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Abstract: The well-known trace equality of similar matrices does not necessarily hold for
matrices over non-commutative algebras and rings. An interesting question is to give condi-
tions such that trace equality of similar matrices holds for matrices over a non-commutative
algebra or ring. In this note, we show that for any two matrices A and B over a generalized
quaternion algebra defined on an arbitrary field F of characteristic not equal to two, if A and
B are similar and the main diagonal elements of A and B are in F, then their traces are equal.
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Let F be an arbitrary field of characteristic not equal to two, and let u and v be two nonzero

elements of F. A generalized quaternion algebra (u, v

F
) is a four dimensional vector space over F

with a basis 1, i, j and k satisfying the multiplication rules

i2 = u, j2 = v, k = ij = −ji, (1)

where 1 acts as unity element[1−3]. Element of (u, v

F
) is written as

a = a0 + a1i + a2j + a3k, a0, a1, a2, a3 ∈ F.

According to this definition, the generalized quaternion algebra ( u, v

F
) is a four-dimensional asso-

ciative algebra with its central field F. In particular, when F is the real field R and u = v = −1,

(u, v

F
) is the well-known Hamilton quaternion algebra; when F = R, u = 1 and v = −1, ( u, v

F
) is

the real split quaternion algebra; when F is the complex field C and u = v = −1, ( u, v

F
) is called

the well-known complex quaternion algebra.

As usual, two matrices A and B over (u, v

F
) are said to be similar if there is an invertible

matrix X over (u, v

F
) such XAX−1 = B, and is denoted by A ∼ B. The trace of a square matrix

A = (ast) of order n over (u, v

F
) is defined by tr(A) =

∑n

1 ass. The trace of a square matrix over

is one of the simplest concepts in linear algebra, which has various remarkable applications in

many fields of mathematics. The calculation of many mathematics quantities can be reduced to

the calculation of traces of square matrices.
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Since (u, v

F
) is not non-commutative, that is, ab 6= ba for a, b ∈ F in general, the trace

equality tr(MN) = tr(NM) does not hold for matrices over ( u, v

F
). Consequently, tr(XAX−1) =

tr(A) does not hold for A and X over (u, v

F
). A natural problem in the investigation into the trace

of matrices over (u, v

F
) is to determine necessary and sufficient conditions for tr(XAX−1) = tr(A)

to hold. A direct motivation for us to consider this topic arises from extending various trace

equalities and inequalities for complex matrices to real quaternion matrices.

The main result of this note is:

Theorem 1 Let A = (ast) and B = (bst) be a pair of square matrices of order n over (u, v

F
). If

A ∼ B and ass, bss ∈ F for s = 1, · · · , n, then tr(A) = tr(B) holds.

A ∼ B implies that there is an invertible matrix X over (u, v

F
) such that XAX−1 = B.

Thus, tr(XAX−1) = tr(B). But tr(XAX−1) = tr(AX−1X) is not true in general.

Our method to prove Theorem 1 is to convert matrices over ( u, v

F
) to matrices over F.

Lemma 2
[4,6] Let A = A0 + A1i + A2j + A3k be an m×n matrix over (u, v

F
), where A0, · · · , A3

are m × n matrices over F. Then the diagonal block matrix diag( A, A, A, A ) satisfies the

following universal factorization equality

J4mdiag( A, A, A, A )J4n =









A0 uA1 vA2 −uvA3

A1 A0 vA3 −vA2

A2 −uA3 A0 uA1

A3 −A2 A1 A0









def
= Φ(A), (2)

where

J4t = J−1
4t =

1

2









It iIt jIt kIt

u−1iIt It −u−1kIt −jIt

v−1jIt v−1kIt It iIt

−(uv)−1kIt −v−1jIt u−1iIt It









, t = m, n.

In particular, when m = n, (2) becomes a universal similarity factorization equality over ( u, v

F
).

Lemma 3
[4] Let A and B be m × n matrices over (u, v

F
), C be an n × p matrix over (u, v

F
) and

λ ∈ F. Then

(a) A = B ⇔ Φ(A) = Φ(B).

(b) Φ(A + B) = Φ(A) + Φ(B).

(c) Φ(AC) = Φ(A)Φ(C).

(d) Φ(λA) = Φ(Aλ) = λΦ(A).

(e) Φ(Im) = I4m.

(f) If A is invertible, then Ψ(A−1) = Ψ−1(A).

The matrix Φ(A) in (2) is often called the central representation of A in the literature. If

A ∼ B, i.e., there is an X such that XAX−1 = B, then applying Lemma 3 (a), (c) and (f) to

its both sides yields

Φ(X)Φ(A)Φ−1(X) = Φ(B), (3)

here Φ(A), Φ(B) and Φ(X) are matrices over F. Hence

tr[Φ(A)] = tr[Φ(B)] (4)



No.1 CHENG Shi-zhen, et al: Equality for trace of matrix over generalized quaternion algebra 45

holds. If

A = A0 + A1i + A2j + A3k

and

B = B0 + B1i + B2j + B3k,

then we see from (2) that (4) is equivalent to

tr(A0) = tr(B0). (5)

From the above results, we can prove Theorem 1.

Proof of Theorem 1 Suppose

A = A0 + A1i + A2j + A3k

and

B = B0 + B1i + B2j + B3k.

Note that the main diagonal elements of A and B are all in F and the main diagonal elements

of A0 and B0 are all in F. Hence, the main diagonal elements of A1, A2, A3 and B1, B2, B3

must all be zero. In this case,

tr(A) = tr(A0), and tr(B) = tr(B0). (6)

On the other hand, since A ∼ B, we also have (5). The combination of (5) and (6) yields

tr(A) = tr(B), the desired result. 2

Remark 4 From the given condition in Theorem 1 we can only derive that tr(A) = tr(B), but

cannot derive that tr(Al) = tr(Bl) for l ≥ 2. In fact, although we know from XAX−1 = B that

XAlX−1 = Bl, the main diagonal elements of Al and Bl may not be in F. In this case, we can

say nothing about the relationship between tr(Al) and tr(Bl) for l ≥ 2.

When matrices are considered over the real quaternion algebra H, it is well known that

they have Jordan decompositions[7]. That is to say, for any A ∈ H
n×n, there is an invertible

X ∈ H
n×n such that XAX−1 = J, where J is a complex Jordan matrix, the diagonal entries of

J are a set of complex right eigenvalues λ1, . . . , λn of A. Applying Theorem 1 to real quaternion

matrices and their Jordan decompositions, one can derive some more explicit conclusions for

traces of real quaternion matrices and their right eigenvalues. In such cases, various well-known

equalities and inequalities for traces of complex matrices can be extended to real quaternion

matrices. For more details, see [5].
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