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Without loss of generality, a non-constant analytic function f(z) defined for |z| < ρ in the

Gaussian plane C may be written in the form

f(z) = a + bzm + czm+1 + · · · , (1)

where b 6= 0 and m ≥ 1.

Proposition 1 Let f(t) be defined by (1) with f(0) = a 6= 0, then for every sufficiently small

δ > 0 there holds the inequality

|f((−aδ/b)1/m)| < |f(0)|, (2)

where (−aδ/b)1/m may take any of the m distinct roots for m ≥ 2.

Proof Solving the equation bzm = −aδ, we get z = (−aδ/b)1/m. Rewrite f(z) in the form

f(z) = a + bzm + bzmg(z), (1)∗

where g(z) = (c/b)z + · · · is also an analytic function so that |g(z)| → 0 as |z| → 0. Thus for

every sufficiently small δ with 0 < δ < 1, we could have

|g((−aδ/b)1/m)| <
1

2
.

Consequently, the following estimation holds via (1)∗

|f((−aδ/b)1/m)| ≤ |a − aδ| + |(−aδ)g((−aδ/b)1/m)| < |a|(1 − δ) + |a|δ ·
1

2

= |a|(1 −
δ

2
) < |a| = |f(0)|.
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Hence the Inequality (2) is always valid for small δ > 0. 2

Evidently, Inequality (2) may be stated in a more general form: If f(z) is non-constant and

analytic in a neighborhood of z0 ∈ C, with f(z0) = a 6= 0, then f(z0 + z) may be written in a

similar form, as that of (1),

f(z0 + z) = f(z0) + bzm + czm+1 + · · · , (m ≥ 1), (3)

and consequently the following inequality

|f(z0 + (−aδ/b)1/m)| < |f(z0)| (4)

holds for every sufficiently small δ(0 < δ < 1).

In what follows suppose that F (z) is non-constant and analytic in a domain D ⊂ C. Then

the form of Inequality (4) shows that for every z0 ∈ D with F (z0) 6= 0, the value |F (z0)| > 0 can

never become an absolute minimum minz |F (z)|. This implies that if minz |F (z)| really exists

and is attained at z = z0 ∈ D, then it must be that minz |F (z)| = |F (z0)| = 0. Accordingly, we

get the following useful and well-known proposition as a consequence of (4).

Proposition 2 Let F(z)be a non-constant analytic function in D ⊂ C, and let |F (z)| attain

an absolute minimum at z0 ∈ D. Then it must be that

min
z

|F (z)| = |F (z0)| = 0.

In words, z0 must be a zero of F (z).

In particular, if F (z) is a polynomial in z of degree n(n ≥ 1), then the obvious fact that

|F (z)| → ∞(|z| → ∞) implies that |F (z)| should attain minz |F (z)| at certain z0 ∈ C. Thus by

Proposition 2 we must have F (z0) = 0. This is what so-called the well-known existence theorem

first proved by Gauss (1799):

FTA Any polynomial equation F (z) = 0 of degree n(n ≥ 1) has at least a root z0 ∈ C, viz.

F (z0) = 0.

Note that for the example F (z) = ez we have |ez| = |ex+iy| = ex > 0 for z = x + iy ∈ C.

This shows that the second condition in Proposition 2 cannot be omitted.

Remark 1 Recall that in the complex analysis a limit process such as f(z) → A (z → a ∈ C)

involves that both z and f(z) could tend to their limits in various possible directions in C. In

particular, if f(z) → f(a) 6= 0 (z → a) and if the mode of passage z → a could be so chosen that

|f(z)| ↑ |f(a)|, then we shall have |f(z)| < |f(a)| for all those z sufficiently close to a. Observing

in this way, we see that (2) and (4) are geometrically comprehensible.

Remark 2 For the polynomial equation F (z) = 0 of degree n(≥ 1), the truth of (FTA) is

just based on the fact that minz |F (z)| really exists and cannot take any positive value such as

minz |F (z)| = |F (z0)| > 0, in view of (4). Looking in this way, we may say that the truth of (4)

or (2) is the basic source for the truth of (FTA).
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Remark 3 As usual, for the nth degree polynomial |F (z)| we may denote |F (z)| = |F (x+iy)| =

|u(x, y)+ iv(x, y)| =
√

u(x, y)2 + v(x, y)2. Thus the assertion of (FTA), minz |F (z)| = |F (z0)| =

|F (x0+iy0)| = 0, just means that (x0, y0) is the intersection point of the two plane curves defined

by u(x, y)=0 and v(x, y)=0, respectively. As is known, Gauss’ famous doctoral thesis (1799) first

proved this fact[1,2]. Certainly, the existence of such a point (x0, y0) ↔ x0 + iy0 = z0 can also be

inferred from Proposition 2 or (4) directly.
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