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is constructed
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1. Introduction and preliminaries

In the paper [2], the authors introduced the concept of cylinder forms for coquasitriangular

bialgebras and gave a new structure into the representation theory of quantum groups.

In 1999, Takeuchi introduced the concept of cylinder algebras for coquasitriangular bial-

gebras, which is a generalization of cylinder forms; and introduced cylinder matrices for any

Yang-Baxter operator given in [3].

The aim of this paper is to study the theory of cylinder coalgebras and cylinder coproducts

for quasitriangular bialgebras.

The paper is organized as follows. In Section 2, we will introduce the concept of cylinder

coalgebras for quasitriangular bialgebras. It is easy to see that the finite dual H0 and the twisted

coproduct k ×α H are cylinder coalgebras for any quasitriangular Hopf algebra (H, R) under

certain conditions. Moreover, for any generalized Long dimodule, solutions for Yang-Baxter

equations, four braid pairs in [2] and Long equations in [6] are constructed via cylinder twists. In

Section 3, we will introduce the concept of cylinder coproducts for quasitriangular bialgebras, and
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prove that the linear map f : C → H is a cylinder homomorphism if and only if ∆f = (f ⊗ f)∆

and εf = ε, and that there exists an anti-coalgebra isomorphism (H, ∆) ∼= (H, ∆̃), where (H, ∆)

is a cylinder coproduct and (H, ∆̃) is a braided coproduct. For any finite dimensional Hopf

algebra H , the cylinder coproduct (D(H), ∆D(H)) is given, where D(H) is the Drinfel’d double

given in [1].

Let (H, H, R) be copaired Hopf algebras. If R ∈ Z(H ⊗ H) (the center of H ⊗ H) with

inverse R−1 and skew inverse ℜ, then the twisted coalgebra (Hℜ)R−1

in [8] is constructed via

twice twists, whose comultiplication is exactly the cylinder coproduct.

We always work over a fixed field k and follow Montgomery’s book for terminologies on

coalgebras, comodules and Hopf algebras, see [1].

• (Coalgebras) A k−coalgebra is a k−space C together with two k−linear maps, comultiplication

∆ : C → C ⊗ C and counit ε : C → k, such that the following equalities hold:

(∆ ⊗ I)∆ = (I ⊗ ∆)∆, (ε ⊗ I)∆ = I = (I ⊗ ε)∆,

where the comultiplication structure map ∆ is written by ∆(c) = Σc1 ⊗ c2, for c ∈ C.

• (Comodules) For a k−coalgebra C, a right C−comodule is a k−space M with a k−linear map

ρ : M → M ⊗ C, such that

(ρ ⊗ I)ρ = (I ⊗ ∆)ρ, (I ⊗ ε)ρ = I,

where the comodule structure map ρ is written by ρ(m) = Σm(0) ⊗ m(1), for m ∈ M .

• (Bialgebras) A k−space H is a bialgebra if (H, m, µ) is an algebra, (H, ∆, ε) is a coalgebra,

and either of the following equivalent conditions holds:

(1) ∆ and ε are algebra morphisms;

(2) m and µ are coalgebra morphisms.

• (Hopf algebras) Let (H, m, µ, ∆, ε) be a bialgebra. Then H is called a Hopf algebra if there

exists an element S ∈ Homk(H, H), which is an inverse to IH under convolution ∗, where S is

called an antipode for H .

2. Cylinder coalgebras for quasitriangular bialgebras

A quasitriangular bialgebra as defined in [1] means a pair of a bialgebra H and an invertible

element R = ΣR′
i ⊗ R′′

i ∈ H ⊗ H satisfying

(Q1) τ∆(h) = R∆(h)R−1,

(Q2) (∆ ⊗ I)R = R13R23, that is, ΣR′
i1 ⊗ R′

i2 ⊗ R′′
i = ΣR′

i ⊗ r′i ⊗ R′′
i r′′i , (R = Σr′i ⊗ r′′i )

(Q3) (I ⊗ ∆)R = R13R12, that is, ΣR′
i ⊗ R′′

i1 ⊗ R′′
i2 = ΣR′

ir
′
i ⊗ r′′i ⊗ R′′

i ,

where τ denotes the twisted map, R13 = ΣR′
i ⊗1⊗R′′

i , R23 = Σ1⊗R′
i⊗R′′

i , R12 = ΣR′
i⊗R′′

i ⊗1.

If H is also a Hopf algebra with antipode S, then R is invertible, whose inverse is given by

R−1 = (S ⊗ I)R.

Let (H, R) be a quasitriangular bialgebra. If R−1 = τR, then (H, R) is called a triangular

bialgebra.
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Definition 2.1 Let C be a coalgebra and (H, R) a quasitriangular bialgebra. A linear map

f : C → H is called a cylinder homomorphism if it satisfies

(C1) εf = ε,

(C2) ∆f(c) = ΣR′′
i f(c1)r

′
i ⊗ R′

ir
′′
i f(c2),

where R = r = Σr′i ⊗ r′′i ∈ H ⊗ H .

A pair of a coalgebra C and a cylinder homomorphism f : C → H is called a cylinder

coalgebra for (H, R). In the following, we denote by (C, f) a cylinder coalgebra.

Note that if (H, R) is a triangular bialgebra, then the condition (C2) is equivalent to

(C2′) R∆f(c) = Σf(c1)r
′
i ⊗ r′′i f(c2)

Example 2.2 (1) Assume that (H, R) is a quasitriangular bialgebra, and (C, f) is a cylinder

coalgebra for (H, R). If Imf ⊆ Z(H) (the center of H) or R ∈ Z(H ⊗ 1H), then f : C → H is a

coalgebra map, if and only if (H, R) is triangular.

(2) Assuming that (H, R) is a triangular bialgebra, and C is a coalgebra. If R ∈ Z(H ⊗ 1H)

or there exists a map f : C → H such that Imf ⊆ Z(H), then f is a cylinder homomorphism if

and only if f is a coalgebra map.

In particular, (k, µH) is a cylinder coalgebra, where uH : k → H is the unit of H .

(3) Let (H, R) be a triangular Hopf algebra, and H0 denote the finite dual of the Hopf

algebra H . Define λ : H0 → H, α 7→ Σ〈α, R′
i〉R

′′
i . Then (H0, λ) is a cylinder coalgebra for (H, R)

if and only if for any α ∈ H0,

Σ〈λ, α1〉R
′
i ⊗ R′′

i 〈λ, α2〉 = ΣR′
i〈λ, α2〉 ⊗ R′′

i 〈λ, α1〉.

In particular, when H is commutative, (H0, λ) is a cylinder coalgebra for (H, R).

(4) Let H = kZ2 = k{1, g}, and chark 6= 2. Then, by [1], (H, R) is a triangular Hopf algebra

with R−1 = R, where R = 1
2 (1 ⊗ 1 + 1 ⊗ g + g ⊗ 1 − g ⊗ g).

Let C = k{x, y} be a coalgebra. Define its comultiplication and counit as follows:

∆(x) = x ⊗ x, ε(x) = 1,

∆(y) = x ⊗ y + y ⊗ x, ε(y) = 0,

then for any non-zero linear map f : C → H with f(y) 6= 0, (C, f) are not cylinder coalgebras.

Proof (1) Assume that f : C → H is a coalgebra map. Then, by Definition 2.1, for any c ∈ C,

ΣR′′
i f(c1)r

′
i ⊗ R′

ir
′′
i f(c2) = Σf(c1) ⊗ f(c2).

It follows from Imf ⊆ Z(H) or R ∈ Z(H ⊗ 1H) that

Σ(R′′
i r′i ⊗ R′

ir
′′
i )(f(c1) ⊗ f(c2)) = Σf(c1) ⊗ f(c2).

So ΣR′′
i r′i ⊗ R′

ir
′′
i = 1 ⊗ 1, that is, R−1 = τR, (H, R) is triangular.

Conversely, it is straightforward.

(2) It follows from Definition 2.1 that f : C → H is a cylinder homomorphism if and only

if f is a coalgebra map.
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Since uH : k → H is a coalgebra map, (k, µH) is a cylinder coalgebra for (H, R).

(3) Indeed, ελ = ε, and for any α ∈ H0,

∆λ(α) = Σ∆(〈α, R′
i〉R

′′
i ) = Σ〈α, R′

i〉R
′′
i1 ⊗ R′′

i2

(Q3)
= Σ〈α, R′

ir
′
i〉r

′′
i ⊗ R′′

i = Σ〈α1, R
′
i〉〈α2, r

′
i〉r

′′
i ⊗ R′′

i

= Σλ(α2) ⊗ λ(α1),

so ΣR′′
i λ(α1)r

′
i ⊗ R′

ir
′′
i λ(α2) = ∆λ(α) if and only if

Σ〈λ, α1〉R
′
i ⊗ R′′

i 〈λ, α2〉 = ΣR′
i〈λ, α2〉 ⊗ R′′

i 〈λ, α1〉.

When H is commutative, since Σ〈λ, α1〉R
′
i ⊗R′′

i 〈λ, α2〉 = ΣR′
i〈λ, α2〉⊗R′′

i 〈λ, α1〉, (H0, λ) is

a cylinder coalgebra for (H, R).

(4) Assume that (C, f) is a cylinder coalgebra. Then, for f(x) = a, f(y) = b,

∆(b) = ∆f(y) = ΣR′′
i f(y1)r

′
i ⊗ R′

ir
′′
i f(y2)

= ΣR′′
i f(x)r′i ⊗ R′

ir
′′
i f(y) + R′′

i f(y)r′i ⊗ R′
ir

′′
i f(x)

= ΣR′′
i ar′i ⊗ R′

ir
′′
i b + R′′

i br′i ⊗ R′
ir

′′
i a = a ⊗ b + b ⊗ a (R2 = 1 ⊗ 1).

However, ∆(b) 6= a ⊗ b + b ⊗ a, so the condition (C2) is not satisfied and (C, f) is not a

cylinder coalgebra.

In the following example, we will prove that for any triangular Hopf algebra (H, R), the

twisted coproduct (kα(H), δ) is a cylinder coalgebra for (H, R); for any ribbon Hopf algebra

(H, R) with ribbon element y, and the map λ : k → H, 1 7→ y is a cylinder homomorphism if and

only if (R21R)2 = 1 ⊗ 1.

• (Crossed coproducts) For the crossed coproduct C ×α H , whose coproduct is given by

∆C×αH(c × h) = Σc1 × c2(−1)α1(c3)h1 ⊗ c2(0) × α2(c3)h2.

The crossed coproduct C×αH is a coalgebra given in [4] if and only if the following conditions

hold.

(i) (Cocycle condition):

Σc1(−1)α1(c2) ⊗ α1(c1(0))α2(c2)1 ⊗ α2(c1(0))α2(c2)2 = Σα1(c1)α1(c2)1 ⊗ α2(c1)α1(c2)2 ⊗

α2(c2), for any c ∈ C.

(ii) (Twisted comodule condition):

Σc1(−1)α1(c2) ⊗ c1(0)(−1)α2(c2) ⊗ c1(0)(0) = Σα1(c1)c2(−1)1 ⊗ α2(c1)c2(−1)2 ⊗ c2(0), for any

c ∈ C.

(iii) (Counit condition): (I ⊗ ε)α = µε = (ε ⊗ I)α.

• (Ribbon Hopf algebras) Let (H, R) be a quasitriangular Hopf algebra. If there exists an

element y ∈ H such that the following conditions hold.

(y1) y2 = c, where c = uS(u) with u = ΣS(R′′
i )R′

i,

(y2) S(y) = y,

(y3) ε(y) = 1,
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(y4) ∆(y) = (R21R)−1(y ⊗ y), where R21 = τR,

then y is called a quas-ribbon element of (H, R). If y ∈ Z(H) the center of H , then y is called a

ribbon element, in the case (H, R, y) is called a ribbon Hopf algebra as defined in [5].

Example 2.3 (1) Assuming that (H, R) is a triangular bialgebra, and f : k → H, 1 7→ v such

that ε(v) = 1. Then (k, f) is a cylinder coalgebra for (H, R) if and only if R∆(v) = (v⊗1)R(1⊗v).

In particular, if (H, R) is a triangular Hopf algebra, then the map γ : k → H, 1 7→ t

is a cylinder homomorphism, and hence (H, γ) is a cylinder coalgebra for (H, R), where u =

ΣS(R′′
i )R′

i, and t = uS(u) which is called the Casimir element of (H, R) (see [5]).

(2) Let (H, R) be a triangular Hopf algebra, and kα(H) = k×α H be the twisted coproduct,

whose coproduct is given by ∆kα(H)(1 × h) = Σ1 × α1(1)h1 ⊗ 1 × α2(1)h2. Then the twisted

coproduct (kα(H), δ) is a cylinder coalgebra for (H, R), where α(1) = R and is denoted by

Σα1(1) ⊗ α2(1), and the map δ : kα(H) → H is given by 1 ×α h 7→ ε(h)t.

(3) Let (H, R) be a ribbon Hopf algebra with ribbon element y. Define the map λ : k →

H, 1 7→ y, then λ is a cylinder homomorphism if and only if (R21R)2 = 1 ⊗ 1.

Proof (1) If R∆(v) = (v ⊗ 1)R(1 ⊗ v), then

ΣR′′
i f(1)r′i ⊗ R′

ir
′′
i f(1) = ΣR′′

i vr′i ⊗ R′
ir

′′
i v = ΣR′′

i r′iv1 ⊗ R′
ir

′′
i v2 = Σv1 ⊗ v2 = ∆(v).

So (k, f) is a cylinder coalgebra.

Conversely, it is obvious.

In particular, if (H, R) is a triangular Hopf algebra, then by the proof of Theorem 10.1.3 in

[1], ∆(u)R21R = u ⊗ u. Since R−1 = R21, ∆(u) = u ⊗ u and ∆(t) = t ⊗ t.

According to Proposition 10.1.4 in [1], t ∈ Z(H), so R∆(t) = ΣtR′
i ⊗ R′′

i t.

By ε(t) = 1, it is easy to see that the map γ : k → H, 1 7→ t is a cylinder homomorphism.

(2) and (3) are straightforward.

Note that in Example 2.2(4) it is easy to see u = ΣS(R′′
i )R′

i = g and c = uS(u) = 1. If let

y = g, then it is easy to show that (kZ2, R, y) is a ribbon Hopf algebra with (R21R)2 = 1 ⊗ 1.

So by Example 2.3 we know that the map λ : k → kZ2, 1 7→ g, is a cylinder homomorphism.

• (Generalized Long dimodules) Let M be both a left A−module via “ · ” and a left C-

comodule via “ρ”. If for any a ∈ A, m ∈ M, ρ(a · m) = Σm(−1) ⊗ a · m(0), then it is called a

generalized [C, A]-Long dimodule, which is a generalization of Long dimodules as defined in [6,7].

For examples, if M is a left C-comodule and A is an algebra, then (M ⊗ A, ρM⊗A, ⇀) is a

generalized [C, A]−Long dimodule via the following structure maps:

ρM⊗A(m ⊗ a) = Σm(−1) ⊗ m(0) ⊗ a; a ⇀ (m ⊗ b) = m ⊗ ab.

If M is a left A-module and C is a coalgebra, then (C ⊗ M, ρC⊗M , ⇀) is a generalized

[C, A]-Long dimodule via the following structure maps:

ρC⊗M (c ⊗ m) = Σc1 ⊗ c2 ⊗ m; a ⇀ (b ⊗ m) = b ⊗ a · m.
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In the following, we will construct an H−Long dimodule (M, ·, ρf ) via the cylinder homo-

morphism f , where (M, ·, ρ) is is a generalized [C, H ]-Long dimodule.

Proposition 2.4 Let (H, R) be a triangular Hopf algebra, and (C, f) a cylinder coalgebra for

(H, R). Define

ρf : C → H ⊗ C, c 7→ Σf(c1) ⊗ c2,

then (C, ρf ) is a left H-comodule if and only if the R-commutative condition holds:

ΣR′
if(c1) ⊗ R′′

i f(c2) = Σf(c1)R
′
i ⊗ R′′

i f(c2). (Rf)

In this case, (1) if (C, f) and (D, g) are two cylinder coalgebras for (H, R), and there exists

a coalgebra morphism α : C → D, then α is a left H-comodule map if and only if g ◦ α = f .

(2) Assume that (M, ·, ρ) is a generalized [C, H ]-Long dimodule, then (M, ·, ρf ) is an H-

Long dimodule, where the map ρf : M → H ⊗ M is given by m 7→ Σf(m(−1)) ⊗ m0.

Proof As a matter of fact, for any c ∈ C, (ε ⊗ I)ρf (c) = Σεf(c1)c2 = Σε(c1)c2 = c, and

(I ⊗ ρf )ρf (c) = Σ(I ⊗ ρf )(f(c1) ⊗ c2) = Σf(c1) ⊗ f(c2) ⊗ c3 (A)

and

(∆ ⊗ I)ρf (c) = Σf(c1)1 ⊗ f(c1)2 ⊗ c2 = ΣR′′
i f(c1)r

′
i ⊗ R′

ir
′′
i f(c2) ⊗ c3. (B)

If the condition (Rf) holds, then

(B) = ΣR′′
i r′if(c1) ⊗ R′

ir
′′
i f(c2) ⊗ c3 = Σf(c1) ⊗ f(c2) ⊗ c3 = (A).

So (C, ρf ) is a left H-comodule.

Conversely, if (A)=(B), then

ΣR′′
i f(c1)r

′
i ⊗ R′

ir
′′
i f(c2) ⊗ c3 = Σf(c1) ⊗ f(c2) ⊗ c3.

By applying I ⊗ I ⊗ ε into the both sides of the above equality, we get

ΣR′′
i f(c1)r

′
i ⊗ R′

ir
′′
i f(c2) = Σf(c1) ⊗ f(c2).

Since R−1 = τR, it is easy to show that ΣR′
if(c1) ⊗ R′′

i f(c2) = Σf(c1)R
′
i ⊗ R′′

i f(c2).

(1) It is obvious that g ◦ α = f implies that α is a left H−comodule map. Conversely, if α

is a left H−comodule map, then for any c ∈ C,

Σf(c1) ⊗ α(c2) = Σg(α(c1)) ⊗ α(c2).

By applying I ⊗ ε to the both sides of the above equality, we get f(c) = g ◦ α(c).

(2) Since the condition (Rf) holds, it is easy to see that (M, ρf ) is a left H-comodule and

(M, ·, ρf ) is an H-Long dimodule.

• (Cylinder twists) Assume that (C, f) is a cylinder coalgebra for (H, R), and M is both

a left H−module and a left C-comodule. Define the map tM : M → M, which is given by
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tM (m) = Σf(m(−1)) · m(0). If ϕ : M → N is both a left H-module map and a left C-comodule

map, then it is easy to show ϕtM = tNϕ. In the following, tM will be called a cylinder twist on

M .

By cylinder twists, we will construct Long equations, Yang-Baxter equations, and four braid

pairs.

• (Yang-Baxter operators and four braid pairs) In [2], Dieck and Oldenburg introduced two

concepts of Yang-Baxter operators and four braid pairs. That is, let V be a left A-module,

ζ : V ⊗ V → V ⊗ V is a linear map, and F : V → V is an A-linear automorphism with the

following properties:

(1) ζ is a Yang-Baxter operator, that is, ζ satisfies the equation

(ζ ⊗ I)(I ⊗ ζ)(ζ ⊗ I) = (I ⊗ ζ)(ζ ⊗ I)(I ⊗ ζ)

on V ⊗ V ⊗ V.

(2) With Y = F ⊗ I, the braid relation Y ζY ζ = ζY ζY is satisfied.

If (1) and (2) hold, then (ζ, F ) is called a four braid pair.

• (Long equations) In [6], the author introduced the concept of Long equations: assume that V

is a vector space, and R : V ⊗ V → V ⊗ V is satisfied

R12R13 = R13R12; R12R23 = R23R12. (LE)

The above equation (LE) is called the Long equation.

Proposition 2.5 Assume that (H, R) is a quasitriangular Hopf algebra, and (C, f) a cylinder

coalgebra for (H, R), and M a generalized [C, H ]-Long dimodule, and there exists a map g : C →

H such that f ∗τ g = g ∗τ f , that is, for any c ∈ C, Σf(c2)g(c1) = Σg(c2)f(c1).

Define sM : M → M, m 7→ Σg(m(−1)) · m(0), and R : M ⊗ M → M ⊗ M, m ⊗ n 7→

tM (m) ⊗ sM (n). Then

(1) R is a solution of Long equations, and so is a solution of Yang-Baxter equations:

R12R13R23 = R23R13R12.

(2) If the map f : C → H has a skew convolution inverse g : C → H , that is, f ∗τ g =

µHεC = g ∗τ f , then the cylinder twist tM has a composition inverse with t−1
M = sM .

(3) Let N be a left H-module. Define zM,N : M ⊗N → N ⊗M, m⊗ n 7→ ΣR′′
i · n⊗R′

i ·m.

If for any h ∈ H, m ∈ M , Σf(m(−1))h · m(0) = Σhf(m(−1)) · m(0), then

zN,M (tN ⊗ IM )zM,N(tM ⊗ IN ) = (tM ⊗ IN )zN,M(tN ⊗ IM )zM,N .

(4) If f ∗τ f = f , then t2M = tM . Furthermore, if the map f : C → H has a skew

convolution inverse g : C → H and F : M → M is a generalized [C, H ]-Long dimodule map,

then (ζ, Y = F ⊗ I) is a four braid pair, where ζ : M ⊗M → M ⊗M, m⊗ n 7→ tM (m)⊗ sM (n).
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Proof (1) For any m ∈ M ,

sM tM (m) = ΣsM (f(m(−1)) · m(0)) = Σg((f(m(−1)) · m(0))(−1)) · (f(m(−1)) · m(0))(0)

= Σg(m(0)(−1)) · (f(m(−1)) · m(0)(0)) = Σg(m(−1)2)f(m(−1)1) · m(0)

= Σf(m(−1)2)g(m(−1)1) · m(0) = tMsM (m),

so sM tM = tMsM .

Hence, for any m, n, p ∈ M,

R12R23(m ⊗ n ⊗ p) = R12(m ⊗ tM (n) ⊗ sM (p))

= tM (m) ⊗ sM tM (n) ⊗ sM (p) = tM (m) ⊗ tMsM (n) ⊗ sM (p)

= R23R12(m ⊗ n ⊗ p),

R12R23 = R23R12. It is obvious that R12R13 = R13R12, so R is a solution of Long equations.

It is easy to see that R is also a solution of Yang-Baxter equations.

(2) For any m ∈ M , sM tM (m) = Σf(m(−1)2)g(m(−1)1) · m(0) = ΣεC(m(−1))1H · m(0) =

1H · m = m. In a similar way, we can prove tMsM (m) = m, so sM tM = IM = tMsM .

(3) In fact, for any m ∈ M, n ∈ N ,

zN,M(tN ⊗ IM )zM,N(tM ⊗ IN )(m ⊗ n) = zN,M(tN ⊗ IM )zM,N (tM (m) ⊗ n)

= ΣzN,M(tN ⊗ IM )(R′′
i · n ⊗ R′

i · tM (m))

= ΣzN,M(tN (R′′
i · n) ⊗ R′

i · tM (m))

= Σr′′i R′
i · tM (m) ⊗ r′i · tN (R′′

i · n) (R = Σr′i ⊗ r′′i ).

Since Σf(m(−1))h · m(0) = Σhf(m(−1)) · m(0), tM is a left H-module map. Then

(tM ⊗ IN )zN,M (tN ⊗ IM )zM,N(m ⊗ n) = Σ(tM ⊗ IN )zN,M(tN (R′′
i · n) ⊗ R′

i · m)

= Σ(tM ⊗ IN )(r′′i R′
i · m ⊗ r′i · tN (R′′

i · n))

= ΣtM (r′′i R′
i · m) ⊗ r′i · tN (R′′

i · n)

= Σr′′i R′
i · tM (m) ⊗ r′i · tN (R′′

i · n)

and hence zN,M(tN ⊗ IM )zM,N (tM ⊗ IN ) = (tM ⊗ IN )zN,M(tN ⊗ IM )zM,N .

(4) Let f ∗τ f = f. Then for any m ∈ M, t2M (m) = Σf(m(−1)2)f(m(−1)1)·m(0) = Σf(m(−1))·

m(0) = tM (m).

If f ∗τ g = µε = g ∗τ f , then g ∗τ g = f ∗τ g ∗τ g ∗τ g = f ∗τ f ∗τ g ∗τ g ∗τ g = g.

In a similar way, we can show s2
M = sM .

For the defined map ζ : M ⊗ M → M ⊗ M, m ⊗ n 7→ tM (m) ⊗ sM (n),

(ζ⊗I)(I⊗ζ)(ζ⊗I)(m⊗n⊗p) = t2M (m)⊗sM tMsM (n)⊗sM (p) = tM (m)⊗sM tM (n)⊗sM (p)

and

(I⊗ζ)(ζ⊗I)(I⊗ζ)(m⊗n⊗p) = tM (m)⊗tMsM tM (n)⊗s2
M (p) = tM (m)⊗tMsM (n)⊗sM (p),

so (ζ ⊗ I)(I ⊗ ζ)(ζ ⊗ I) = (I ⊗ ζ)(ζ ⊗ I)(I ⊗ ζ), ζ is a Yang-Baxter operator.
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It is easy to see FtM = tMF , so, for any m, n ∈ M ,

Y ζY ζ(m ⊗ n) = FtMFtM (m) ⊗ s2
M (n) = F 2t2M (m) ⊗ s2

M (n) = F 2tM (m) ⊗ sM (n).

In a similar way, we can show ζY ζY (m⊗n) = F 2tM (m)⊗sM (n). So Y ζY ζ = ζY ζY , (ζ, F )

is a four braid pair.

3. Cylinder coproducts for quasitriangular Hopf algebras

Assume that (H, R) is a quasitriangular bialgebra. If there exists an element ℜ = Σℜ′
i ⊗ℜ′′

i

such that

ΣR′
iℜ

′
i ⊗ℜ′′

i R′′
i = 1 ⊗ 1 = Σℜ′

iR
′
i ⊗ R′′

i ℜ
′′
i

then R is called a skew invertible element. In particular, if H is a quasitriangular Hopf algebra

with antipode S, then by Proposition 10.1.8 in [1], R is skew invertible with skew inverse ℜ =

(I ⊗ S)R.

Lemma 3.1 Let (H, R) be a quasitriangular bialgebra with inverse R−1. Then

(1) ΣR̃′
iR̄

′
i ⊗ R̃′′

i R̆′
i ⊗ R̄′′

i R̆′′
i = ΣR̃′

iR̄
′
i ⊗ R̆′

iR̄
′′
i ⊗ R̆′′

i R̃′′
i ,

where R−1 = ΣR̃′
i ⊗ R̃′′

i = ΣR̄′
i ⊗ R̄′′

i = ΣR̆′
i ⊗ R̆′′

i .

(2) If R is skew invertible with skew inverse ℜ, then

Σℜ′
iR

′
i ⊗ R̄′

iR
′′
i ⊗ R̄′′

i ℜ
′′
i = ΣR′

iℜ
′
i ⊗ R′′

i R̄′
i ⊗ℜ′′

i R̄′′
i ,

where ℜ = Σℜ′
i ⊗ℜ′′

i = ΣR′
i ⊗ R′′

i , and R−1 = ΣR̄′
i ⊗ R̄′′

i .

Proof It is well known that R satisfies the following Yang-Baxter equation:

R12R13R23 = R23R13R12

that is,

ΣR′
ir

′
i ⊗ R′′

i s′i ⊗ r′′i s′′i = Σr′is
′
i ⊗ R′

is
′′
i ⊗ R′′

i r′′i , (YBE)

where R = ΣR′
i ⊗ R′′

i = Σr′i ⊗ r′′i = Σs′i ⊗ s′′i .

In the above equality (YBE), consider R−1 ⊗ 1 acting on H⊗3 by left multiplication. Then

Σr′i ⊗ s′i ⊗ r′′i s′′i = ΣR̄′
ir

′
is

′
i ⊗ R̄′′

i R′
is

′′
i ⊗ R′′

i r′′i .

So we conclude

Σr′iR̃
′
i ⊗ s′iR̃

′′
i ⊗ r′′i s′′i = ΣR̄′

ir
′
i ⊗ R̄′′

i R′
i ⊗ R′′

i r′′i

=⇒ ΣR̃′
i ⊗ s′iR̃

′′
i ⊗ s′′i = ΣR̃′

iR̄
′
ir

′
i ⊗ R̄′′

i R′
i ⊗ R̃′′

i R′′
i r′′i

=⇒ ΣR̃′
iR̄

′
i ⊗ s′iR̃

′′
i ⊗ s′′i R̄′′

i = ΣR̃′
iR̄

′
i ⊗ R̄′′

i R′
i ⊗ R̃′′

i R′′
i

=⇒ ΣR̃′
iR̄

′
i ⊗ R̃′′

i ⊗ R̄′′
i = ΣR̃′

iR̄
′
i ⊗ R̆′

iR̄
′′
i R′

i ⊗ R̆′′
i R̃′′

i R′′
i

=⇒ ΣR̃′
iR̄

′
i ⊗ R̃′′

i R̆′
i ⊗ R̄′′

i R̆′′
i = ΣR̃′

iR̄
′
i ⊗ R̆′

iR̄
′′
i ⊗ R̆′′

i R̃′′
i
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and (1) holds. In a similar way, we can prove (2).

In the following, we always assume that (H, R) is a quasitriangular bialgebra with inverse

R−1.

Definition 3.2 Let (H, R) be a quasitriangular bialgebra with skew inverse ℜ. Define a co-

product on H as follows:

∆ : H → H ⊗ H, h 7→ ΣR̄′′
i h1ℜ

′
i ⊗ℜ′′

i R̄′
ih2,

where R−1 = ΣR̄′
i ⊗ R̄′′

i , and ℜ = Σℜ′
i ⊗ℜ′′

i . This coproduct is called a cylinder coproduct, and

denoted by (H, ∆).

• (Copaired bialgebras) (H, K, R) are called copaired bialgebras if H and K are two bialgebras

such that R ∈ H ⊗ K satisfies the following conditions:

(R1) (IH ⊗ εK)R = 1,

(R2) (εH ⊗ IK)R = 1,

(R3) (∆H ⊗ IK)R = ΣR′
i ⊗ r′i ⊗ R′′

i r′′i ,

(R4) (IH ⊗ ∆K)R = ΣR′
ir

′
i ⊗ R′′

i ⊗ r′′i ,

where R = ΣR′
i ⊗ R′′

i = Σr′i ⊗ r′′i .

Furthermore, if R is skew invertible with skew inverse ℜ, then it is easy to show

(ℜ1) (IH ⊗ εK)ℜ = 1,

(ℜ2) (εH ⊗ IK)ℜ = 1,

(ℜ3) (∆H ⊗ IK)ℜ = Σℜ′
i ⊗ R′

i ⊗ R′′
i ℜ

′′
i ,

(ℜ4) (IH ⊗ ∆K)ℜ = ΣR′
iℜ

′
i ⊗ℜ′′

i ⊗ R′′
i ,

where ℜ = Σℜ′
i ⊗ℜ′′

i = ΣR′
i ⊗ R′′

i .

• (Twisted coalgebras) Assume that (H, K, R) are copaired bialgebras, and C is an (H, K)-

bimodule coalgebra. Define

∆R(c) = ΣR′
i · c1 ⊗ c2 · R

′′
i ,

then, by [8], (C, ∆R, ε) is a coalgebra and called the twisted coalgebra. In the following, ∆R is

called the twisted coproduct, and (C, ∆R, ε) denoted by (CR, ∆CR , ε).

Let (H, K, R) be copaired bialgebras with inverse R−1. Then, by Proposition 1.2 in [8], the

following hold.

(R−11) (IH ⊗ εK)R−1 = 1,

(R−12) (εH ⊗ IK)R−1 = 1,

(R−13) (∆H ⊗ IK)R−1 = ΣR̃′
i ⊗ r̃′i ⊗ r̃′′i R̃′′

i ,

(R−14) (IH ⊗ ∆K)R−1 = ΣR̃′
ir̃

′
i ⊗ r̃′′i ⊗ R̃′′

i ,

where R−1 = ΣR̃′
i ⊗ R̃′′

i = Σr̃′i ⊗ r̃′′i .

Furthermore, assume that R is invertible with inverse R−1 ∈ Z(H ⊗ K). Define

∆̆R−1(c) = ΣR̃′′
i · c1 ⊗ c2 · R̃

′
i,

then it is not difficult to prove that (C, ∆̆R−1 , ε) is a coalgebra, which is denoted by CR−1

.



No.4 ZHANG Liang-yun, et al: Cylinder coalgebras and cylinder coproducts 645

Let (H, K, R) be copaired bialgebras, and C an (H, K)-bimodule coalgebra. If R ∈ Z(H⊗K)

with skew inverse ℜ, then

(1) (H, K,ℜ) are copaired bialgebras, and (Cℜ, ∆ℜ, ε) is a coalgebea with comultiplication

∆ℜ(c) = Σℜ′
i · c1 ⊗ c2 · ℜ

′′
i .

(2) If R is invertible with inverse R−1, then (H, K, R−1) are copaired bialgebras, and

(Cℜ)R−1

is the twisted coalgebra, whose comultiplication is given by

∆(Cℜ)R−1 (c) = ΣR̃′′
i · c1 · ℜ

′
i ⊗ R̃′

iℜ
′′
i · c2,

where R−1 = ΣR̃′
i ⊗ R̃′′

i .

In particular, if (H, H, R) are copaired Hopf algebras with R ∈ Z(H ⊗ H), then R has

an invertible element R−1 and a skew-invertible element ℜ, and Hℜ is an (H, H)-bimodule

coalgebra, whose actions are given by multiplication mH . Thus, by the above discussion, we get

the twisted coalgebra (Hℜ)R−1

with comultiplication

∆(Hℜ)R−1 (h) = ΣR̃′′
i h1ℜ

′
i ⊗ℜ′′

i R̃′
ih2

which is exactly the cylinder coproduct given in Definition 3.2.

Theorem 3.3 The cylinder coproduct (H, ∆, ε) given in Definition 3.2 is a coalgebra.

Proof Let R−1 = ΣR̃′
i ⊗ R̃′′

i and ℜ = Σℜ′
i ⊗ ℜ′′

i .

According to Σε(R̃′
i)R̃

′′
i = 1 = ΣR̃′

iε(R̃
′′
i ) and Σε(ℜ′

i)ℜ
′′
i = 1 = Σℜ′

iε(ℜ
′′
i ), then, for any

h ∈ H ,

(I ⊗ ε)∆(h) = h = (ε ⊗ I)∆(h),

that is, ε is a counit.

By (Q2) and (Q3), one easily obtain the following equalities:

Σ∆(ℜ′
i) ⊗ℜ′′

i = Σℜ′
i ⊗ R

′
i ⊗ R

′′
i ℜ

′′
i − (C); Σℜ′

i ⊗ ∆(ℜ′′
i ) = Σℜ′

iR
′
i ⊗ℜ′′

i ⊗ R
′′
i − (D)

(∆ ⊗ I)R−1 = ΣR̃′
i ⊗ r̃′i ⊗ r̃′′i R̃′′

i − (E); (I ⊗ ∆)R−1 = ΣR̃′
ir̃

′
i ⊗ R̃′′

i ⊗ r̃′′i − (F )

Thus, by (C)–(F) and Lemma 3.1, for any h ∈ H , we have

(I ⊗ ∆)∆(h) = Σ(I ⊗ ∆)(R̄′′
i h1ℜ

′
i ⊗ℜ′′

i R̄′
ih2)

= ΣR̄′′
i h1ℜ

′
i ⊗ R̃′′

i (ℜ′′
i R̄′

ih2)1R
′
i ⊗ R′′

i R̃′
i(ℜ

′′
i R̄′

ih2)2

= ΣR̄′′
i h1ℜ

′
i ⊗ R̃′′

i ℜ
′′
i1R̄

′
i1h2R

′
i ⊗ R′′

i R̃′
iℜ

′′
i2R̄

′
i2h3

(D)
= ΣR̄′′

i h1ℜ
′
ir

′
i ⊗ R̃′′

i ℜ
′′
i R̄′

i1h2R
′
i ⊗ R′′

i R̃′
ir

′′
i R̄′

i2h3 (ℜ = Σr′i ⊗ r′′i )

(E)
= ΣR̄′′

i R̆′′
i h1ℜ

′
ir

′
i ⊗ R̃′′

i ℜ
′′
i R̆′

ih2R
′
i ⊗ R′′

i R̃′
ir

′′
i R̄′

ih3

= ΣR̄′′
i R̆′′

i h1r
′
iℜ

′
i ⊗ℜ′′

i R̃′′
i R̆′

ih2R
′
i ⊗ R′′

i r′′i R̃′
iR̄

′
ih3 (Lemma 3.1)
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and

(∆ ⊗ I)∆(h) = Σ(∆ ⊗ I)(R̄′′
i h1ℜ

′
i ⊗ℜ′′

i R̄′
ih2)

= ΣR̆′′
i (R̄′′

i h1ℜ
′
i)1r

′
i ⊗ r′′i R̆′

i(R̄
′′
i h1ℜ

′
i)2 ⊗ℜ′′

i R̄′
ih2

= ΣR̆′′
i R̄′′

i1h1ℜ
′
i1r

′
i ⊗ r′′i R̆′

iR̄
′′
i2h2ℜ

′
i2 ⊗ℜ′′

i R̄′
ih3

(F )
= ΣR̆′′

i R̄′′
i h1ℜ

′
i1r

′
i ⊗ r′′i R̆′

iR̃
′′
i h2ℜ

′
i2 ⊗ℜ′′

i R̄′
iR̃

′
ih3

(C)
= ΣR̆′′

i R̄′′
i h1ℜ

′
ir

′
i ⊗ r′′i R̆′

iR̃
′′
i h2R

′
i ⊗ R′′

i ℜ
′′
i R̄′

iR̃
′
ih3

= ΣR̆′′
i R̃′′

i h1ℜ
′
ir

′
i ⊗ r′′i R̆′

iR̄
′′
i h2R

′
i ⊗ R′′

i ℜ
′′
i R̃′

iR̄
′
ih3

= ΣR̄′′
i R̆′′

i h1ℜ
′
ir

′
i ⊗ r′′i R̃′′

i R̆′
ih2R

′
i ⊗ R′′

i ℜ
′′
i R̃′

iR̄
′
ih3, (by Lemma 3.1)

that is, (∆ ⊗ I)∆ = (I ⊗ ∆)∆. So (H, ∆) is a coalgebra.

Let (H, R) and (L, S) be two quasitriangular bialgebras. If there exists a bialgebra map

F : H → L such that (F ⊗F )(R) = S, then, by Theorem 3.3, F : (H, ∆H) → (L, ∆L), h 7→ F (h),

is a coalgebra map.

Proposition 3.4 Let (H, R) be a quasitriangular bialgebra with skew inverse ℜ. Then the

linear map f : C → (H, ∆) is a cylinder homomorphism if and only if ∆f = (f ⊗ f)∆, and

εf = ε.

In other words, the cylinder homomorphism is nothing but a coalgebra map f : C → (H, ∆).

Proof Assume that f is a cylinder homomorphism. Then, by (C2), for any c ∈ C,

∆f(c) = ΣR̄′′
i f(c)1ℜ

′
i ⊗ℜ′′

i R̄′
if(c)2 = Σf(c1)R

′
iℜ

′
i ⊗ℜ′′

i R′′
i f(c2) = Σf(c1) ⊗ f(c2).

Conversely, if ∆f = (f ⊗ f)∆ and εf = ε, then for any c ∈ C,

ΣR̄′′
i f(c)1ℜ

′
i ⊗ℜ′′

i R̄′
if(c)2 = Σf(c1) ⊗ f(c2).

Hence we can conclude

ΣR̄′′
i f(c)1ℜ

′
iR

′
i ⊗ R′′

i ℜ
′′
i R̄′

if(c)2 = Σf(c1)R
′
i ⊗ R′′

i f(c2)

ΣR̄′′
i f(c)1 ⊗ R̄′

if(c)2 = Σf(c1)R
′
i ⊗ R′′

i f(c2).

So Σf(c)1 ⊗ f(c)2 = Σr′′i f(c1)R
′
i ⊗ r′iR

′′
i f(c2).

Example 3.5 Let H be a finite dimensional Hopf algebra with antipode S. Then, by [1], the

multiplication and comultiplication of the Drinfel’d double D(H) = H∗COP ⊲⊳ H are given as

follows: for f, f ′ ∈ H∗, h, h′ ∈ H,

(f ⊲⊳ h)(f ′ ⊲⊳ h′) = Σf(h1 ։ f ′
2) ⊲⊳ (h2 և f ′

1)h
′

∆D(H)(f ⊲⊳ h) = Σ(f2 ⊲⊳ h1) ⊗ (f1 ⊲⊳ h2).

By Theorem 10.3.6 in [1], the Drinfel’d double D(H) is a quasitriangular Hopf algebra with

antipode

SD(H) = ΣS(h2) ⇀ S(f1) ⊗ f2 ⇀ S(h1).

(1) (D(H), ∆D(H)) is a cylinder coproduct, whose coproduct is given by
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∆D(H)(f ⊲⊳ h) = Σh∗
i f3 ⊲⊳ h1ℓi ⊗ S(ℓ∗i )(S(hi2 ։ f2) ⊲⊳ (S(hi1) և f1)h2,

where {h∗
i , hi} and {ℓ∗i , ℓi} are two dual bases of H .

(2) Let γ : H → D(H), h 7→ ε ⊲⊳ h. Then (H, γ) is not a cylinder coalgebra for (D(H), R),

where R = ΣεH ⊲⊳ hi ⊗ h∗
i ⊲⊳ 1H .

Proof (1) By the above discussion, we know R−1 = ΣS(R′
i) ⊗ R′′

i and ℜ = ΣR′
i ⊗ S(R′′

i ).

According to [1], R = ΣεH ⊲⊳ hi ⊗ h∗
i ⊲⊳ 1H , it is easy to show R−1 = ΣεH ⊲⊳ S(hi) ⊗ h∗

i ⊲⊳ 1H

and ℜ = ΣεH ⊲⊳ hi ⊗ S(h∗
i ) ⊲⊳ 1H . Thus, by Definition 3.2, we get easily

∆D(H)(f ⊲⊳ h) = Σh∗
i f3 ⊲⊳ h1ℓi ⊗ S(ℓ∗i )(S(hi2 ։ f2) ⊲⊳ (S(hi1) և f1)h2.

(2) It is obvious that γ : H → (D(H), ∆D(H)), h 7→ ε ⊲⊳ h is not a coalgebra map, so, by

Proposition 3.4, γ is not a cylinder homomorphism for (D(H), R).

• (Braided coproducts) Let (H, R) be a triangular Hopf algebra, and “ ⇀ ” denote a quantum

adjoint action on H : g ⇀ h = Σg1hS(g2). Then H has the second coalgebra structure

∆̃(h) = Σh1S(R′′
i ) ⊗ R′

i ⇀ h2.

which is called the braided coproduct of H (see Theorem 7.4.2 given in [9]).

Proposition 3.6 Let (H, R) be a triangular Hopf algebra, and (H, ∆) the cylinder coproduct,

and (H, ∆̃) the braided coproduct. Then exists an anti-coalgebra isomorphism:

(H, ∆)
f
∼= (H, ∆̃),

where the map f : (H, ∆) → (H, ∆̃) is given by h 7→ S(h).

Proof We have only to prove that f is an anti-coalgebra map.

As a matter of fact, for any h ∈ H ,

(f ⊗ f)∆(h) = Σ(f ⊗ f)(R̄′′
i h1ℜ

′
i ⊗ℜ′′

i R̄′
ih2) = ΣS(ℜ′

i)S(h1)S(R̄′′
i ) ⊗ S(h2)S(R̄′

i)S(ℜ′′
i )

= ΣS(ℜ′
i)S(h1)S(R′

i) ⊗ S(h2)S(R′′
i )S(ℜ′′

i ) (R−1 = τR)

= ΣS(ℜ′
i)S(h1)R

′
i ⊗ S(h2)R

′′
i S(ℜ′′

i ) ((S ⊗ S)R = R in [1])

= ΣS(r′i)S(h1)R
′
i ⊗ S(h2)R

′′
i S2(r′′i ) (ℜ = (I ⊗ S)R)

= Σr′iS(h1)R
′
i ⊗ S(h2)R

′′
i S(r′′i )

and

τ∆̃f(h) = Στ(S(h2)S(R′′
i ) ⊗ R′

i ⇀ S(h1)) = ΣR′
i ⇀ S(h1) ⊗ S(h2)S(R′′

i )

= ΣR′
i1S(h1)S(R′

i2) ⊗ S(h2)S(R′′
i )

(Q2)
= ΣR′

iS(h1)S(r′i) ⊗ S(h2)S(R′′
i r′′i )

= ΣR′
iS(h1)r

′
i ⊗ S(h2)r

′′
i S(R′′

i ),
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so (f ⊗ f)∆ = τ∆̃f . It is obvious that εf = ε and hence f is an anti-coalgebra map.
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