JOURNAL OF MATHEMATICAL RESEARCH AND EXPOSITION

Multiple Positive Solutions to a Nonlinear Two-point Boundary Value Problem with p-Laplacian

LI Zhi-yan¹, YAN Shu-lin², GE Wei-gao³

- (1. Dept. of Math. & Phys., Hohai University, Changzhou 213022, China;
- 2. Changzhou Engineering Vocational & Technical College, Jiangsu 213004, China;
- 3. Dept. of Appl. Math., Beijing Institute of Technology, Beijing 100081, China) (E-mail: yylin79@126.com)

Abstract: By a simple application of a new three functionals fixed point theorem, sufficient conditions are obtained to guarantee the existence of at least three positive solutions for p-Laplacian equation: $(\varphi_p(u'))' + a(t)f(t,u(t)) = 0$ subject to nonlinear boundary value conditions. An example is presented to illustrate the theory.

Key words: boundary value problem; p-Laplacian operator; positive solution; the three functionals fixed point theorem.

MSC(2000): 34B15 CLC number: O175.8

1. Introduction

This paper deals with the p-Laplacian equation

$$(\varphi_p(u'))' + a(t)f(t, u(t)) = 0, \quad t \in (0, 1)$$
(1)

subject to the following nonlinear boundary conditions

$$u(0) - B_0(u'(0)) = 0, \quad u(1) + B_1(u'(1)) = 0$$
 (2)

where $\varphi_p(x) = |x|^{p-2}x, p > 1$.

In [1], using the three functionals fixed point theorem due to Avery and Henderson^[4], HE Xiao-ming and GE Wei-gao obtained at least two positive solutions of (1)(2) when f(t, u) = f(u); In [2], the authors yielded at least triple positive solutions to BVP (1)(2) by applying the five functionals fixed point theorem on cone; In [3], by Leggett-Williams fixed point theorem, the authors obtained three positive solutions of three-point BVPs when p = 2. But the conditions for the methods and techniques mentioned above are difficult to check. This paper will apply a new three functionals three fixed points theorem proved in literature^[5] to study the existence of three positive solutions of BVP(1)(2). Our results are new and different from those in [1–3] and very easy to check.

The following conditions are satisfied throughout this paper.

Received date: 2004-04-30

Foundation item: the National Natural Science Foundation of China (10371006)

- (H_1) $f: [0,1] \times [0,\infty) \rightarrow [0,\infty)$ is continuous;
- (H₂) $B_0(v)$ and $B_1(v)$ are both nondecreasing continuous odd functions defined on $(-\infty, +\infty)$, and satisfy that there are nonnegative numbers l and L such that

$$lv \le B_i(v) \le Lv, \ v \ge 0, \ i = 0, 1;$$

(H₃) a(t) is a nonnegative measurable function defined on (0,1), and a(t) is not identical zero on any compact subinterval of (0,1). Furthermore, a(t) satisfies

$$0 < \int_0^1 a(t) \mathrm{d}t < +\infty.$$

2. Some definitions and lemmas

In this section, we provide some background definitions cited from cone theory in Banach spaces.

Definition 2.1 Let $(E, \|\cdot\|)$ be a real Banach space. A nonempty, closed, convex set $P \subset E$ is said to be a cone provided the following are satisfied:

- (i) If $y \in P$ and $\lambda \geq 0$, then $\lambda y \in P$;
- (ii) If $y \in P$ and $-y \in P$, then y = 0.

If $P \subset E$ is a cone, we denote the order induced by P on E by \leq , that is, $x \leq y$ if and only if $y - x \in P$.

Definition 2.2 Given a cone P in a real Banach space E, a functional $\psi: P \to R$ is said to be increasing on P, provided $\psi(x) \le \psi(y)$ for all $x, y \in P$ with $x \le y$.

Definition 2.3 Given a nonnegative continuous functional γ on a cone P of E, we define for each d > 0 the set

$$P(\gamma, d) = \{ x \in P : \gamma(x) < d \}.$$

The following fixed point theorem is fundamental and important to the proofs of our main results.

Lemma 2.1^[5] Let P be a cone in a Banach space E. Let α, β and γ be three increasing, nonnegative and continuous functionals on P, satisfying for some c > 0 and M > 0 such that

$$\gamma(x) \le \beta(x) \le \alpha(x), \quad ||x|| \le M\gamma(x)$$

for all $x \in \overline{P(\gamma, c)}$. Suppose there exists a completely continuous operator $T : \overline{P(\gamma, c)} \to P$ and 0 < a < b < c such that

- (i) $\gamma(Tx) < c$, for all $x \in \partial P(\gamma, c)$;
- (ii) $\beta(Tx) > b$, for all $x \in \partial P(\beta, b)$;

(iii) $P(\alpha, a) \neq \emptyset$, and $\alpha(Tx) < a$, for all $x \in \partial P(\alpha, a)$.

Then T has at least three fixed points $x_1, x_2, x_3 \in \overline{P(\gamma, c)}$ such that

$$0 \le \alpha(x_1) < a < \alpha(x_2), \ \beta(x_2) < b < \beta(x_3), \gamma(x_3) < c.$$

3. Main results

Let the Banach space E = C([0,1]) be endowed the norm $||x|| = \max_{t \in [0,1]} |x(t)|$. And choose the cone $P \subset E$ defined by

$$P = \{x \in E : x(t) \text{ is nonnegative concave on } [0,1]\}.$$

It follows from (H_2) that there exists $\delta \in (0, \frac{1}{2})$ such that

$$0 < \int_{\delta}^{1-\delta} a(t)dt < +\infty \tag{3}$$

and hence the function

$$y(x) := \varphi_q(\int_{\delta}^x a(t)dt) + \varphi_q(\int_x^{1-\delta} a(t)dt), \quad \delta \le x \le 1-\delta$$

is continuous and positive on $[\delta, 1 - \delta]$, where $\varphi_q(x) := |x|^{1/(p-1)} \operatorname{sgn} x$.

We define the following nonnegative, increasing and continuous functionals

$$\gamma(u) = \frac{1}{2}(u(\delta) + u(1 - \delta)),$$
$$\beta(u) = \max_{\delta \le t \le 1 - \delta} u(t),$$
$$\alpha(u) = \max_{0 \le t \le 1} u(t).$$

Obviously, for every $u \in P$, we have $\gamma(u) \leq \beta(u) \leq \alpha(u)$.

Lemma 3.1^[1] Let $u \in P$ and $\delta \in (0, 1/2)$, then $u(t) \ge \delta ||u||$, for all $t \in [\delta, 1 - \delta]$. From Lemma 3.1 and the definition of $\gamma(u)$, one has $\gamma(u) \ge \delta ||u||$. Thus

$$||u|| \le \frac{1}{\delta} \gamma(u)$$
, for all $u \in P$.

We shall use the following notations:

$$\begin{split} K &= \min_{\delta \leq x \leq 1-\delta} y(x), \\ \eta &= \max\{(L+1-\delta)\varphi_q(\int_0^\delta a(r)\mathrm{d}r), (L+1-\delta)\varphi_q(\int_{1-\delta}^1 a(r)\mathrm{d}r)\}, \\ \xi &= \min\left\{ \begin{array}{l} l\varphi_q(\int_\delta^1 a(r)\mathrm{d}r) + \delta\varphi_q(\int_\delta^{1-\delta} a(r)\mathrm{d}r), \\ l\varphi_q(\int_0^{1-\delta} a(r)\mathrm{d}r) + \delta\varphi_q(\int_\delta^{1-\delta} a(r)\mathrm{d}r), \\ \frac{l[\varphi_q(\int_0^\delta a(r)\mathrm{d}r) + \varphi_q(\int_{1-\delta}^1 a(r)\mathrm{d}r)] + K\delta}{2} \end{array} \right\}, \end{split}$$

$$\lambda = (L + 1 - \delta)\varphi_q(\int_0^1 a(r)dr).$$

Now we give the main result of this paper.

Theorem 3.1 Assume that (H_1) – (H_3) hold, and that there exist positive constants $0 < a < b < \frac{\xi a}{\eta} < \delta^2 c$ such that

$$(H_4)$$
 $f(t,\omega) < \varphi_p(\frac{c}{\lambda})$, if $\delta \le t \le 1 - \delta$, $\delta c \le \omega \le \frac{c}{\delta}$;

$$(H_5)$$
 $f(t,\omega) > \varphi_p(\frac{b}{\xi})$, if $0 \le t \le 1, 0 \le \omega \le \frac{b}{\delta}$;

$$(H_6)$$
 $f(t,\omega) < \varphi_p(\frac{a}{n})$, if $0 \le t \le 1, 0 \le \omega \le a$.

Then, the BVP (1)+(2) has at least three positive solutions u_1, u_2 and u_3 such that

$$0 \le \alpha(u_1) < a < \alpha(u_2), \ \beta(u_2) < b < \beta(u_3), \gamma(u_3) < c.$$

Proof We define an operator $T: P(\gamma, c) \to E$ by

$$(Tu)(t) = \begin{cases} B_0 \circ \varphi_q(\int_0^\sigma a(r)f(r,u(r))dr) + \int_0^t \varphi_q(\int_s^\sigma a(r)f(r,u(r))dr)ds, & 0 \le t \le \sigma \\ B_1 \circ \varphi_q(\int_\sigma^1 a(r)f(r,u(r))dr) + \int_t^1 \varphi_q(\int_s^\sigma a(r)f(r,u(r))dr)ds, & \sigma \le t \le 1 \end{cases}$$

for each $u \in P$, where $\sigma = 0$ if (Tu)'(0) = 0; $\sigma = 1$ if (Tu)'(1) = 0; otherwise, σ is a solution of the equation

$$z_0(x) = z_1(x),$$

where

$$z_{0}(x) = B_{0} \circ \varphi_{q}(\int_{0}^{x} a(r)f(r, u(r))dr) + \int_{0}^{x} \varphi_{q}(\int_{s}^{x} a(r)f(r, u(r))dr)ds, \ 0 \le x < 1,$$

$$z_{1}(x) = B_{1} \circ \varphi_{q}(\int_{x}^{1} a(r)f(r, u(r))dr) + \int_{x}^{1} \varphi_{q}(\int_{x}^{s} a(r)f(r, u(r))dr)ds, \ 0 < x \le 1.$$

It is shown in [6] that σ exists and the operator $T: P(\gamma,c) \to E$ is well defined. In particular, if $u \in \overline{P(\gamma,c)}$, we also have $Tu \in P$. So $T: \overline{P(\gamma,c)} \to P$.

It is easy to prove that $T: \overline{P(\gamma,c)} \to P$ is completely continuous.

We now show that all the conditions of Lemma 2.1 are satisfied. To make use of property (i) of Lemma 2.1, we choose $u \in \partial P(\gamma, c)$, then $\gamma(u) = \frac{1}{2}(u(\delta) + u(1 - \delta)) = c$. If we recall that $||u|| \leq \frac{1}{\delta}\gamma(u)$, we have

$$\delta c \le \delta \|u\| \le u(t) \le \frac{c}{\delta}, \quad \delta \le t \le 1 - \delta.$$

Then assumption (H_4) implies

$$f(s, \omega(s)) < \varphi_p(\frac{c}{\lambda}), \quad \delta \le s \le 1 - \delta.$$

Therefore,

$$\gamma(Tu) = \frac{1}{2}(Tu(\delta) + Tu(1 - \delta)) \le Tu(\delta)$$

$$= B_1 \circ \varphi_q(\int_{\sigma}^1 a(r)f(r, u(r))dr) + \int_{\delta}^1 \varphi_q(\int_{\sigma}^s a(r)f(r, u(r))dr)ds$$

$$\le L\varphi_q(\int_0^1 a(r)f(r, u(r))dr) + \int_{\delta}^1 \varphi_q(\int_0^1 a(r)f(r, u(r))dr)ds$$

$$= (L+1-\delta)\varphi_q(\int_0^1 a(r)f(r,u(r))dr)$$

$$< (L+1-\delta)\varphi_q(\int_0^1 a(r)dr) \cdot \frac{c}{\lambda}$$

$$= c, \text{ if } \sigma < \delta,$$

$$\gamma(Tu) = \frac{1}{2}(Tu(\delta) + Tu(1 - \delta)) \le Tu(1 - \delta)$$

$$= B_0 \circ \varphi_q(\int_0^\sigma a(r)f(r, u(r))dr) + \int_0^{1 - \delta} \varphi_q(\int_s^\sigma a(r)f(r, u(r))dr)ds$$

$$\le L\varphi_q(\int_0^1 a(r)f(r, u(r))dr) + \int_0^{1 - \delta} \varphi_q(\int_0^1 a(r)f(r, u(r))dr)ds$$

$$= (L + 1 - \delta)\varphi_q(\int_0^1 a(r)f(r, u(r))dr)$$

$$< (L + 1 - \delta)\varphi_q(\int_0^1 a(r)dr) \cdot \frac{c}{\lambda}$$

$$= c, \text{ if } \sigma > 1 - \delta,$$

$$\begin{split} 2\gamma(Tu) = & (Tu(\delta) + Tu(1-\delta)) \\ = & B_0 \circ \varphi_q(\int_0^\sigma a(r)f(r,u(r))\mathrm{d}r) + \int_0^\delta \varphi_q(\int_s^\sigma a(r)f(r,u(r))\mathrm{d}r)\mathrm{d}s + \\ & B_1 \circ \varphi_q(\int_0^1 a(r)f(r,u(r))\mathrm{d}r) + \int_{1-\delta}^1 \varphi_q(\int_s^s a(r)f(r,u(r))\mathrm{d}r)\mathrm{d}s \\ \leq & L\varphi_q(\int_0^1 a(r)f(r,u(r))\mathrm{d}r) + \int_0^\delta \varphi_q(\int_0^1 a(r)f(r,u(r))\mathrm{d}r)\mathrm{d}s + \\ & L\varphi_q(\int_0^1 a(r)f(r,u(r))\mathrm{d}r) + \int_{1-\delta}^1 \varphi_q(\int_0^1 a(r)f(r,u(r))\mathrm{d}r)\mathrm{d}s \\ < & (2L+2\delta)\varphi_q(\int_0^1 a(r)\mathrm{d}r) \cdot \frac{c}{\lambda} \\ < & (2L+2-2\delta)\varphi_q(\int_0^1 a(r)\mathrm{d}r) \cdot \frac{c}{\lambda} \\ = & 2c, \quad \text{if} \quad \delta < \sigma < 1-\delta. \end{split}$$

Hence, condition (i) is satisfied.

Secondly, we show that (ii) of Lemma 2.1 is fulfilled. For this, we select $u \in \partial P(\beta, b)$. Then $\beta(u) = \max_{\delta < t \le 1-\delta} u(t) = b$. Noticing that $\|u\| \le \frac{1}{\delta} \gamma(u) \le \frac{1}{\delta} \beta(u) = \frac{b}{\delta}$, we have

$$0 \le u(t) \le \frac{b}{\delta}, \quad 0 \le t \le 1.$$

By (H_5) , we have

$$f(s,\omega(s)) > \varphi_p(\frac{b}{\xi}), \quad 0 \le s \le 1$$

and so

$$\begin{split} \beta(Tu) &= \max_{\delta \leq i \leq 1 - \delta} Tu(t) \geq Tu(1 - \delta) \\ &= B_1 \circ \varphi_q(\int_{\sigma}^1 a(r)f(r,u(r))\mathrm{d}r) + \int_{1 - \delta}^1 \varphi_q(\int_{\sigma}^s a(r)f(r,u(r))\mathrm{d}r)\mathrm{d}s \\ &\geq l\varphi_q(\int_{\delta}^1 a(r)f(r,u(r))\mathrm{d}r) + \int_{1 - \delta}^1 \varphi_q(\int_{\delta}^{1 - \delta} a(r)f(r,u(r))\mathrm{d}r)\mathrm{d}s \\ &\geq l\varphi_q(\int_{\delta}^1 a(r)\mathrm{d}r) + \delta\varphi_q(\int_{\delta}^{1 - \delta} a(r)\mathrm{d}r)] \cdot \frac{b}{\xi} \\ &\geq \xi \cdot \frac{b}{\xi} \\ &= b, \quad \text{if} \quad \sigma < \delta, \\ \beta(Tu) &= \max_{\delta \leq i \leq 1 - \delta} Tu(t) \geq Tu(\delta) \\ &= B_0 \circ \varphi_q(\int_0^{1 - \delta} a(r)f(r,u(r))\mathrm{d}r) + \int_0^{\delta} \varphi_q(\int_{\delta}^{\sigma} a(r)f(r,u(r))\mathrm{d}r)\mathrm{d}s \\ &\geq l\varphi_q(\int_0^{1 - \delta} a(r)f(r,u(r))\mathrm{d}r) + \int_0^{\delta} \varphi_q(\int_{\delta}^{1 - \delta} a(r)f(r,u(r))\mathrm{d}r)\mathrm{d}s \\ &\geq [l\varphi_q(\int_0^{1 - \delta} a(r)\mathrm{d}r) + \delta\varphi_q(\int_{\delta}^{1 - \delta} a(r)\mathrm{d}r)] \cdot \frac{b}{\xi} \\ &\geq \xi \cdot \frac{b}{\xi} \\ &= b, \quad \text{if} \quad \sigma > 1 - \delta, \\ 2\beta(Tu) &= 2\max_{\delta \leq i \leq 1 - \delta} Tu(t) \geq Tu(\delta) + Tu(1 - \delta) \\ &= B_0 \circ \varphi_q(\int_0^{\sigma} a(r)f(r,u(r))\mathrm{d}r) + \int_0^{\delta} \varphi_q(\int_s^{\sigma} a(r)f(r,u(r))\mathrm{d}r)\mathrm{d}s \\ &B_1 \circ \varphi_q(\int_0^{\delta} a(r)f(r,u(r))\mathrm{d}r) + \int_{1 - \delta}^{\delta} \varphi_q(\int_s^{\sigma} a(r)f(r,u(r))\mathrm{d}r)\mathrm{d}s + \\ &\geq l\varphi_q(\int_0^{\delta} a(r)f(r,u(r))\mathrm{d}r) + \int_0^{\delta} \varphi_q(\int_\delta^{\sigma} a(r)f(r,u(r))\mathrm{d}r)\mathrm{d}s + \\ &1\varphi_q(\int_{1 - \delta}^{\delta} a(r)f(r,u(r))\mathrm{d}r) + \int_{1 - \delta}^{1 - \delta} \varphi_q(\int_\delta^{\sigma} a(r)f(r,u(r))\mathrm{d}r)\mathrm{d}s \\ &> \{l[\varphi_q(\int_0^{\delta} a(r)\mathrm{d}r) + \varphi_q(\int_{1 - \delta}^{1 - \delta} a(r)\mathrm{d}r)] + \delta[\varphi_q(\int_\delta^{\sigma} a(r)\mathrm{d}r) + \varphi_q(\int_0^{1 - \delta} a(r)\mathrm{d}r)]\} \cdot \frac{b}{\xi} \end{aligned}$$

Hence, condition (ii) is satisfied.

=2b, if $\delta \leq \sigma \leq 1-\delta$.

Finally, we verify that (iii) of Lemma 2.1 is also satisfied. We note that $u(t) \equiv \frac{a}{4}, 0 \leq t \leq 1$, is a member of $P(\alpha,a)$ and $\alpha(u) = \frac{a}{4} < a$. So $P(\alpha,a) \neq \emptyset$. Now , let $u \in \partial P(\alpha,a)$, then $\alpha(u) = \max_{0 \leq t \leq 1} u(t) = a$. This means that

$$0 \le u(t) \le a, \quad 0 \le t \le 1.$$

From assumption (H_6) , we have

$$f(s,\omega(s)) < \varphi_p(\frac{a}{\eta}), \quad 0 \le s \le 1.$$

As before, we get

$$\alpha(Tu) = \max_{0 \le t \le 1} Tu(t) = Tu(\sigma)$$

$$= B_0 \circ \varphi_q(\int_0^\sigma a(r)f(r, u(r))\mathrm{d}r) + \int_0^\sigma \varphi_q(\int_s^\sigma a(r)f(r, u(r))\mathrm{d}r)\mathrm{d}s$$

$$\le L\varphi_q(\int_0^\sigma a(r)f(r, u(r))\mathrm{d}r) + \int_0^\delta \varphi_q(\int_s^\delta a(r)f(r, u(r))\mathrm{d}r)\mathrm{d}s$$

$$<(L + \delta)\varphi_q(\int_0^\delta a(r)\mathrm{d}r) \cdot \frac{a}{\eta}$$

$$<(L + 1 - \delta)\varphi_q(\int_0^\delta a(r)\mathrm{d}r) \cdot \frac{a}{\eta}$$

$$\le a, \quad \text{if} \quad \sigma < \delta,$$

$$\alpha(Tu) = Tu(\sigma)$$

$$\alpha(Tu) = Tu(\sigma)$$

$$= B_1 \circ \varphi_q(\int_{\sigma}^1 a(r)f(r, u(r))dr) + \int_{\sigma}^1 \varphi_q(\int_{\sigma}^s a(r)f(r, u(r))dr)ds$$

$$\leq L\varphi_q(\int_{1-\delta}^1 a(r)f(r, u(r))dr) + \int_{1-\delta}^1 \varphi_q(\int_{1-\delta}^s a(r)f(r, u(r))dr)ds$$

$$= (L+\delta)\varphi_q(\int_{1-\delta}^1 a(r)f(r, u(r))dr)$$

$$< (L+\delta)\varphi_q(\int_{1-\delta}^1 a(r)dr) \cdot \frac{a}{\eta}$$

$$< (L+1-\delta)\varphi_q(\int_{0}^{\delta} a(r)dr) \cdot \frac{a}{\eta}$$

$$\leq a, \text{ if } \sigma > 1-\delta,$$

$$\begin{aligned} 2\alpha(Tu) = & 2Tu(\sigma) \\ = & B_0 \circ \varphi_q(\int_0^\sigma a(r)f(r,u(r))\mathrm{d}r) + \int_0^\sigma \varphi_q(\int_s^\sigma a(r)f(r,u(r))\mathrm{d}r)\mathrm{d}s + \\ & B_1 \circ \varphi_q(\int_0^1 a(r)f(r,u(r))\mathrm{d}r) + \int_\sigma^1 \varphi_q(\int_s^s a(r)f(r,u(r))\mathrm{d}r)\mathrm{d}s \\ \leq & L\varphi_q(\int_0^{1-\delta} a(r)f(r,u(r))\mathrm{d}r) + \int_o^{1-\delta} \varphi_q(\int_0^{1-\delta} a(r)f(r,u(r))\mathrm{d}r)\mathrm{d}s + \\ & L\varphi_q(\int_\delta^1 a(r)f(r,u(r))\mathrm{d}r) + \int_\delta^1 \varphi_q(\int_\delta^s a(r)f(r,u(r))\mathrm{d}r)\mathrm{d}s \end{aligned}$$

$$= (L+1-\delta)[\varphi_q(\int_0^{1-\delta} a(r)f(r,u(r))dr) + \varphi_q(\int_\delta^1 a(r)f(r,u(r))dr)]$$

$$< (L+1-\delta)[\varphi_q(\int_0^{1-\delta} a(r)dr) + \varphi_q(\int_\delta^1 a(r)dr)] \cdot \frac{a}{\eta}$$

$$\leq 2a, \text{ if } \sigma \in [\delta, 1-\delta].$$

Therefore, BVP(1)(2) has at least three positive solutions u_1, u_2 and u_3 such that

$$0 \le \alpha(u_1) < a < \alpha(u_2), \quad \beta(u_2) < b < \beta(u_3), \quad \gamma(u_3) < c.$$

Remark If we add the condition of $a(t)f(t,u) \not\equiv 0$, $t \in [0,1]$, to Theorem 3.1, we can get positive solutions u_1, u_2 and u_3 such that

$$0 < \alpha(u_1) < a < \alpha(u_2), \quad \beta(u_2) < b < \beta(u_3), \gamma(u_3) < c.$$

4. An example

In this section, we present a simple example to explain our results.

Consider the boundary value problem

$$(\varphi_{\frac{3}{2}}(u'))' + a(t)f(t,u) = 0, (4)$$

$$u(0) - B_0(u'(0)) = 0, \quad u(1) + B_1(u'(1)) = 0,$$
 (5)

where

$$f(t,u) = \begin{cases} 60, & 0 \le t \le 1, \ 0 \le u \le 5, \\ u+55, & 0 \le t \le 1, \ 5 \le u \le 36, \\ 91, & 0 \le t \le 1, \ 36 \le u \le 10^4, \\ 91 + \frac{u-10^4}{\sqrt{u}}, & 0 \le t \le 1, \ u \ge 10^4. \end{cases}$$
$$a(t) = \begin{cases} t, & 0 \le t \le \frac{1}{2} \\ 1-t, & \frac{1}{2} \le t \le 1 \end{cases}$$

In the example, we notice that $B_0(v) = B_1(v) = \frac{1}{2}v$, $l = L = \frac{1}{2}$, $p = \frac{3}{2}$, and q = 3. Choose $\delta = \frac{1}{4}$. It follows from a direct calculation that

$$K = \min_{\frac{1}{4} \le x \le 1 - \frac{1}{4}} y(x) = \frac{18}{32^2},$$

$$\eta = \max\{(\frac{1}{2} + 1 - \frac{1}{4})\varphi_3(\int_0^{\frac{1}{4}} r dr), (\frac{1}{2} + 1 - \frac{1}{4})\varphi_3(\int_{\frac{3}{4}}^1 (1 - r) dr)\} = \frac{5}{4} \times (\frac{1}{32})^2$$

$$\xi = \min\{\frac{67}{2} \times (\frac{1}{32})^2, \frac{67}{2} \times (\frac{1}{32})^2, \frac{11}{4} \times (\frac{1}{32})^2\} = \frac{11}{4} \times (\frac{1}{32})^2,$$

$$\lambda = (\frac{1}{2} + 1 - \frac{1}{4})\varphi_3(\int_0^1 a(r) dr) = \frac{5}{64}.$$

Here we choose a = 5, b = 9, c = 2500, then we get

$$f(t,u)=60<64=\varphi_{\frac{3}{2}}(4\times 32^2)=\varphi_{\frac{3}{2}}(\frac{a}{\eta}), \quad \frac{1}{4}\leq t\leq 1-\frac{1}{4}, \ 0\leq u\leq 5,$$

$$f(t,u) \ge 60 > \frac{192}{\sqrt{11}} = \varphi_{\frac{3}{2}}(\frac{9}{\frac{11}{4} \times (\frac{1}{32})^2}) = \varphi_{\frac{3}{2}}(\frac{b}{\xi}), \ 0 \le t \le 1, \ 0 \le u \le 36,$$
$$f(t,u) = 91 < 80\sqrt{5} = \varphi_{\frac{3}{2}}(\frac{2500}{\frac{5}{64}}) = \varphi_{\frac{3}{2}}(\frac{c}{\lambda}), \ 0 \le t \le 1, \ 625 \le u \le 10^4.$$

Then all the conditions of Lemma 2.1 are satisfied. So, by Theorem 3.1, we know BVP(4)(5) has at least three positive solutions.

References:

- HE Xiao-ming, GE Wei-gao. Twin positive solutions for the one-dimensional p-Laplacian boundary value problems [J]. Nonlinear Anal., 2004, 56: 975–984.
- [2] GUO Yan-ping, GE Wei-gao. Three positive solutions for the one-dimensional p-Laplacian [J]. J. Math. Anal. Appl., 2003, 286: 491–508.
- [3] HE Xiao-ming, GE Wei-gao. Triple solutions for second-order three-point boundary value problems [J]. J. Math. Anal. Appl., 2002, 268: 256–265.
- [4] AVERY R I, HENDSON J. Two positive fixed points of nonlinear operators on ordered Banach spaces [J].
 Comm. Appl. Nonlinear Anal., 2001, 8: 27–36.
- [5] REN Jing-li. Fixed point theorems and boundary value problems of differential equation [D]. Doctoral Papers of Beijing Institute of Technology, Beijing, 2004. (in Chinese)
- [6] WANG Jun-yu. The existence of positive solutions for the one-dimensional p-Laplacian [J]. Proc. Amer. Math. Soc., 1997, 125: 2275–2283.

p-Laplace 非线性两点边值问题多个正解的存在性

李志艳1,严树林2,葛渭高3

- (1. 河海大学常州校区数理部, 江苏 常州 213022; 2. 常州工程职业技术学院, 江苏 常州 213004;
- 3. 北京理工大学应用数学系, 北京 100081)

摘要:本文利用一种新的三个泛函不动点定理得到了 *p*-Laplacian 方程在具有非线性边值条件时至少存在三个正解的充分条件,并且举了一个简单例子来说明得到的结论.

关键词: 边值问题; p-Laplacian 算子; 正解; 三个泛函不动点定理.