yz for y in (6), we get

0 = ([f(2), )z + yif (2), 2])z% + [z, z)z¥ 22 + 2y, ]z 24
= [f(z),yl2z + 2[y, 2 z2¥ 2? + y([f (2), 2% + 2[z, 2]z¥" z%).

Combining (5) with (6), we obtain
[f(x),y]z:nd2 + 2y, x]zxdza:d =0, =z,v,z€R. )
Replacing y by z in (7), we have
[f(:z:),:z:]z:v‘i2 =0, z,z€R. (8)
Substituting z¢ for y in (7) and using f(z)z? = 0, we get
f (a:)zxdzxd —zif (:1:):4:10‘12 =0. 9

Now we are ready to prove that
¥ zd = 0, Tz €R. (10)

Suppose on the contrary that 7¢'rd £ 0 for some r € R. Obviously, we have r4" # 0. Since R is
a prime ring, [f(r),r] = 0 by (8).
Replacing y by z in (5), we obtain

2f(z)[z, % + [f(2),z]z¢ + 22%z, z]z¢ =0, =z € R.
Particularly 2f(r)[z, 7% + 2r%[z, r)r? = 0, which reduces to
f@)zrd +réz,7jr¢ =0, ze€R. (11)
Replacing z by réz in (11), we get
Fr)rizr? + réfréz, rjrd = 0.
By f(r)r¢ = 0, we have
0 = ri[rd, rlzrd + (r%)?[z, rjr? = 2(r)?[z, r}rd + rif(r)zr?, z€R. (12)
On the other hand left multiplication by r¢ of (11) and putting z for = , we obtain
(r9)z, r)r + rif(r)zrt =0, z€R. (13)
Combining (12) with (13), we have

rf(r)zrt =0, z€R. (14)
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Since R is a prime ring , 7¢f(r) = 0. Substituting r for = in (9), we get
fr)zr¥ri=0, zeR (15)

Since r4°r¢ 5 0 and R is a prime ring , f(r) = 0. Replacing z by r in (7), we obtain [y, rlzrd’rd =
0,¥,z € R, which reduces to {y,r] = 0,y € R. We therefore prove that 24 2% = 0 in the case
z ¢ Z. It remains to prove that z¢ z¢ = 0 also holds in the case of € Z. Let r € Z and y ¢ Z.
We have z +y ¢ Z. We note that (z + y)d2 (a: +y)¢=0and y¥y¢ = 0. Then

a2 4y rd 4oyt = 0. (16)

Replacing = by — in (16), we have

z@zd — ydzxd - xdzyd =0. 17

It follows from (16) and (17) that x4’ z¢ = 0, which completes the proof of (10). The linearization
of (10) leads to
zdy? + ydz:z:d =0, z,y€R (18)

Substituting yz for y in (18), we get

0= d’(yzr’ + 2) 24

s 4 2 yzd 4y 2z 4 22909 4 g2t 2l

which reduces to

0= —dexdz + :z:dzyzd + yd2 zzd + 2%2%2% — yad 24
= de [z,29] + [xdz, yl2? + 2y4z%zd. (19)
Putting z¢ for z, we obtain [z?°, ylzd" + 2y9z? ¢ = 0. Since z9°z¢ =0, we get

[:nd?,y]:x:d2 =0, z,9y€R. (20)

For a fixed = € R, the map y — [z, 3] is an inner derivation of R. Then (20) and [1, Lemma
1] imply that [z¢ * y] =0o0r 22 =0 for all y € R. Therefore, 24 € Z for all z G R.

Left multiplication by y of (10) and since &
y € R. Since R is a prime ring , @ =0forall 7 € R. Applying [3, Theorem 1] yields that

z¢ =0 for all z € R. The proof of Theorem 1 is completed.

€ Z, we obtain y:c = g4 yz =0 for all

By Theorem 1, we can prove the following result, which can be viewed as an extension of
Posner’s second theorem.

Theorem 2 Let R be a 2-torsion free noncommutative prime ring and d be a derivation of R.
If [[z%,2],2%] = 0 for all z € R, then d = 0.

Proof We define a map F(-,-) : R x R — R by the relation

F(x’ y) = [xd: y] + [yd’ 22], z,y € R.
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By Theorem 1, we know that
F(zy,z) = F(z,zy) = F(z, 2)y + =F(y,2) + 2%y, 2] + [z, 2]y

holds for all z,,z € R. Let us write f(z) for F(x,z). Then f(z) = F(z,z) = 2|z4,z] for all
z € R. Thus
fl@+y) = fz) + f(y) + 2F (z,y). (21)

Now the assumption of the theorem can be written as follows
[f(z),z% =0, z€R (22)
Obviously,
0 = [[f(2),2%), 2] = [f(z)z? — z%f(2), ]
= f(z)z% — 2%f(2)z — zf(x)x? + zx%f(z),
0 = [[z%, 2], f(z)] = [z%z — 229, f(z)]
= gtz f(z) — 22t f(z) — f(z)2% + f(z)zzx.
Combining the above two equations, we obtain
0 = 2%z f(z) — 24 f(2)z + f(2)z2® — 2f(2)2? = [[f (=), 2], 2.
So
([f(2), 2, 2] = [[f(2), 2%, 2] = 0. (23)
The linearization of (22) gives

0 = [f(z +¥),(z +y)]
= [f(z), 9% + [f @), 2] + 2[F (=, v),z%] + 2[F (=, ), 4").

Replacing by —z, we have
0 = [f(z),9%) — [f @), %] + 2F (2, ), %) — 2[F(z,3),3").

Combining the above two equations, we get 2[f(z),y%] + 4[F(z,y),z%] = 0. Since R is 2-torsion

free, we obtain
(f(),y%] + 2[F(z,y),z% =0, =zyecR. (24)

Substituting zy for y, we have

0 =[f(z), (zy)*] + 2[F (=, 2y), 2
=[f(z), 2% + zy?) + 2[f(z)y + zF (z,y) + 2y, 2},
=[f(2), 2%y + 2°[f (), 4} + [F (=), 2ly* + 2[f (), ]+
2[f(z), 2%y + 2f (@){y, =% + 2[z, 2% F (=, y)+
22| F(z,y), 2% + 22%(y, z}, z9).

4
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Using (24) and [f(z), 2] = 0, we obtain
0 = 2%f(2), 9] + [f (), zly* + 2f (2)ly, z%] - f(z)F (z,y) + 2% [y, =], z%]. (25)
Putting yz for y in (25), then by (25), we get
0 = z%y[f(2), 2] + [f(z), zlyz? — 2f(@)yf(z) — f(z)[y, 2)e? — 2y, ] (). (26)
Replacing y by zy, we have
0 =z%zy(f(z), 7] + [f(z), z]xyz® — 2f(z)=’y f(z)~
f(@)[zty, zlz? — 2y, 2] f(x)
=(=)?y[f (), 2] + [f(z), z]z%yz? — 2f (z)z%y f(z)-

f(@)e?, zlyz? — f(2)2ly, z]z* — (z9)y, 2] f (z)-
zz?, zly £ (x). (27)

Left multiplication by z¢ of (26) gives
0 =(2%)*ylf(2), 2] + 2°(f(z), zlyz*~
22°f (2)y f(z) — 2°f (@), zJz* — (°)*[y, ) f (). (28)
Substracting (28) from (27) and using ([f(z),z],z% = 0 and [z¢, f(z)] = 0, we have
0= f(2)le?, 2lyz? + 2%z, 2y f (&) = f(2)Pye? + 2 f () S (). (29)
Right multiplication by f(z) of (29) yields that
0 = f(z)’yz?f(z) + 2*f (z)yf(z)’, zyeR. (30)

Now we intend to prove that
zif(z)=0, z€R (31)

Suppose on the contrary that r4f(r) # O for some r € R. By [7, Lemma], we obtain f(r)? = 0.
Replacing z by r in (29), we obtain r4f(r)yf(r) =0, y € R. Since R is a prime ring, we have
rdf(r) = 0. This is a contradiction to the assumption, which completes the proof of (31). Using
[z4, f(z)] = 0, we get

f(@)zd =2%f(2) =0, z€R.

Then Theorem 1 implies that d = 0. The proof of Theorem 2 is completed.
By Theorem 2, we can give an alternative proof of the following result which was first proved
by Lanskil®l.

Theorem 3 Let R be a 2-torsion free noncommutative prime ring and d, g be derivations of R.
If [z¢,29) = O for all z € R and d # 0, then there exists X € C, such that g = \d, where C is the
extended centroid of R.
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Proof The linearization of [z%,z9] = 0 gives
0=[(z+v)% (z+y)] = [z% 4] + [v%,2%], z,y€R. (32)
Substituting yz for y, we obtain
0 =[z%, (y2)°] + [(y2)*, 2°]
=[z?, 9%z + y9[z%, z] + 2%, y]z¢ + y[z¢, 7]+
y*w, 2% + [y?, 2%) + y[z?, 2] + [y, 29)z".
Using (32) and [x%,29] = 0, we get
y9[z?, z] + [2%, y]z® + y%[zx, 29) + [y, 2%)z% = 0. (33)
Replacing y by yz, we have
0 =(y2)?[z?, 7] + [z, y2)2? + (y2)¥[z, 29) + [yz, 2%)z?
=y92[z%, 2] + y29[z?, 2] + 2%, y]229 + y[z?, z]z9+
yi2(z, 29) + y24z, 29] + ylz, 2902 + [y, 29) 2z
It follows from (33) that
0 = y92[x¢, 2] + (¢, y]22? + y¥2[x, 29) + [y,29%)22%, =z,y,2€R. (34)
Putting zz? for z, we have
0 = y9zzt[z?, 2] + (x4, y]zz¥29 + yt22(z, 29] + [y, 29) 2z %2d. (35)
Right multiplication of (34) by z¢ leads to
0 = y9z[z%, z]z? + [z%, y]z292? + y¥z[r, 29)2¢ + [y, 29) 222" (36)
Substracting (36) from (35) and using [z9,2%) = 0, we get
y9z|[z¢, 7], 2% + y¥z([z,29),2% =0, =,y,z2€R. (370

Since d # 0, [[a%,a],a] # O for some a € R by Theorem 2. By (37) and [6, pp20-23], we know
that y9, y% are C-dependent, that is, there exists A(y) € C such that y? = A(y)y?, where C is

the extended centroid of R.
In (34), we substitute a for z, y9 for A(y)y? and a? for A(a)a?, then

0 = A(y)y¥z[ad, a] + [a%, y]zA(a)a? + y2[a, M(a)a®] + [y, Aa)a%)za®

which reduces to
(\@®) — Ma))y’zla%,a] =0, y,z€R.
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Since R is a prime ring and [[a¢, a], a%] # 0, we know that [a%, a] # 0. We now obtain (A(y) —
A(a))y? = 0, hence A(y)y?® = A(a)y®. Now we have y9 = A\(y)y® = A(a)y®. The proof of Theorem
3 is completed.

In [2], Vukman has proved that if d is a derivation on a complex semisimple Banach algebra
B and ad® + @2 is a derivation on B for some complex number a, then d = 0. We now extend
this result to the case of semiprime rings.

Theorem 4 Let R be a 2-torsion free semiprime ring and d, g be derivations of R. If Az 4zd’ =
z9 for all x € R and for some A € C, then d = Q.

Proof We define H(z) = Az’ + ¢ = 29. Then
H(zy) = Mzy)*® + (a9)¥ = H(z)y + zH () + 3% y% + 3Azdy? + 20yt (39)

9(zy) = H(zy) = 2%y + zy? = H(z)y + zH(y). (40)

Substracting (40) from (39), we have 3X\z? y? + 3Azdy? + 2z9y¢ = 0. Now we define P(z) =
3Az%" + z¢, then
P(z)y? + z¢P(y) = 0. (41)

Replacing y by yz in (41), we obtain

0 =P(z)(yz)* + z%P(yz)
=P(z)y’z + P(z)yz? + zP(y)z + =% P(z) + 6Azy z?.

Which reduces to
0 = P(z)yz? + z%yP(z) + 6z %z (42)

Substituting yz? for y in (42), we get

0 = P(z)yz?z? + z%z?P(z) + 6Azx%y z%z? + 6 xyz? z¢
= —z%YP(z)z? + 2%z P(z) + 6/\9:dyz z¢ (43)

It follows from (41) and (43) that

0 = z%zdx® + 3/\:1:dy.'1:":z:‘i2 — 29y P(z)z? + GAzdyzdzxd
= z%(z? + 3/\a:dz)xd — 2%y P(z)z® + 3x\a,"’y.'::d:z:‘i2 + 3/\xdyxd z¢
= 3z\z"yar:‘i:z:d2 + 3/\zdy:cd2:cd
= 2%z P(z) + 2%y P(z)z? — 2z%yziz?
= —2zyzdzd (44)
Left multiplication of (44) by z¢ gives

2(z%)%y(z%)% =0, z,yeR. (45)
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Since R is 2-torsion free semiprime ring, d = 0 by the well-known Giambruno-Herstein theorem!4].
The proof of Theorem 4 is completed.
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