Article ID: 1000-341X(2006)01-0019-04

Document code: A

ZHOU Heng¹, WANG Ren-hong²

(1. Dept. of Math., Beijing Normal University, Beijing 100875, China;

2. Inst. of Math. Sci., Dalian University of Technology, Liaoning 116024, China)

(E-mail: zhouheng7598@sina.com.cn)

Abstract: In this note, we investigate the necessity for the measure $d\psi$ being a strong distribution, which is associated with the coefficients of the recurrence relation satisfied by the orthogonal Laurent polynomials. We also give out a representation of the greatest zeros of orthogonal Laurent polynomials in the case of $d\psi$ being a strong distribution.

Key words: orthogonal Laurent polynomials; quadrature rule; zeros of orthogonal Laurent polynomials.
MSC(2000): 41A10, 41A17
CLC number: 0174.21

1. Introduction

According to [1], the distribution $d\psi(x)$ is said to be a strong distribution in $(a, b) \subset (0, +\infty)$ if $\psi(x)$ is a real bounded nondecreasing function on (a, b) with infinitely many points of increase there, and furthermore, all the moments

$$\mu_k = \int_a^b x^k d\psi(x), \quad k = 0, \pm 1, \pm 2, \cdots$$
(1)

are finite.

For any given strong distribution in $(a, b) \subset (0, +\infty)$ there exists a unique sequence, up to a nonzero constant factor normalization, of polynomials $\{B_n\}_{n=0}^{+\infty}$ such that B_n is a polynomial of precise degree n and B_n satisfies the relations

$$\int_{a}^{b} x^{-n+k} B_n(x) \mathrm{d}\psi(x) = 0, \quad k = 0, \cdots, n-1.$$
(2)

If B_n are normalized to be monic, i.e., to have leading coefficients one, they satisfy the recurrence relation $B_{-1} = 0$, $B_0 = 1$,

$$B_{n+1}(x) = (x - \beta_n)B_n - \alpha_n x B_{n-1}(x), \quad n \ge 0,$$
(3)

where β_n and α_n , $n = 0, 1, \dots$, are all positive. In addition, all the zeros of B_n are real, distinct and lie in (a, b). According to [2], there exists a unique quadrature formula of the form $\int_a^b f(x) d\psi(x) \approx \sum_{i=1}^n A_i f(x_i)$ which is exact for every f for which $x^n f(x) \in \prod_{2n-1} (\prod_k \text{ denotes})$

Received date: 2004-03-26

Foundation item: NNSF of China (10271022, 60373093, 69973010), the NSF of Guangdong Province (021755)

the set of polynomials of degree $\leq k$). Moreover, the nodes x_i , $i = 1, \dots, n$, of this quadrature rule coincide with the zeros of B_n and its weights A_i are positive.

In this note, we investigate the necessity for $d\psi$ being a strong distribution, which is associated with α_n and β_n , $n = 0, 1, \cdots$ in (3). We also give out a representation of the greatest zeros of B_n in the case of $d\psi$ being a strong distribution.

2. Necessity for $d\psi$ being a strong distribution

Assume that $d\psi$ is a strong distribution in $(a, b) \subset (0, +\infty)$. It is easy to see that $x^i d\psi(i = \pm 1, \pm 2, \cdots)$ are also strong distributions in (a, b). Denote by $\{B_n^{(i)}\}_{n=0}^{+\infty}$ the unique monic polynomial sequences satisfying

$$\int_{a}^{b} x^{-n+k} B_{n}^{(i)}(x) x^{i} \mathrm{d}\psi(x) = 0, \quad k = 0, \cdots, n-1, \quad i = 0, \pm 1, \pm 2, \cdots,$$
(4)

and

$$B_{n+1}^{(i)}(x) = (x - \beta_n^{(i)}) B_n^{(i)}(x) - \alpha_n^{(i)} x B_{n-1}^{(i)}(x), \quad B_{-1}^{(i)}(x) = 0, \quad , B_0^{(i)}(x) = 1,$$
(5)

$$\beta_n^{(i)} > 0, \quad \alpha_n^{(i)} > 0, \quad n = 0, 1, \cdots, \quad i = 0, \pm 1, \pm 2, \cdots.$$
 (6)

We have the following result.

Theorem 2.1 If $d\psi$ is a strong distribution in $(a, b) \subset (0, +\infty)$, then $\{\alpha_n^{(i)}\}_{n=0}^{+\infty}$ and $\{\beta_n^{(i)}\}_{n=0}^{+\infty}$ $(i = 0, \pm 1, \pm 2, \cdots)$ defined as above must satisfy

$$\beta_n^{(i)} + \alpha_{n+1}^{(i)} > 1, \quad n = 2, 3, \cdots, \quad i = 0, \pm 1, \pm 2, \cdots,$$

or equivalently

$$\beta_n^{(i)} + \alpha_n^{(i)} > 1, \quad n = 2, 3, \cdots, \quad i = 0, \pm 1, \pm 2, \cdots.$$

Proof For convenience, we always write

$$\varphi_i(x^k) = \int_a^b x^k x^i \mathrm{d}\psi(x), \quad i = 0, \pm 1, \pm 2, \cdots,$$

where φ_i is linear on span{ $\cdots, x^{-1}, 1, x, \cdots$ }.

According to (5), we have for $n = 0, 1, \dots$,

$$B_{n+1}^{(i)}(x) + \beta_n^{(i)} B_n^{(i)}(x) = x (B_n^{(i)}(x) - \alpha_n^{(i)} B_{n-1}^{(i)}(x)),$$

$$x^{-n+k}(B_{n+1}^{(i)}(x) + \beta_n^{(i)}B_n^{(i)}(x)) = x \cdot x^{-n+k}(B_n^{(i)}(x) - \alpha_n^{(i)}B_{n-1}^{(i)}(x)), \quad k = 0, \cdots, n-1.$$

 φ_i being acted on the above, we have by (4),

$$\varphi_{i+1}(x^{-n+k}(B_n^{(i)}(x) - \alpha_n^{(i)}B_{n-1}^{(i)}(x))) = 0, \quad k = 0, \cdots, n-1.$$

Therefore,

$$B_n^{(i+1)}(x) = B_n^{(i)}(x) - \alpha_n^{(i)} B_{n-1}^{(i)}(x).$$

Substituting the above into (5) for i + 1, we get

$$B_{n+1}^{(i)}(x) = B_n^{(i)}(x)(\alpha_{n+1}^{(i)} + x - \beta_n^{(i+1)}) - B_{n-1}^{(i)}(x)(\alpha_n^{(i)}(x - \beta_n^{(i+1)}) + \alpha_n^{(i+1)}x) + \alpha_n^{(i+1)}\alpha_{n-1}^{(i)}xB_{n-2}^{(i)}(x).$$

Applying (5) to the above again for all $n \ge 1$ results in

$$(\beta_n^{(i)} + \alpha_{n+1}^{(i)} - \beta_n^{(i+1)})B_n^{(i)}(x) + (-\alpha_n^{(i+1)}x + \alpha_n^{(i)}\beta_n^{(i+1)})B_{n-1}^{(i)}(x) + \alpha_n^{i+1}\alpha_{n-1}^{(i)}xB_{n-2}^{(i)}(x) = 0.$$
(7)

We can assert that $\beta_n^{(i)} + \alpha_{n+1}^{(i)} - \beta_n^{(i+1)} \neq 0$, since otherwise, $\alpha_n^{(i+1)} = 0$ $(n = 1, 2, \dots)$, leading to a contradition. Comparing the coefficients in (7) with those in (5) for *i*, we obtain

$$\beta_n^{(i)} + \alpha_{n+1}^{(i)} - \beta_n^{(i+1)} = \alpha_n^{(i+1)},\tag{8}$$

$$\frac{\alpha_n^{(i)}\beta_n^{(i+1)}}{\alpha_n^{(i+1)}} = \beta_{n-1}^{(i)}, \quad \alpha_n^{(i)}\beta_n^{(i+1)} = \beta_{n-1}^{(i)}(\beta_n^{(i)} + \alpha_{n+1}^{(i)} - \beta_n^{(i+1)}).$$

Therefore,

$$\beta_n^{(i+1)} = \frac{\beta_{n-1}^{(i)}(\beta_n^{(i)} + \alpha_{n+1}^{(i)})}{\alpha_n^{(i)} + \beta_{n-1}^{(i)}}, \quad \alpha_n^{(i+1)} = \frac{\alpha_n^{(i)}(\beta_n^{(i)} + \alpha_{n+1}^{(i)})}{\alpha_n^{(i)} + \beta_{n-1}^{(i)}},$$

or

$$\alpha_n^{(i)} = \frac{\beta_{n-1}^{(i+1)} + \alpha_{n-1}^{(i+1)}}{\beta_n^{(i+1)} + \alpha_n^{(i+1)}}, \quad \beta_n^{(i)} = (\beta_n^{(i+1)} + \alpha_n^{(i+1)})(1 - \frac{1}{\beta_{n+1}^{(i+1)} + \alpha_{n+1}^{(i+1)}})$$

So,

$$\beta_{n+1}^{(i)} + \alpha_{n+1}^{(i)} > 1, \quad n = 1, 2, \cdots, \quad i = 0, \pm 1, \pm 2, \cdots,$$

or equivalently by (8)

$$\beta_n^{(i)} + \alpha_{n+1}^{(i)} > 1, \quad n = 2, 3, \cdots, \quad i = 0, \pm 1, \pm 2, \cdots.$$

3. A representation for the greatest zero of B_n

Let $d\psi$ be a strong distribution in $(a, b) \subset (0, +\infty)$, and $\{B_n\}_{n=0}^{+\infty}$ be the unique monic polynomial sequence satisfying (2) and (3). Assume that $\{x_i\}_{i=1}^n$ are the *n* zeros of B_n , and $X_n = \max\{x_i : i = 1, \dots, n\}$. Then we have the following representation of X_n .

Theorem 3.1

$$X_n = \max_{p \in \Pi_{n-1}, p \neq 0} \frac{\int_a^b x^{-n+1} p^2(x) \mathrm{d}\psi(x)}{\int_a^b x^{-n} p^2(x) \mathrm{d}\psi(x)}.$$
(9)

Proof According to the statements in the introduction, for each $p \in \prod_{n=1}$ and $p \neq 0$, we have

$$\begin{split} \int_{a}^{b} x^{-n+1} p^{2}(x) \mathrm{d}\psi(x) &= \sum_{i=1}^{n} x_{i} x_{i}^{-n} p^{2}(x_{i}) A_{i} \leq X_{n} \sum_{i=1}^{n} x_{i}^{-n} p^{2}(x_{i}) A_{i} \\ &= X_{n} \int_{a}^{b} x^{-n} p^{2}(x) \mathrm{d}\psi(x). \end{split}$$

Therefore,

$$X_n \ge \max_{p \in \Pi_{n-1}, p \neq 0} \frac{\int_a^b x^{-n+1} p^2(x) \mathrm{d}\psi(x)}{\int_a^b x^{-n} p^2(x) \mathrm{d}\psi(x)}.$$

On the other hand, let us take $L_i(x) \in \Pi_{n-1}$ satisfying $L_i(x_k) = \begin{cases} 1, & k=i \\ 0, & k \neq i \end{cases}$, $i, k = 1, \dots, n$. Then

$$\frac{\int_a^b x^{-n+1} L_n^2(x) \mathrm{d}\psi(x)}{\int_a^b x^{-n} L_n^2(x) \mathrm{d}\psi(x)} = X_n.$$

So (9) holds.

Similar to the proof of (9), we can attain the following estimates on X_n .

Corollary 3.1

$$X_n \ge \max_{p \in \Pi_{n-2}, p \neq 0} \frac{\int_a^b x^{-n+3} p^2(x) \mathrm{d}\psi(x)}{\int_a^b x^{-n+2} p^2(x) \mathrm{d}\psi(x)}$$

Corollary 3.2

$$X_n^2 \ge \max_{p \in \Pi_{n-2}, p \neq 0} \frac{\int_a^b x^{-n+3} p^2(x) \mathrm{d}\psi(x)}{\int_a^b x^{-n+1} p^2(x) \mathrm{d}\psi(x)}$$

References:

- DIMITROV D K, RANGA A Sir. Monotonicity of zeros of orthogonal Laurent polynomials [J], Methods Appl. Anal., 2002, 9: 1–11.
- [2] JONES W B, THRON W J. Orthogonal Laurent polynomials and Gaussian quadrature, in: "Quantum Mechanics in Mathematics, Chemistry, and Physics," [C]. (K. E. Gustafson and W. P. Reinhardt, Eds.) pp. 449-455, Plenum Press, New York, 1981.
- [3] RANGA A Sir, WALTER V A. Blumenthal's theorem for Laurent orthogonal polynomials [J]. J. Approx. Theory., 2002, 117: 255-278.
- [4] ZHEDANOV A. Biorthogonal rational functions and the generalized eigenvalue problem [J]. J. Approx. Theory., 1999, 101: 303–329.
- [5] FREUD G. On the greatest zero of an orthogonal polynomial [J], J. Approx. Theory., 1986, 46: 16–24.
- [6] JONES W B, THRON W J, WAADELAND H. A strong Stieltjes moment problem [J]. Trans. Amer. Math. Soc., 1980, 261: 503–528.
- [7] SZEGÖ G. Orthogonal Polynomials, 4th ed. [M]. Amer. Math. Soc. Coll. Publ., Vol. 23, Providence, RI, 1975.
- [8] WANG Ren-hong, ZHOU Heng. Chebyshev's maximum principle in several variables [J]. J. Approx. Theory., 2003, 123: 276–279.

Laurent 多项式及其零点

(1. 北京师范大学数学科学学院, 北京 100875; 2. 大连理工大学数学研究所, 辽宁 大连 116024)

摘要:本文给出了测度 d ψ 为强分布的一个必要条件,并得到了 d ψ 为强分布时的 Laurent 多项 式最大零点的一个表示.

关键词: Laurent 多项式; 求积公式; Laurent 多项式的零点.