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Abstract: By a simple application of a new three functionals fixed point theorem, suffi-
cient conditions are obtained to guarantee the existence of at least three positive solutions
for p-Laplacian equation: (¢p(u')) + a(t)f(¢,u(t)) = 0 subject to nonlinear boundary value
conditions. An example is presented to illustrate the theory.
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1. Introduction

This paper deals with the p-Laplacian equation
(ep(u) +a(t)f(t,ut)) =0, te(0,1) (1)
subject to the following nonlinear boundary conditions
u(0) = Bo(u'(0)) = 0, u(1) + By (u/(1)) = 0 (2)

where ¢, (z) = [2[P"%z,p > 1.

In [1], using the three functionals fixed point theorem due to Avery and Henderson!*), HE
Xiao-ming and GE Wei-gao obtained at least two positive solutions of (1)(2) when f(t,u) = f(u);
In [2], the authors yielded at least triple positive solutions to BVP (1)(2) by applying the five
functionals fixed point theorem on cone; In [3], by Leggett-Williams fixed point theorem, the
authors obtained three positive solutions of three-point BVPs when p = 2. But the conditions
for the methods and techniques mentioned above are difficult to check. This paper will apply a
new three functionals three fixed points theorem proved in literaturel! to study the existence of
three positive solutions of BVP(1)(2). Our results are new and different from those in [1-3] and
very easy to check.

The following conditions are satisfied throughout this paper.
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(Hy) f: [0,1] x [0,00) — [0, 00) is continuous;
(H2) Bo(v) and By (v) are both nondecreasing continuous odd functions defined on (—o0, +00),

and satisfy that there are nonnegative numbers [ and L such that
lv< B;(v) <Lv, v>0,i=0,1;

(H3) a(t) is a nonnegative measurable function defined on (0,1), and a(t) is not identical

zero on any compact subinterval of (0,1). Furthermore, a(t) satisfies

1
0< / a(t)dt < 4o0.
0

2. Some definitions and lemmas

In this section,we provide some background definitions cited from cone theory in Banach

spaces.

Definition 2.1 Let (E,||-||) be a real Banach space. A nonempty, closed, convex set P C E is
said to be a cone provided the following are satisfied:

(i) Ify € P and A >0, then \y € P;

(ii) Ify € P and —y € P, then y = 0.

If P C E is a cone, we denote the order induced by P on E by <, that is, z < y if and only
ify—zeP.

Definition 2.2 Given a cone P in a real Banach space E, a functional ¢ : P — R is said to be

increasing on P, provided v (z) < ¢(y) for all x,y € P with = < y.

Definition 2.3 Given a nonnegative continuous functional v on a cone P of E, we define for
each d > 0 the set

P(v,d) ={x € P:~v(x) < d}.

The following fixed point theorem is fundamental and important to the proofs of our main

results.

Lemma 2.1 Let P be a cone in a Banach space E. Let o, 3 and ~ be three increasing,

nonnegative and continuous functionals on P, satisfying for some ¢ > 0 and M > 0 such that

Y(z) < Bx) < az), ||z < My(x)

for all z € P(v,c). Suppose there exists a completely continuous operator T : P(v,¢) — P and
0 < a < b < c such that

(i) v(Tx) < ¢, for all x € OP(~,¢);

(ii) B(Tx) > b, for all x € OP(B,b);
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(iii) P(a,a) # 0, and a(Tz) < a , for all x € OP(«, a)
Then T has at least three fixed points x1,xa, x5 € P(y,c) such that
0 <a(r) <a<a(xy), Blae) <b< B(xs),vy(x3) <c.
3. Main results
Let the Banach space £ = C([0,1]) be endowed the norm [|z|| = maxc[p,1}[2(t)|. And
choose the cone P C E defined by
P ={z € FE:xz(t) is nonnegative concave on [0, 1]}
It follows from (Hz) that there exists d € (0, 3) such that
1-5
0< / a(t)dt < 400 (3)
s

and hence the function

x 1-6
va) =yl [ alva) [ aan, s<a<i-s

is continuous and positive on [J, 1 — §], where ¢, () := |z|'/P~Dsgna.

We define the following nonnegative, increasing and continuous functionals

() = 5 (w(d) +u(l - ),

ol = 250
a(u) = [max, u(t).

Obviously, for every u € P, we have v(u) < B(u)

a(u).

Lemma 3.1 Let w € P and § € (0,1/2) , then u(t) > 6||ul|, for all t € [5,1 — 6]
From Lemma 3.1 and the definition of v(u), one has y(u) > §|ju||. Thus

1
[Jul|| < g*y(u), for all u € P.

We shall use the following notations:

K= min y(z),

§<z<1-5

o 1
w= (L4 1= 0)gy( | aran). (L +1=8)a( [ alran),

1-6
lpg fls 6 d?") +590q( 5 6( )dr)

pq( fo a(T)dT)+<Pq( I, a(r)dr>J+K6
2
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1
A= (L+1- 5)(,0,1(/0 a(r)dr).

Now we give the main result of this paper.

Theorem 3.1 Assume that (Hy)—(Hs) hold, and that there exist positive constants 0 < a <
b < %a < 8%c such that

(Hy) f(t,w) <pp(5), if0<t<1-0,6c<w<§;

(Hs) f(t,w) > pp(2), if0<t<1,0<w < s

(Hs) f(t,w) <¢p(5), if0<t<1,0sw<a.
Then, the BVP (1)+(2) has at least three positive solutions u1,uz and ugz such that

0 < a(ur) <a < afuz), Bluz) <b<PB(us),v(us) <c.
Proof We define an operator T : P(y,c) — E by

o) { By o gy(Jy alr)f(rou(r))dr) + fi eo(J7 a(r)f(ru(r)dr)ds, 0 < ¢ <o
By ogg([, alr)f(ru(r)dr) + [; @q(f; a(r)f(r,u(r))dr)ds, o <t <1
for each u € P, where o = 0 if (Tu)’(0) = 0; 0 = 1 if (T'u)’(1) = 0; otherwise, o is a solution of
the equation
20(x) = z1(2),

where

z0(z) = Bp o (pq(/ox a(r)f(r,u(r))dr) _|_/0

x

goq(/z a(r)f(r,u(r))dr)ds, 0 <z <1,

S

a@) = Broga( [ a)frur)dn) + [ pu( [ ) utr)drds, 0<z <1,

It is shown in [6] that o exists and the operator T : P(v,¢) — FE is well defined. In particular,

if u € P(v,c), we also have Tu € P. So T : P(vy,¢) — P.

It is easy to prove that T : m — P is completely continuous.

We now show that all the conditions of Lemma 2.1 are satisfied. To make use of property
(i) of Lemma 2.1, we choose u € OP(v,¢), then y(u) = 3(u(d) + u(l —§)) = c. If we recall that
[ull < $v(u), we have

de < llu|l < u(t) < §<t<1-9.

¢
57

Then assumption (Hy) implies

f(s,0(s) < pp(5), §<s<1=8.

Therefore,

%(Tu(a) +Tu(l - 8)) < Tu(5)

~Brog( [ () f(rur))dr) + / ol / " a(r)f (r u(r)dr)ds

Y(Tu) =

1

1 1
Schq(/O a(r)f(nu(r))dr)—f—/ goq(/o a(r)f(r,u(r))dr)ds

)
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1
— (L + 1 8)p / a(r) £ (r u(r))dr)

> o

1
<(L+1- 5)<pq(/ a(r)dr) -
0
=c, if o<,

y(Tu) = %(Tu(é) + Tu(l-196)) <Tu(l-9)
1-5

— Byog / " a(r) £ (r, u(r))dr) + | et " a(r) £ (r, u(r))dr)ds

0 s
1-46

1 1
< L(pq(/o a(r)f(r,u(r))dr) —|—/O gaq(/o a(r)f(r,u(r))dr)ds
=418y [ alr) o))

1
<(L+1- 5)90(1(/0 a(r)dr) - %

=c¢, if o0>1-4,

29(Tu) =(Tu(d) + Tu(l — 9))
o é o
=By o goq(/o a(r) f(r,u(r))dr) —l—/o goq(/ a(r)f(r,u(r))dr)ds+

1

1 s
Brogy( | at)freuin) + [ ool [ atsrutands
1 5 1
§Lapq(/0 a(r) f(r,u(r))dr) —|—/0 gaq(/o a(r)f(r,u(r))dr)ds+
1

Boal [ a)1euD0n) + [ a0t uoanas

<(2L+ 25)90(1(/0 a(r)dr) -

>0

1
<(2L+2- 25)<pq(/ a(r)dr) - ;
0
=2¢c, if 0<o<1-6.

Hence, condition (i) is satisfied .
Secondly, we show that (ii) of Lemma 2.1 is fulfilled. For this, we select u € OP(8,b). Then

Blu) = snax u(t) = b. Noticing that [Jul| < $v(u) < $8(u) = %, we have

By (Hs), we have
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and so

B(Tu) = 5Sr£1§alx_6 Tu(t) > Tu(l - 9)

1

=B 0 o4 /U 1 a(r) f(r,u(r))dr) + / ) Pq( /U S a(r) f(r, u(r))dr)ds

1

1 1-5
214,0,1(/5 a(r)f(r,u(r))dr) —|—/ %(/6 a(r) f(r,u(r))dr)ds

1-6
1 1-6
>[l<pq(/(s a(r)dr) + 690(1(/6 a(r)dr)] -
b
>6- 2

§

=b, if o<,

B(Tu) = slnax Tu(t) > Tu())

b
13
b
Zf'g
—b, if 0>1-4,

26(Tu) =2 5<I¥13¥,5Tu(t) > Tu(d) + Tu(l —6)

o 5 o
=By o <pq(/0 a(r)f(r,u(r))dr) —|—/O <pq(/ a(r)f(r,u(r))dr)ds

Bjo <pq(/gl a(r) f(r,u(r))dr) +/1 wq(/j a(r) f(r,u(r))dr)ds+

-6
)

§ o
zlcpq(/o a(r)f(r,u(r))dr) —|—/O %(/6 a(r)f(r,u(r))dr)ds+

1

1-46
el / a(r) £ (r, u(r))dr)ds

1 1-06

6 o
>leo( [ alnan) + o [ aran]+ e[ atyin +e( [ atrian) -

1-6 ) o

ol [ atrsutran) + |

i~y

1

)
>[Iy / a(r)dr) + Lga / a(r)dr)] + 6K] - 2

1-6
b

>9¢ . —
3

=2b, if 6<o<1-04.

Hence, condition (ii) is satisfied.
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is a member of P(a,a) and a(u) = ¢ < a. So P(a,a) # 0. Now , let u € dP(c,a) , then
a(u) = maxo<i<1 u(t) = a . This means that

Finally, we verify that (iii) of Lemma 2.1 is also satisfied. We note that u(t) = §,0 <t <1

0<u(t)<a, 0<t<1.
From assumption (Hg), we have
f(s,w(s)) < app(%), 0<s<1.

As before, we get

a(Tu) = Tu(o)

By oy /U ()£ u(r))dr) + /

o

1

1

<t [ o)t + [

1-46

ool [ alnnstrutryands
~(L+8)eu([ alr)f(ru(r))r)
<(L+ 5)(,0(1(/175 a(r)dr) -

7
s
<(L+1- 6)90,1(/0 a(r)dr) -

<a, if 0 >1-49,

I
2a(Tu) =2Tu(o)

=Bgo (pq(/og a(r)f(r,u(r))dr) + /OU wq(/g a(r) f(r,u(r))dr)ds+

Browy( [ () u(r))dr) + /

o

ool [ alr)fra(r)ards
1-§ 1-0 1-46
< Loy / a(r) £ (r u(r))dr) + / gl / a(r) £ (r, u(r))dr)ds-+
1 1
Ly /5 a(r) f(r, u(r))dr) + /

)

ol /6 " a(r) £ (r, u(r)dr)ds
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1

1-5

~(L+1-Dleal [ a0 u)dr) + oyl [ alr) 1 u(r))dr)
0 5
1-5 1
a
SL+1=0p([ )+l atran) -
<2a, if o€[§,1—90].
Therefore, BVP(1)(2) has at least three positive solutions w1, u2 and ug such that
0 <a(u) <a<aluz), Bluz) <b< B(usg), v(us)<e.

Remark If we add the condition of a(t)f(t,u) # 0, t € [0,1], to Theorem 3.1, we can get

positive solutions u1, us and ugz such that

0<a(ur) <a<aluz), Bluz) <b< Blus),v(us) < ec.

4. An example

In this section, we present a simple example to explain our results.

Consider the boundary value problem

(pg (W) +a(®)f(t,u) =0, (4)
u(0) — Bo(u'(0)) =0, wu(l)+ Bi(u'(1)) =0, (5)
where
60, 0<t<1, 0<u<5,
u + 55, 0<t<1, 5<u< 36,
flt,u) =9 o1, 0<t<1, 36 <u<10%
u—10% 4
91 + “—i0-, 0<t<1, u>10%
t, o<t<li
_ ) =t =3
a(t)_{ 1—t, s<t<i
In the example, we notice that By(v) = B1(v) = %v, l=L= %, p= %, and ¢ = 3. Choose
0= i. It follows from a direct calculation that
. 18
K= i;jﬁ?ﬁy(m):@’
= el + 1= Dgat [ ran 1= Dhgat [0 —many = 2y
1= ey FRAGAY A 19 1% s 1732
67T 1., 67 1., 11 1., 11 1.,
§=min{5 x(55)% 5 x (550 T x (g5 =7 < (5)"
1 1 ! 5
= (=41-—= dr) = —.
A= G1- Pl atin =2
Here we choose a =5, b =19, ¢ = 2500, then we get
Fu) = 60 < 64 = s (4% 322) = 0s (Y, T<i<1-2 0<u<s
f(au)_ < —<Pg( X )_wg(ﬁ)v Z_ = _Zv SUS 9,
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192 9 b

t,u) > 60 > =3 =pas(=z), 0<t<1, 0<u <36,
2500

F(t,u) =91 < 80v/5 = 3 ( 5):¢g§,ogtSL6%gug1m.
64

Then all the conditions of Lemma 2.1 are satisfied. So, by Theorem 3.1, we know BVP(4)(5)

has at least three positive solutions.
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