Orthogonal Laurent Polynomials and Their Zeros

ZHOU Heng ${ }^{1}$ ，WANG Ren－hong ${ }^{2}$
（1．Dept．of Math．，Beijing Normal University，Beijing 100875，China；
2．Inst．of Math．Sci．，Dalian University of Technology，Liaoning 116024，China ）
（E－mail：zhouheng7598＠sina．com．cn）

Abstract

In this note，we investigate the necessity for the measure $\mathrm{d} \psi$ being a strong distribution，which is associated with the coefficients of the recurrence relation satisfied by the orthogonal Laurent polynomials．We also give out a representation of the greatest zeros of orthogonal Laurent polynomials in the case of $d \psi$ being a strong distribution．

Key words：orthogonal Laurent polynomials；quadrature rule；zeros of orthogonal Laurent polynomials．
MSC（2000）：41A10，41A17
CLC number：O174．21

1．Introduction

According to［1］，the distribution $\mathrm{d} \psi(x)$ is said to be a strong distribution in $(a, b) \subset(0,+\infty)$ if $\psi(x)$ is a real bounded nondecreasing function on (a, b) with infinitely many points of increase there，and furthermore，all the moments

$$
\begin{equation*}
\mu_{k}=\int_{a}^{b} x^{k} \mathrm{~d} \psi(x), \quad k=0, \pm 1, \pm 2, \cdots \tag{1}
\end{equation*}
$$

are finite．
For any given strong distribution in $(a, b) \subset(0,+\infty)$ there exists a unique sequence，up to a nonzero constant factor normalization，of polynomials $\left\{B_{n}\right\}_{n=0}^{+\infty}$ such that B_{n} is a polynomial of precise degree n and B_{n} satisfies the relations

$$
\begin{equation*}
\int_{a}^{b} x^{-n+k} B_{n}(x) \mathrm{d} \psi(x)=0, \quad k=0, \cdots, n-1 \tag{2}
\end{equation*}
$$

If B_{n} are normalized to be monic，i．e．，to have leading coefficients one，they satisfy the recurrence relation $B_{-1}=0, B_{0}=1$ ，

$$
\begin{equation*}
B_{n+1}(x)=\left(x-\beta_{n}\right) B_{n}-\alpha_{n} x B_{n-1}(x), \quad n \geq 0 \tag{3}
\end{equation*}
$$

where β_{n} and $\alpha_{n}, n=0,1, \cdots$ ，are all positive．In addition，all the zeros of B_{n} are real， distinct and lie in (a, b) ．According to［2］，there exists a unique quadrature formula of the form $\int_{a}^{b} f(x) \mathrm{d} \psi(x) \approx \sum_{i=1}^{n} A_{i} f\left(x_{i}\right)$ which is exact for every f for which $x^{n} f(x) \in \Pi_{2 n-1}\left(\Pi_{k}\right.$ denotes

[^0]the set of polynomials of degree $\leq k)$. Moreover, the nodes $x_{i}, i=1, \cdots, n$, of this quadrature rule coincide with the zeros of B_{n} and its weights A_{i} are positive.

In this note, we investigate the necessity for $\mathrm{d} \psi$ being a strong distribution, which is associated with α_{n} and $\beta_{n}, n=0,1, \cdots$ in (3). We also give out a representation of the greatest zeros of B_{n} in the case of $\mathrm{d} \psi$ being a strong distribution.

2. Necessity for $\mathrm{d} \psi$ being a strong distribution

Assume that $d \psi$ is a strong distribution in $(a, b) \subset(0,+\infty)$. It is easy to see that $x^{i} \mathrm{~d} \psi(i=$ $\pm 1, \pm 2, \cdots)$ are also strong distributions in (a,b). Denote by $\left\{B_{n}^{(i)}\right\}_{n=0}^{+\infty}$ the unique monic polynomial sequences satisfying

$$
\begin{equation*}
\int_{a}^{b} x^{-n+k} B_{n}^{(i)}(x) x^{i} \mathrm{~d} \psi(x)=0, \quad k=0, \cdots, n-1, \quad i=0, \pm 1, \pm 2, \cdots \tag{4}
\end{equation*}
$$

and

$$
\begin{array}{cl}
B_{n+1}^{(i)}(x)= & \left(x-\beta_{n}^{(i)}\right) B_{n}^{(i)}(x)-\alpha_{n}^{(i)} x B_{n-1}^{(i)}(x), \quad B_{-1}^{(i)}(x)=0, \quad, B_{0}^{(i)}(x)=1, \\
\beta_{n}^{(i)}>0, \quad \alpha_{n}^{(i)}>0, \quad n=0,1, \cdots, \quad i=0, \pm 1, \pm 2, \cdots . \tag{6}
\end{array}
$$

We have the following result.
Theorem 2.1 If $\mathrm{d} \psi$ is a strong distribution in $(a, b) \subset(0,+\infty)$, then $\left\{\alpha_{n}^{(i)}\right\}_{n=0}^{+\infty}$ and $\left\{\beta_{n}^{(i)}\right\}_{n=0}^{+\infty}$ ($i=0, \pm 1, \pm 2, \cdots$) defined as above must satisfy

$$
\beta_{n}^{(i)}+\alpha_{n+1}^{(i)}>1, \quad n=2,3, \cdots, \quad i=0, \pm 1, \pm 2, \cdots,
$$

or equivalently

$$
\beta_{n}^{(i)}+\alpha_{n}^{(i)}>1, \quad n=2,3, \cdots, \quad i=0, \pm 1, \pm 2, \cdots .
$$

Proof For convenience, we always write

$$
\varphi_{i}\left(x^{k}\right)=\int_{a}^{b} x^{k} x^{i} \mathrm{~d} \psi(x), \quad i=0, \pm 1, \pm 2, \cdots,
$$

where φ_{i} is linear on $\operatorname{span}\left\{\cdots, x^{-1}, 1, x, \cdots\right\}$.
According to (5), we have for $n=0,1, \cdots$,

$$
\begin{gathered}
B_{n+1}^{(i)}(x)+\beta_{n}^{(i)} B_{n}^{(i)}(x)=x\left(B_{n}^{(i)}(x)-\alpha_{n}^{(i)} B_{n-1}^{(i)}(x)\right), \\
x^{-n+k}\left(B_{n+1}^{(i)}(x)+\beta_{n}^{(i)} B_{n}^{(i)}(x)\right)=x \cdot x^{-n+k}\left(B_{n}^{(i)}(x)-\alpha_{n}^{(i)} B_{n-1}^{(i)}(x)\right), \quad k=0, \cdots, n-1 .
\end{gathered}
$$

φ_{i} being acted on the above, we have by (4),

$$
\varphi_{i+1}\left(x^{-n+k}\left(B_{n}^{(i)}(x)-\alpha_{n}^{(i)} B_{n-1}^{(i)}(x)\right)\right)=0, \quad k=0, \cdots, n-1 .
$$

Therefore,

$$
B_{n}^{(i+1)}(x)=B_{n}^{(i)}(x)-\alpha_{n}^{(i)} B_{n-1}^{(i)}(x) .
$$

Substituting the above into (5) for $i+1$, we get

$$
\begin{aligned}
B_{n+1}^{(i)}(x)= & B_{n}^{(i)}(x)\left(\alpha_{n+1}^{(i)}+x-\beta_{n}^{(i+1)}\right)-B_{n-1}^{(i)}(x)\left(\alpha_{n}^{(i)}\left(x-\beta_{n}^{(i+1)}\right)+\alpha_{n}^{(i+1)} x\right)+ \\
& \alpha_{n}^{(i+1)} \alpha_{n-1}^{(i)} x B_{n-2}^{(i)}(x) .
\end{aligned}
$$

Applying (5) to the above again for all $n \geq 1$ results in

$$
\begin{equation*}
\left(\beta_{n}^{(i)}+\alpha_{n+1}^{(i)}-\beta_{n}^{(i+1)}\right) B_{n}^{(i)}(x)+\left(-\alpha_{n}^{(i+1)} x+\alpha_{n}^{(i)} \beta_{n}^{(i+1)}\right) B_{n-1}^{(i)}(x)+\alpha_{n}^{i+1} \alpha_{n-1}^{(i)} x B_{n-2}^{(i)}(x)=0 . \tag{7}
\end{equation*}
$$

We can assert that $\beta_{n}^{(i)}+\alpha_{n+1}^{(i)}-\beta_{n}^{(i+1)} \neq 0$, since otherwise, $\alpha_{n}^{(i+1)}=0(n=1,2, \cdots)$, leading to a contradition. Comparing the coefficients in (7) with those in (5) for i, we obtain

$$
\begin{gather*}
\beta_{n}^{(i)}+\alpha_{n+1}^{(i)}-\beta_{n}^{(i+1)}=\alpha_{n}^{(i+1)} \tag{8}\\
\frac{\alpha_{n}^{(i)} \beta_{n}^{(i+1)}}{\alpha_{n}^{(i+1)}}=\beta_{n-1}^{(i)}, \quad \alpha_{n}^{(i)} \beta_{n}^{(i+1)}=\beta_{n-1}^{(i)}\left(\beta_{n}^{(i)}+\alpha_{n+1}^{(i)}-\beta_{n}^{(i+1)}\right)
\end{gather*}
$$

Therefore,

$$
\beta_{n}^{(i+1)}=\frac{\beta_{n-1}^{(i)}\left(\beta_{n}^{(i)}+\alpha_{n+1}^{(i)}\right)}{\alpha_{n}^{(i)}+\beta_{n-1}^{(i)}}, \quad \alpha_{n}^{(i+1)}=\frac{\alpha_{n}^{(i)}\left(\beta_{n}^{(i)}+\alpha_{n+1}^{(i)}\right)}{\alpha_{n}^{(i)}+\beta_{n-1}^{(i)}}
$$

or

$$
\alpha_{n}^{(i)}=\frac{\beta_{n-1}^{(i+1)}+\alpha_{n-1}^{(i+1)}}{\beta_{n}^{(i+1)}+\alpha_{n}^{(i+1)}}, \quad \beta_{n}^{(i)}=\left(\beta_{n}^{(i+1)}+\alpha_{n}^{(i+1)}\right)\left(1-\frac{1}{\beta_{n+1}^{(i+1)}+\alpha_{n+1}^{(i+1)}}\right) .
$$

So,

$$
\beta_{n+1}^{(i)}+\alpha_{n+1}^{(i)}>1, \quad n=1,2, \cdots, \quad i=0, \pm 1, \pm 2, \cdots,
$$

or equivalently by (8)

$$
\beta_{n}^{(i)}+\alpha_{n+1}^{(i)}>1, \quad n=2,3, \cdots, \quad i=0, \pm 1, \pm 2, \cdots
$$

3. A representation for the greatest zero of B_{n}

Let $\mathrm{d} \psi$ be a strong distribution in $(a, b) \subset(0,+\infty)$, and $\left\{B_{n}\right\}_{n=0}^{+\infty}$ be the unique monic polynomial sequence satisfying (2) and (3). Assume that $\left\{x_{i}\right\}_{i=1}^{n}$ are the n zeros of B_{n}, and $X_{n}=\max \left\{x_{i}: i=1, \cdots, n\right\}$. Then we have the following representation of X_{n}.

Theorem 3.1

$$
\begin{equation*}
X_{n}=\max _{p \in \Pi_{n-1}, p \neq 0} \frac{\int_{a}^{b} x^{-n+1} p^{2}(x) \mathrm{d} \psi(x)}{\int_{a}^{b} x^{-n} p^{2}(x) \mathrm{d} \psi(x)} \tag{9}
\end{equation*}
$$

Proof According to the statements in the introduction, for each $p \in \Pi_{n-1}$ and $p \neq 0$, we have

$$
\begin{aligned}
\int_{a}^{b} x^{-n+1} p^{2}(x) \mathrm{d} \psi(x) & =\sum_{i=1}^{n} x_{i} x_{i}^{-n} p^{2}\left(x_{i}\right) A_{i} \leq X_{n} \sum_{i=1}^{n} x_{i}^{-n} p^{2}\left(x_{i}\right) A_{i} \\
& =X_{n} \int_{a}^{b} x^{-n} p^{2}(x) \mathrm{d} \psi(x)
\end{aligned}
$$

Therefore，

$$
X_{n} \geq \max _{p \in \Pi_{n-1}, p \neq 0} \frac{\int_{a}^{b} x^{-n+1} p^{2}(x) \mathrm{d} \psi(x)}{\int_{a}^{b} x^{-n} p^{2}(x) \mathrm{d} \psi(x)}
$$

On the other hand，let us take $L_{i}(x) \in \Pi_{n-1}$ satisfying $L_{i}\left(x_{k}\right)=\left\{\begin{array}{ll}1, & k=i \\ 0, & k \neq i\end{array}, i, k=1, \cdots, n\right.$ ． Then

$$
\frac{\int_{a}^{b} x^{-n+1} L_{n}^{2}(x) \mathrm{d} \psi(x)}{\int_{a}^{b} x^{-n} L_{n}^{2}(x) \mathrm{d} \psi(x)}=X_{n}
$$

So（9）holds．
Similar to the proof of（9），we can attain the following estimates on X_{n} ．

Corollary 3.1

$$
X_{n} \geq \max _{p \in \Pi_{n-2}, p \neq 0} \frac{\int_{a}^{b} x^{-n+3} p^{2}(x) \mathrm{d} \psi(x)}{\int_{a}^{b} x^{-n+2} p^{2}(x) \mathrm{d} \psi(x)}
$$

Corollary 3.2

$$
X_{n}^{2} \geq \max _{p \in \Pi_{n-2}, p \neq 0} \frac{\int_{a}^{b} x^{-n+3} p^{2}(x) \mathrm{d} \psi(x)}{\int_{a}^{b} x^{-n+1} p^{2}(x) \mathrm{d} \psi(x)}
$$

References：

［1］DIMITROV D K，RANGA A Sir．Monotonicity of zeros of orthogonal Laurent polynomials［J］，Methods Appl．Anal．，2002，9：1－11．
［2］JONES W B，THRON W J．Orthogonal Laurent polynomials and Gaussian quadrature，in：＂Quantum Mechanics in Mathematics，Chemistry，and Physics，＂［C］．（K．E．Gustafson and W．P．Reinhardt，Eds．）pp． 449－455，Plenum Press，New York， 1981.
［3］RANGA A Sir，WALTER V A．Blumenthal＇s theorem for Laurent orthogonal polynomials［J］．J．Approx． Theory．，2002，117：255－278．
［4］ZHEDANOV A．Biorthogonal rational functions and the generalized eigenvalue problem［J］．J．Approx．The－ ory．，1999，101：303－329．
［5］FREUD G．On the greatest zero of an orthogonal polynomial［J］，J．Approx．Theory．，1986，46：16－24．
［6］JONES W B，THRON W J，WAADELAND H．A strong Stieltjes moment problem［J］．Trans．Amer．Math． Soc．，1980，261：503－528．
［7］SZEGÖ G．Orthogonal Polynomials，4th ed．［M］．Amer．Math．Soc．Coll．Publ．，Vol．23，Providence，RI， 1975.
［8］WANG Ren－hong，ZHOU Heng．Chebyshev＇s maximum principle in several variables［J］．J．Approx．Theory．， 2003，123：276－279．

Laurent 多项式及其零点

$$
\text { 周 恒 }{ }^{1} \text {, 王仁宏 }{ }^{2}
$$

（1．北京师范大学数学科学学院，北京 100875；2．大连理工大学数学研究所，辽宁 大连 116024）
摘要：本文给出了测度 $\mathrm{d} \psi$ 为强分布的一个必要条件，并得到了 $\mathrm{d} \psi$ 为强分布时的 Laurent 多项式最大零点的一个表示。
关键词：Laurent 多项式；求积公式；Laurent 多项式的零点．

[^0]: Received date：2004－03－26
 Foundation item：NNSF of China（10271022，60373093，69973010），the NSF of Guangdong Province（021755）

