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Abstract: Let P(t,n) and C(¢,n) denote the minimum diameter of a connected graph ob-
tained from a single path and a circle of order n plus t extra edges, respectively, and f(t, k)
the maximum diameter of a connected graph obtained by deleting ¢ edges from a graph with

diameter k. This paper shows that for any integers ¢ > 4 and n > 5, P(t,n) < % + 3,
C(t,n) < ?Tf + 3 if ¢t is odd and C(t,n) < % + 3 if ¢ is even; {”:rl < P(4,n) < {”j3-|7
H-‘ -1<C(@3,n) < H“; and f(t,k) > (t+ 1)k — 2t +4 if k > 3 and is odd, which improves
some known results.
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1. Introduction

We follow [1] for graph-theoretical terminology and notation not defined here. Let G =
(V,E) be a simple undirected graph with a vertex-set V= V(G) and an edge-set E = E(G).
Let P(t,n) and C(t,n) be the minimum diameter of a graph obtained by adding ¢ extra edges
to a path and a cycle of order n, respectively. Let f(t,k) denote the maximum diameter of a
connected graph obtained by deleting t edges from a graph with diameter k. For given integers
t, n and k, the problems determining P(t,n), C(t,n) and f(t, k), proposed by Chung et al.[?],
are of important interest in designing and analysis of interconnection networks!®,

For some small ¢ and special n, the values of P(t,n) and C(¢,n) have been determined.
It is easy to verify that P(1,n) = C(1,n) = |%| for n > 3; Schoone et al.[4 determined

P(2,n) = [2] and C(2,n) = [2£2] for n > 4, and P(3,n) = [2H] for n > 5; For general t > 3,

n > 5, Chung and Garey et al.l?) obtained the following results: 1< Ptn) < 75 +3,
1< CO(t,n) < 75 +3iftisodd and 5 —1 < C(t,n) < 5 +3 if t is even; Deng and Xu
et al.Bl determined P(t, (2k — 1)(t + 1) + 2) = 2k for any positive integer k, {?Tfll—‘ < P(t,n) <

[?Tfll} +1for t =4,5 and n > 5, and, in general, MT*H < P(t,n) < MT}SJ +3. As to f(t, k)

Schoone et al.[* determined:

(t+ 1)k —t, if k is even;
(t+1)k2f(t7’f)2{ (t+1)k—2t+2, if k>3 and is odd.
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In this paper, we improve these upper bounds by proving that P(¢,n) < 477 + 3 and

C(t,n) < ?T,f; +3iftisodd and C(t,n) < 71617727 + 3 if ¢ is even for any integers t > 4 and n > 5.

For special cases, we have [%1 < P(4,n) < ["TJ“O’} and {%1 -1<C3,n) < {%] for n > 5.

Finally we give f(t,k) > (t + 1)k — 2t + 4 if £ > 3 and is odd.
2. Several lemmas
Lemma 2.1 P(t,n) <k ifn<k(t+1)—2t+5 for integers k > 1 and t > 4.

Proof Tt is clear that P(t,n) < P(¢,k(t+1) —2t+5) for n < k(t + 1) — 2t + 5. To prove the
lemma, we only need to construct an altered graph G from a single path P of order k(t+1)—2t+5
by adding ¢ extra edges such that the diameter of G is at most k.

Let P = (z1,z2,... ,xk(tﬂ),zt%) be a single path. We construct G from P by adding ¢

edges as follows:
€1 = (Izk,Il)
ez = (Tk, T3k)
€ = (x2kuxk(j+1)f2j+5)7j =3,9,.. ~a2f%] -1
€; = (CCk, xk(i+1)72i+5)7i = 47 6, ey QI_%J

See Fig.1 for an example, where k =5, t = 8 and n = 34.

Fig.1 Illustration of Lemma 2.1 for k =5, ¢t = 8 and n = 34.

Let P' = (xok, Tok+1, -, Tak—1) and H = P’ 4 e3. It is easy to see that H is a cycle of
length 2k, and so d(H) = k.
Thus, let P” = (zog+1, T2k+2, - -+, Tak—2), where P’ C P’. We have
[ k+1, ifx, e V(P");
dg(xz,l'k) + dG(xuka) = { k, if 2 ¢ V(P”).

So, for any two distinct vertices 2, and xp, in G, if z,, 2y € V(P’), then dg (x4, xp) < dp (24, 2p) <
k; Otherwise,

dg(CCa, :Z?k) + dg(CCa, :ZTQk) + dg(Ib, :Z?k) + dg(xb,xgk) < (k} + 1) +k=2k+1,
which implies

2(da(za,zp)) < da(xa, k) + da (s, k) + da (@, T2r) + da(xp, Tar) < 2k + 1,
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that is, dg(xa,xp) < k. Thus, we get d(G) < k.
Lemma 2.2 P(t,n) <2k ifn <2k(t+1) —t+ 1 for integers k > 1 and t > 4.

Proof Similar to the proof of Lemma 2.1, we construct an altered graph G from a single path

P = (x1,%2,...,Top@+1)—t+1) by adding t extra edges:
€i = (Tht1, T(2ip1)h—iv2), 1= 1,2,...,t.

See Fig.2 for an example, where k = 3,t = 6 and n = 37.

1 T4 Z10 Z15 Z20 Z25 30 T35  T37
Fig.2 Tllustration of Lemma 2.2 for £k = 3, ¢t =6 and n = 37.

It is easy to know dg(z;, z) < k for any i =1,2,---,2k(t + 1) — t + 1. Thus
da(z, z;) < d(zi, xp) + d(ag, ;) <2k for 1 <i#j <2k(t+1)—t+1,
which means that d(G) < 2k. O

Lemma 2.3 Let both t and k be integers. If t > 4, then

ko forn<k(t+1)—2t+5 k>3
C(t’")g{ % forn<2k(t+1)—t+1, k> 1.

Proof If we add one edge joining two end vertices of the path Py;41)_2,45 and add other ¢
edges in the same way as one used in the proof of Lemma 2.1, then we could get an altered graph
G from a single cycle of order k(t + 1) — 2t + 5 by adding ¢ extra edges such that the diameter

of G is not more than k. Thus we have
C(t,n) <kfor n<k(t+1)—2t+5and k> 3.

In a way similar to one used in the proof of Lemma 2.2, we get another altered graph from a
single cycle of order 2k(t + 1) — t + 1 by adding ¢ extra edges such that the diameter at most 2k.
It means that

C(t,n) <2k forn <2k(t+1)—t+1land k>1

as required.
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Lemma 2.4 Lett and k be integers. Ift is even andt > 4, then C(t,n) < k forn < k(t+2)—2t+2
and k > 3.

Proof Again we need to construct an altered graph G from a single cycle Cy, = (1,22, +, T, x1)
by adding ¢ extra edges, where n = k(t +2) — 2t + 2.

Now we let G}, be the altered graph of diameter & in the proof of Lemma 2.1 obtained from
a single path of order k(t+2) —2(t+1)+5 by adding ¢t + 1 extra edges. Assume the ¢+ 1 added
edges are eq,€9, -, €4, €441-

Notices that k(t+2) —2(t+1)+5=n+1and if ¢ is even, €11 = (Tak, Tnt1)- So if we alter
the graph G, by deleting the vertex z,1 and the edge e;y; and adjoining the vertices z; and
Ty, we get another graph G., which is an altered graph obtained from a single cycle of order n
by adding ¢ extra edges.

See Fig.3 for an example, where k =5, n = 30 and ¢t = 6.

Fig.3 Illustration of Lemma 2.4 for k =5, t = 6 and n = 30.

It is clear that dg, (vs, 2x) +da, (i, vor) = dg, (%4, 2x) +dg, (xi, T2r) for any vertex z; € Ge.
Similar to the proof of Lemma 2.1, we can verify that dg, (v, ;) < dg,(zi,2;) < k for any two
vertices z; and x; in G, which implies d(G.) < k. And hence C(t,n) < k for n < k(t+2) —2t+2

as required.

3. Proof of main results
Theorem 3.1 For any integers t > 4 and n > 5, P(t,n) < % + 3; furthermore, P(t,n) <
’Vn+t—6—| 4 ’Vn-l—t—l—‘

2042 22 |-

Proof Firstly, when ¢ is fixed, for any n > 5 there exists an integer & > 0 such that

(k=1)(t+1)—2t+6<n<k(t+1)—2t+5.

It follows from Lemma 2.1 that
n+2t—06 1 n—8

= 3.
t+1 + t+1+

Secondly, let m(k) = 2k(t + 1) — ¢t + 1 for any n > 3. Then there exists an integer k > 0
such that m(k) +1 <n <m(k+1).
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Ifm(k)+1<n<m(k)+5=2k+1)(t+1) — 2t + 5, then, from Lemma 2.1, we have

Pltn) <2k+1=k+ (k+1) = [Lt‘ﬂ [LHW

2t+2 2t + 2

Ifm(k)+6<n<m(k+1)=2(k+1)(t+1)—t+1, then, from Lemma 2.2, we have

P(ta")SQ(k+1)—(k+1)+(k+1)—PLH_G-‘ [”“‘1}

2t+2 2t+2

The theorem follows.

Remarks It is clear that for ¢t > 4

3.
T t+1 *

P(t,n) < [””—6} Pmt—ﬂ _n-8

2t+2 2t + 2

In fact, if let 2m = [%’5;1—‘ = MTHQ-‘ + 1, just when

—2
2m—2<7;—§2m—1<:>(2m—2)(t+1)+3§n§(2m—1)(t—|—1)+27

+1
we have
t— t—1 —
P(t,n) < nt 6 nt < m—|—m:2m§n—3+2.
2t +2 2t+ 2 t+1
Thus, we get that
n—38
_ _ +3, if [”—*2—‘ is even
P(t,n)g{n—i-t 6-‘_’_{11—1—15 ﬂg }fﬁi% 1 ’
2t+2 2t+2 _'_2’ lf ’Vn—Q—‘ iS Odd
t+1 t+l

which is a better bound.

Corollary 3.1 PLT_W < P(4,n) < ["T'Hﬂ for any integer n > 5.

Proof On the one hand, by P(t,n) > HT_H, due to Deng and Xul¥ and the statement in
Introduction, we have

On the other hand, by Theorem 3.1,

P(4,n) < +3= + 1

Since P(4,n) is an integer, we have

P(4,n) < VL;QJ +1= [”_2—‘ 1= PL—FSW

as required.
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Theorem 3.2 For any integerst > 4 and n > 5,

-7
7Z+2 13 if t is even;
Ct,n) <9 [n+t—61 [n+t—1 <=8 3 iftisodd
5 + 2 2%4+2 |~ t+1 '

Proof If t is even and fixed, then for any n > 5 there exists am integer £ > 3 such that
(k=1 +2)—2t+3<n<k(t+2)—2t+2.

From Lemma 2.4, we have

n+2t—3+ _n—7
t+2 T t42

+ 3.
If ¢ is odd and fixed, then for any n > 5 there exists an integer £ > 3 such that
k=1t +1)—2t+6<n<k(t+1)—2t+5.

From Lemma 2.3, we have

n+2t—6 n—8
Cltn)<k<2r2t=0 1 _NP=°% 3
tn)sks—mg—+l=97+

Furthermore, similar to the proof of Theorem 3.1, from Lemma 2.3 we have

n+t—=6 n+t—1
R ) s R e
O(’")—{ 2+ 2 WJF{ 2+ 2 w

which is a better bound.
Theorem 3.3 [%w -1<C@3B,n) < [%w for any integer n > 5.

Proof On the one hand, by C(t,n) > 7 — 1 if t is odd, due to Chung and Garey?l and

statement in Introduction, we have
C(3,n) > m ~ 1

On the other hand, let £ = [%w It is easy to verify that the diameter of the altered graph

obtained from a cycle C,, = (21,2, -, 2,) by adding the three edges

e1 = (T1,Tary1), €2 = (23, Tar43), €3 = (Thy2, T3k11),

is k. Thus

C3,n) <k = m

as required.

Theorem 3.4 f(t,k) > (t + 1)k — 2t + 4 if k is an odd integer and k > 3.
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Proof For any k > 2, we can delete ¢ edges from the altered graph G constructed in the proof
of Lemma 2.1 whose diameter is k to get a path of diameter (¢ + 1)k — 2¢ + 4. So we have

Flt k) > (t+ 1)k — 2t + 4,

which, of course, holds if k is an odd integer and k& > 3.
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