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Abstract: The authors consider the following second order neutral difference equation with
maxima

∆(an∆(yn + pnyn−k)) − qn max
[n−`,n]

ys = 0, n = 0, 1, 2, · · · , (∗)

where {an}, {pn} and {qn} are sequences of real numbers, and k and ` are integers with k ≥ 1
and ` ≥ 0. And the asymptotic behavior of nonoscillatory solutions of (∗). An example is
given to show the difference between the equations with and without “maxima” is studied.
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1. Introduction

Consider the difference equation

∆(an∆(yn + pnyn−k)) − qn max
[n−`,n]

ys = 0, n = 0, 1, 2, · · · , (1.1)

where k and ` are integers with k ≥ 1 and ` ≥ 0; [n− `, n] = {n− `, n− ` + 1, n− ` + 2, · · · , n};

{an}, {pn} and {qn} are real sequences; and ∆ denotes the forward difference operator defined

by ∆yn = yn+1 − yn.

Let θ = max{k, `}. Then by a solution of Equation (1.1), we mean a real sequence {yn}

defined for n ≥ −θ that satisfies Equation (1.1) for n = 0, 1, 2, · · ·. Clearly, in this case if we are

given real numbers

yn = bn, n = −m0,−m0 + 1, · · · , 0 (1.2)

as a set of initial conditions, then Equation (1.1) has a unique solution satisfying (1.2).

We often say that a function eventually satisfies a certain property if there exists an integer

n0 such that for n ≥ n0, the function f satisfies the stated property. A solution {yn} of Equation

(1.1) is said to be nonoscillatory if the terms yn of the sequence {yn} are eventually positive or

eventually negative, and to be oscillatory otherwise.
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In this paper, we investigate asymptotic behavior of the nonoscillatory solutions of Equation

(1.1). We also establish sufficient conditions to ensure that every bounded/unbounded solutions

of Equation (1.1) to be oscillatory. There has been a substantial amount of theory developed

for neutral differential equation with maxima, see for example[1−4,6] and the references cited

therein. However it seems that very few results are available for corresponding neutral difference

equations with maxima, eventhough such equations are often met in applications, for instance,

in the theory of automatic control[5,7].

Note that since Equation (1.1) is nonlinear, assuming a solution is of one sign requires that

the cases yn > 0 and yn < 0 must both be considered. We shall say that conditions (H) are met

if the following conditions hold:

[(H1)] {an} is a positive sequence of real numbers such that
∑

∞

n=n0

1
an

= ∞;

[(H2)] {qn} is a sequence of nonnegative real numbers such that
∑

∞

n=n0
qn = ∞.

We often use the sequence {zn} which is defined as follows:

zn = yn + pnyn−k. (1.3)

Then Equation (1.1) implies that

∆(an∆zn) = qn max
[n−`,n]

ys, (1.4)

an∆zn = an0
∆zn0

+

n−1∑

s=n0

qs max
[s−`,s]

yt. (1.5)

2. Basic lemmas

In this section we state and prove some lemmas which are needed in the sequel to prove our

main results.

Lemma 2.1 Suppose that conditions (H) hold and that there exists a constant p such that

p ≤ pn ≤ 0.

(a) If {yn} is an eventually positive solution of Equation (1.1), then the sequences {zn}

and {an∆zn} are eventually monotonic and either

zn > 0, ∆zn > 0, ∆(an∆zn) ≥ 0 and lim
n→∞

zn = lim
n→∞

an∆zn = ∞ (2.1)

or

zn > 0, ∆zn < 0, ∆(an∆zn) ≥ 0 and lim
n→∞

zn = lim
n→∞

an∆zn = 0. (2.2)

(b) If {yn} is an eventually negative solution of equation (1.1), then the sequences {zn}

and {an∆zn} are eventually monotonic and either

zn < 0, ∆zn < 0, ∆(an∆zn) ≤ 0 and lim
n→∞

zn = lim
n→∞

an∆zn = −∞ (2.3)
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or

zn < 0, ∆zn > 0, ∆(an∆zn) ≤ 0 and lim
n→∞

zn = lim
n→∞

an∆zn = 0. (2.4)

Proof (a) Let {yn} be an eventually positive solution of Equation (1.1). From (1.4), it follows

that ∆(an∆zn) = qn max[n−`,n] ys ≥ 0 eventually and an∆zn is a nondecreasing sequence. On

the other hand, (H2) implies that qn 6≡ 0 and therefore {an∆zn} is eventually of one sign and in

consequence {zn} is eventually monotonic.

First suppose that there exists an integer n1 ≥ n0 such that an∆zn > 0 for n ≥ n1. Then

there exists an integer n2 > n1 such that an∆zn ≥ an2
∆zn2

= c > 0 for n ≥ n2. Summing the

last inequality, by (H1) we have

zn ≥ zn2
+ c

n−1∑

s=n2

1

as

→ ∞, n → ∞,

so zn → ∞ as n → ∞.

Since yn > zn, we have yn → ∞ as n → ∞. From (1.5) and (H2), we see that an∆zn → ∞

as n → ∞, and thus (2.1) holds.

Now if an∆zn < 0 for n ≥ n0, then an∆zn → L ≤ 0 as n → ∞. Suppose that L < 0. Then

an∆zn < L and by (H1), limn→∞ zn = −∞. From (1.3) it follows that the inequality

zn > pnyn−k > pyn−k

is valid and therefore limn→∞ yn = ∞. From (1.5) we obtain that limn→∞ an∆zn = ∞. The

contradiction obtained shows that limn→∞ an∆zn = 0 and since {an∆zn} is a nondecreasing

sequence, we have an∆zn < 0 and {zn} is a decreasing sequence. Suppose limn→∞ zn = L′,

where L′ is finite. Let L′ > 0. The inequality yn > zn implies that yn > L′. From (1.5) and (H2)

it follows that the relation limn→∞ an∆zn = ∞ is valid and we obtain a contradiction. Then

L′ ≤ 0. Let L′ < 0. The estimate

L′

2
> zn = yn + pnyn−k > pnyn−k > pyn−k

is valid. From the inequality yn−k > L′

2p
> 0 as above, we obtain that limn→∞ an∆zn = ∞, a

contradiction. Thus L′ = 0 and since {zn} is a decreasing sequence, then zn > 0. Suppose that

limn→∞ zn = −∞. As above the inequality yn−k > zn

p
holds and limn→∞ yn = ∞. From (1.5),

it follows that limn→∞ an∆zn = ∞ and we again obtain a contradiction. Then (2.2) is valid if

∆zn < 0.

The proof of (b) is similar to that of (a) and hence the details are omitted.

Lemma 2.2 The sequence {yn} is a negative solution of Equation (1.1) if and only if {−yn} is

a positive solution of the equation

∆(an∆(yn + pnyn−k)) − qn min
[n−`,n]

ys = 0, (1′)
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Proof The proof is straightforward and hence the details are omitted.

3. Asymptotic behavior of nonoscillatory solutions

Here we give some oscillatory and asymptotic properties of solutions of Equation (1.1).

Theorem 3.1 Let conditions (H) hold. If there exists a constant p such that p ≤ pn ≤ −1,

then every nonoscillatory solution {yn} of Equation (1.1) satisfies |yn| → ∞ as n → ∞.

Proof Let {yn} be an eventually negative solution of (1.1). Then Lemma 2.1 implies that (2.3)

or (2.4) is valid. Suppose that (2.3) holds. Then from the inequality yn < zn it follows that

limn→∞ yn = −∞ and the assertion of the theorem is proved. Suppose that (2.4) is valid and

c = lim supn→∞
yn. If c < 0, then yn < c

2 and from (1.5) we obtain limn→∞ an∆zn = −∞

which contradicts the relation limn→∞ an∆zn = 0 proved in Lemma 2.1. Hence c = 0, that is,

lim supn→∞
yn = 0. Then there is an increasing sequence of positive integers {nj} such that

ynj
→ 0 as j → ∞ and

max
[n1,nj ]

ys = ynj
. (3.1)

On the other hand, since zn < 0, yn < −pnyn−k ≤ yn−k. But the inequality ynj
< ynj−k

contradicts (3.1). Thus only relation (2.3) holds and limn→∞ yn = −∞. The case when {yn} is

eventually positive can be considered analogously. This completes the proof.

From Theorem 3.1, we immediately obtain

Corollary 3.1 Under the assumptions of Theorem 3.1 all bounded solutions of Equation (1.1)

are oscillatory.

Theorem 3.2 Let conditions (H) hold and let {pn} satisfy one of the following conditions

−1 < p ≤ pn ≤ 0 (3.2)

or

0 ≤ pn ≤ p < 1 and k ≤ `. (3.3)

Then for each nonoscillatory solution {yn} of Equation (1.1) either limn→∞ yn = 0 or limn→∞ |yn| =

∞.

Proof We shall first consider the case when (3.2) is satisfied. Let {yn} be an eventually bounded

positive solution of (1.1). Clearly in this case, in the relations (2.1) and (2.2), only (2.2) is valid

and thus limn→∞ zn = 0 . Suppose that c = lim supn→∞
yn > 0. Then there is an increasing

sequence of integers {nj} such that limj→∞ ynj
= c. Choose a constant α such that 1 < α < − 1

p

(if pn ≡ 0 then p could be any constant in (−1, 0)). Then yn < αc for sufficiently large n and we

have

zn = yn + pnyn−k > yn + pαc.

Hence

znj
> ynj

+ pαc
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as j → ∞ and we obtain 0 > c + pαc = c(1 + pα) > 0. This contradiction shows that

lim supn→∞
yn = 0 and limn→∞ yn = 0. Next let us assume that {yn} is an unbounded so-

lution of (1.1). We shall show that in this case relation (2.1) is valid. Assume this is not true.

Since {yn} is unbounded there is an increasing sequence of positive integers {ni} such that

yni
→ ∞ as i → ∞ and yni

= max[n1,ni] yn. Then we have

zni
= yni

+ pni
yni−k > yni

+ pni
yni

> yni
(1 + p). (3.4)

From (3.2), (3.4) implies that limi→∞ zni
= ∞ which contradicts the relation limn→∞ zn =

0. Hence (2.1) is valid and limn→∞ zn = ∞. From the inequality yn > zn , it follows that

limn→∞ yn = ∞. The proof is similar when {yn} is an eventually negative solution of Equation

(1.1).

Now assume that (3.3) holds. Let {yn} be an eventually positive solution of (1.1). From

(1.4), it follows that ∆(an∆zn) > 0 and an∆zn is nondecreasing. Condition (H2) then implies

that either an∆zn > 0 or an∆zn < 0. Let an∆zn > 0 . Clearly, limn→∞ zn = ∞ and {zn} is an

increasing sequence. From (1.3), we have

yn = zn − pnyn−k > zn − pnzn−k > (1 − p)zn, (3.5)

where we have used the increasing nature of {zn} and zn ≥ yn. Since limn→∞ zn = ∞, from

(3.5) we have limn→∞ yn = ∞.

Next, assume that {an∆zn} is eventually negative. In this case, we obtain that {zn} is a

positive decreasing sequence. If limn→∞ an∆zn = c < 0 , then by (H1), we have limn→∞ zn =

−∞. Therefore limn→∞ an∆zn = 0. Secondly, we prove that limn→∞ zn = 0. Since {zn} is a

positive decreasing sequence, the limn→∞ zn = d exists with d ≥ 0. Assume d > 0. Then zn > d

eventually and

d < yn + pyn−k < (1 + p) max{yn, yn−k}.

Thus max{yn, yn−k} > d
1+p

. Since k ≤ `, from the previous inequality it follows that

max{yn−`, yn−`+1, yn−`+2, · · · , yn} >
d

1 + p
.

From (1.5) and (H2) we obtain limn→∞ an∆zn = ∞. This contradiction shows that limn→∞ zn =

0. Then (1.3) implies that limn→∞ yn = 0. A similar argument treats the case of negative solution

of Equation (1.1). This completes the proof of the theorem.

Theorem 3.3 Let pn ≡ 1 and conditions (H1) and (H2) hold with the condition
∑

∞

n=n0
qn = ∞

replaced by
∞∑

n=n0

q̄n = ∞ when q̄n = min{qn, qn+k}. (3.6)

Then for each bounded positive solution {yn} of Equation (1.1), limn→∞ yn = 0.

Proof Since {yn} is an eventually positive solution of (1.1), we have ∆(an∆zn) > 0 and
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{an∆zn} is a nondecreasing sequence. Condition (3.6) implies that qn 6≡ 0 eventually. Then

either an∆zn > 0 or an∆zn < 0 eventually. If an∆zn > 0 then limn→∞ zn = ∞ which contradicts

the boundedness of {yn}. Hence an∆zn < 0 and {zn} is a positive decreasing sequence. Let

limn→∞ zn = c > 0. From (1.4) it follows that

∆(an∆zn) + qn−k max
[n−`−k,n−k]

ys = qn max
[n−`,n]

ys + qn−k max
[n−`−k,n−k]

ys.

Then using the definition of q̄n and of (1.3), we obtain that

∆(an∆zn) + qn−k max
[n−`−k,n−k]

ys > q̄n−k[ max
[n−`,n]

ys + max
[n−`−k,n−k]

ys]

= q̄n−k[ max
[n−`,n]

ys + max
[n−`,n]

ys−k]

= q̄n−k max
[n−`,n]

(ys + ys−k)

= q̄n−k max
[n−`,n]

zs = q̄n−kzn−`.

Since {zn} is a decreasing sequence and limn→∞ zn = c, then zn > c and the last inequality takes

the form

∆(an∆zn) + qn−k max
[n−`−k,n−k]

ys > cq̄n−k.

Summing the last inequality from n1 to n − 1, we obtain

an∆zn − an1
∆zn1

+

n−1∑

s=n1

qs−k max
[s−`−k,s−k]

yt > c

n−1∑

s=n1

q̄s−k

or

an∆zn − an1
∆zn1

+

n−1−k∑

s=n1−k

qs max
[s−`,s]

yt > c

n−1−k∑

s=n1−k

q̄s. (3.7)

Since {an∆zn} is a negative nondecreasing sequence, then {an∆zn} is a bounded sequence. On

the other hand (3.6) implies that the right hand side of (3.7) tends to infinity as n → ∞. Thus

from (3.7) we obtain
∞∑

n=n1

qn max
[n−`,n]

ys = ∞.

Summing from (1.4) from n1 to n − 1, we obtain

an∆zn − an1
∆zn1

=

n−1∑

s=n1

qs max
[s−`,s]

yt.

Then (3.8) implies that limn→∞ an∆zn = ∞. The contradiction obtained shows that c = 0, that

is, limn→∞ zn = 0. But from the inequality yn < zn it follows that limn→∞ yn = 0 and the proof

is complete.

Remark 3.1 In contrast to neutral equations without “maxima”, the assertion of Theorem

3.3 is not valid for bounded negative solutions of Equation (1.1) even under stronger conditions
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qn ≥ q > 0 for all n = 0, 1, 2, · · ·. We shall illustrate this fact with the following example.

Example 3.1 Consider the difference equation

∆2(yn + yn−1) − qn min
[n−1,n]

ys = 0 (3.9)

where qn = e−n−2(1 − e)2(e + 1)(min[n−1,n](ϕs + e−n))−1 and {ϕn}n>1 is the sequence defined

by

ϕ2k+1 = 0, ϕ2k+2 =
1

2
, k = 0, 1, 2, · · · .

It is easy to verify that {yn} = {ϕn + e−n} is a positive solution of equation (3.9). Further more,

obviously limn→∞ inf yn = 0 and limn→∞ sup yn = 1
2 . On the other hand, the inequality

e−n
6 min

[n−1,n]
{ϕs + e−s} 6 e−n+1

implies that (e+1)(1−e)2

e3 6 qn 6
(e+1)(1−e)2

e2 . Thus condition (3.6) is valid (in fact, even the

stronger conditions qn > q > 0 holds). Clearly, the function {zn} = {−ϕn − e−n} is a negative

solution of the equation

∆2(xn + xn−1) − qn max
[n−1,n]

xs = 0.

Thus, although the conditions of Theorem 3.3 are met, Equation (1.1) could have negative

bounded solution which does not tend to zero.

Theorem 3.4 Suppose that conditions (H) hold and that there exists constants p1 and p2 such

that

1 < p1 6 pn 6 p2. (3.10)

Then, if {yn} is a bounded nonoscillatory solution of (1.1), we have yn → 0 as n → ∞.

Proof Let {yn} be an eventually positive solution of Equation (1.1). As in Theorem 3.3 it can

be proved that if {yn} is bounded positive solution of (1.1) then ∆(an∆zn) > 0, an∆zn < 0 and

zn > 0 eventually. Suppose d = limn→∞ inf yn > 0. Then yn > d
2 . From this inequality and

(1.5) it follows that limn→∞ an∆zn = ∞ which is a contradiction. Hence limn→∞ inf yn = 0.

Then there is an increasing sequence of integers {ni} such that limi→∞ y(ni − k) = 0. Suppose

that c = limn→∞ zn > 0. Passing to the limit in the equality zni
= yni

+ pni
yni−k, we obtain

that limi→∞ yni
= c . On the other hand

zni+k = yni+k + pni+kyni
> p1yni

.

Taking the limit in the last inequality we obtain c > p1c > c. Hence limn→∞ zn = 0 and since

zn > yn, we have limn→∞ yn = 0. The case that {yn} is eventually negative can be proved

analogously and the proof is complete.
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∆ (an∆ (yn + pnyn−k)) − qn max
[n−`,n]

ys = 0, n = 0, 1, 2, · · · , (∗)

b Y {an} , {pn} c {qn} dOeOfOgOh k c ` dOiOfOj k ≥ 1 , ` ≥ 0, kOlOmOnOoO`Oa (∗) pOqOrsOtOuOvOwOxzyO{O|O}O~Z� oOROSOTOUOV t `OaOcO�O� tO� R�SOTOUOV�`OaO�O� tO�O�Ox�O�O�
:
uOvOwO� pOqOr � Y\[O]O^O_O`Oa � SOTOU x


