A Conceivable Inequality for Analytic Functions and Its Application

HSU Leetsch Charles ${ }^{1}$ ，WU Kang ${ }^{2}$
（1．Dept．of Math．，Dalian University of Technology，Liaoning 116024，China；
2．Math．Sci．School，South China Normal University，Guangzhou 510631，China ）

Abstract

This brief note presents an easily conceivable inequality for analytic functions． As an application，a function－theoretic proposition involving the Fundamental Theorem of Algebra（FTA）is deduced immediately．

Key words：conceivable inequality；analytic function；Fundamental Theorem of Algebra．
MSC（2000）：30D12
CLC number：O174．52

Without loss of generality，a non－constant analytic function $f(z)$ defined for $|z|<\rho$ in the Gaussian plane \mathbf{C} may be written in the form

$$
\begin{equation*}
f(z)=a+b z^{m}+c z^{m+1}+\cdots, \tag{1}
\end{equation*}
$$

where $b \neq 0$ and $m \geq 1$ ．
Proposition 1 Let $f(t)$ be defined by（1）with $f(0)=a \neq 0$ ，then for every sufficiently small $\delta>0$ there holds the inequality

$$
\begin{equation*}
\left|f\left((-a \delta / b)^{1 / m}\right)\right|<|f(0)| \tag{2}
\end{equation*}
$$

where $(-a \delta / b)^{1 / m}$ may take any of the m distinct roots for $m \geq 2$ ．
Proof Solving the equation $b z^{m}=-a \delta$ ，we get $z=(-a \delta / b)^{1 / m}$ ．Rewrite $f(z)$ in the form

$$
\begin{equation*}
f(z)=a+b z^{m}+b z^{m} g(z), \tag{1}
\end{equation*}
$$

where $g(z)=(c / b) z+\cdots$ is also an analytic function so that $|g(z)| \rightarrow 0$ as $|z| \rightarrow 0$ ．Thus for every sufficiently small δ with $0<\delta<1$ ，we could have

$$
\left|g\left((-a \delta / b)^{1 / m}\right)\right|<\frac{1}{2}
$$

Consequently，the following estimation holds via（1）＊

$$
\begin{aligned}
\left|f\left((-a \delta / b)^{1 / m}\right)\right| & \leq|a-a \delta|+\left|(-a \delta) g\left((-a \delta / b)^{1 / m}\right)\right|<|a|(1-\delta)+|a| \delta \cdot \frac{1}{2} \\
& =|a|\left(1-\frac{\delta}{2}\right)<|a|=|f(0)|
\end{aligned}
$$

Received date：2006－04－25

Hence the Inequality (2) is always valid for small $\delta>0$.
Evidently, Inequality (2) may be stated in a more general form: If $f(z)$ is non-constant and analytic in a neighborhood of $z_{0} \in \mathbf{C}$, with $f\left(z_{0}\right)=a \neq 0$, then $f\left(z_{0}+z\right)$ may be written in a similar form, as that of (1),

$$
\begin{equation*}
f\left(z_{0}+z\right)=f\left(z_{0}\right)+b z^{m}+c z^{m+1}+\cdots, \quad(m \geq 1) \tag{3}
\end{equation*}
$$

and consequently the following inequality

$$
\begin{equation*}
\left|f\left(z_{0}+(-a \delta / b)^{1 / m}\right)\right|<\left|f\left(z_{0}\right)\right| \tag{4}
\end{equation*}
$$

holds for every sufficiently small $\delta(0<\delta<1)$.
In what follows suppose that $F(z)$ is non-constant and analytic in a domain $D \subset \mathbf{C}$. Then the form of Inequality (4) shows that for every $z_{0} \in D$ with $F\left(z_{0}\right) \neq 0$, the value $\left|F\left(z_{0}\right)\right|>0$ can never become an absolute minimum $\min _{z}|F(z)|$. This implies that if $\min _{z}|F(z)|$ really exists and is attained at $z=z_{0} \in D$, then it must be that $\min _{z}|F(z)|=\left|F\left(z_{0}\right)\right|=0$. Accordingly, we get the following useful and well-known proposition as a consequence of (4).

Proposition 2 Let $F(z)$ be a non-constant analytic function in $D \subset C$, and let $|F(z)|$ attain an absolute minimum at $z_{0} \in D$. Then it must be that

$$
\min _{z}|F(z)|=\left|F\left(z_{0}\right)\right|=0
$$

In words, z_{0} must be a zero of $F(z)$.
In particular, if $F(z)$ is a polynomial in z of degree $n(n \geq 1)$, then the obvious fact that $|F(z)| \rightarrow \infty(|z| \rightarrow \infty)$ implies that $|F(z)|$ should attain $\min _{z}|F(z)|$ at certain $z_{0} \in \mathbf{C}$. Thus by Proposition 2 we must have $F\left(z_{0}\right)=0$. This is what so-called the well-known existence theorem first proved by Gauss (1799):

FTA Any polynomial equation $F(z)=0$ of degree $n(n \geq 1)$ has at least a root $z_{0} \in \mathbf{C}$, viz. $F\left(z_{0}\right)=0$.

Note that for the example $F(z)=e^{z}$ we have $\left|e^{z}\right|=\left|e^{x+i y}\right|=e^{x}>0$ for $z=x+i y \in \mathbf{C}$. This shows that the second condition in Proposition 2 cannot be omitted.

Remark 1 Recall that in the complex analysis a limit process such as $f(z) \rightarrow A(z \rightarrow a \in \mathbf{C})$ involves that both z and $f(z)$ could tend to their limits in various possible directions in \mathbf{C}. In particular, if $f(z) \rightarrow f(a) \neq 0(z \rightarrow a)$ and if the mode of passage $z \rightarrow a$ could be so chosen that $|f(z)| \uparrow|f(a)|$, then we shall have $|f(z)|<|f(a)|$ for all those z sufficiently close to a. Observing in this way, we see that (2) and (4) are geometrically comprehensible.

Remark 2 For the polynomial equation $F(z)=0$ of degree $n(\geq 1)$, the truth of (FTA) is just based on the fact that $\min _{z}|F(z)|$ really exists and cannot take any positive value such as $\min _{z}|F(z)|=\left|F\left(z_{0}\right)\right|>0$, in view of (4). Looking in this way, we may say that the truth of (4) or (2) is the basic source for the truth of (FTA).

Remark 3 As usual，for the nth degree polynomial $|F(z)|$ we may denote $|F(z)|=|F(x+i y)|=$ $|u(x, y)+i v(x, y)|=\sqrt{u(x, y)^{2}+v(x, y)^{2}}$ ．Thus the assertion of（FTA）， $\min _{z}|F(z)|=\left|F\left(z_{0}\right)\right|=$ $\left|F\left(x_{0}+i y_{0}\right)\right|=0$ ，just means that $\left(x_{0}, y_{0}\right)$ is the intersection point of the two plane curves defined by $u(x, y)=0$ and $v(x, y)=0$ ，respectively．As is known，Gauss＇famous doctoral thesis（1799）first proved this fact ${ }^{[1,2]}$ ．Certainly，the existence of such a point $\left(x_{0}, y_{0}\right) \leftrightarrow x_{0}+i y_{0}=z_{0}$ can also be inferred from Proposition 2 or（4）directly．

References：

［1］BIRKHOFF G，MACLANE S．A Survey of Morden Algebra［J］，Akp Classics，Peters Ltd， 1997.
［2］GAUSS C F．Gesammelte Werke［M］．Vol．1，Göttingen， 1863.

关于解析函数的一个易想象的不等式及其应用

徐利治 ${ }^{1}$ ，吴 康 ${ }^{2}$
（1．大连理工大学应用数学系，辽宁 大连 116024；2．华南师范大学数学科学学院，广东 广州510631）
摘要：本文关于解析函数给出了一个可作几何理解的不等式，由此易得出一个有关解析函数零点的命题，而代数学基本定理成为它的直接推论。

关键词：易想象不等式；解析函数；代数学基本定理（FTA）。

