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1. Introduction and preliminaries

In the paper [2], the authors introduced the concept of cylinder forms for coquasitriangular
bialgebras and gave a new structure into the representation theory of quantum groups.

In 1999, Takeuchi introduced the concept of cylinder algebras for coquasitriangular bial-
gebras, which is a generalization of cylinder forms; and introduced cylinder matrices for any
Yang-Baxter operator given in [3].

The aim of this paper is to study the theory of cylinder coalgebras and cylinder coproducts
for quasitriangular bialgebras.

The paper is organized as follows. In Section 2, we will introduce the concept of cylinder
coalgebras for quasitriangular bialgebras. It is easy to see that the finite dual H° and the twisted
coproduct k X, H are cylinder coalgebras for any quasitriangular Hopf algebra (H, R) under
certain conditions. Moreover, for any generalized Long dimodule, solutions for Yang-Baxter
equations, four braid pairs in [2] and Long equations in [6] are constructed via cylinder twists. In

Section 3, we will introduce the concept of cylinder coproducts for quasitriangular bialgebras, and
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prove that the linear map f : C — H is a cylinder homomorphism if and only if Af = (f ® f)A
and ef = ¢, and that there exists an anti-coalgebra isomorphism (H, A) = (H, A), where (H,A)
is a cylinder coproduct and (H, A) is a braided coproduct. For any finite dimensional Hopf
algebra H, the cylinder coproduct (D(H ), Ap(g)) is given, where D(H) is the Drinfel’d double
given in [1].

Let (H, H, R) be copaired Hopf algebras. If R € Z(H @ H) (the center of H ® H) with
inverse R~! and skew inverse R, then the twisted coalgebra (H 8%)FF1 in [8] is constructed via
twice twists, whose comultiplication is exactly the cylinder coproduct.

We always work over a fixed field k£ and follow Montgomery’s book for terminologies on
coalgebras, comodules and Hopf algebras, see [1].

o (Coalgebras) A k—coalgebra is a k—space C together with two k—linear maps, comultiplication
A:C — C®C and counit € : C' — k, such that the following equalities hold:

ARDA=T2A)A, (c@NA=1=(I®:)A,

where the comultiplication structure map A is written by A(c) = Xe; ® o, for ¢ € C.
e (Comodules) For a k—coalgebra C, a right C'—comodule is a k—space M with a k—linear map
p: M — M ® C, such that

(p@Dp=(I@A)p,(I@e)p=1,

where the comodule structure map p is written by p(m) = Xm gy ® my), for m € M.
e (Bialgebras) A k—space H is a bialgebra if (H,m,u) is an algebra, (H, A, ¢) is a coalgebra,
and either of the following equivalent conditions holds:

(1) A and € are algebra morphisms;

(2) m and p are coalgebra morphisms.
e (Hopf algebras) Let (H,m,u, A, €) be a bialgebra. Then H is called a Hopf algebra if there
exists an element S € Homy(H, H), which is an inverse to Iy under convolution *, where S is

called an antipode for H.

2. Cylinder coalgebras for quasitriangular bialgebras

A quasitriangular bialgebra as defined in [1] means a pair of a bialgebra H and an invertible
element R = ¥R, ® R € H® H satisfying

(Q1) 7A(h) = RA(R)R™1,

(Q2) (A®I)R = R“¥R?*, that is, YRl ® Rl, ® R = SR, @1, @ R/r!, (R=Sr, @)

(Q3) (I ® A)R = R3R'?, that is, YR, ® R}, ® Rl = XRirl @’ @ R,
where 7 denotes the twisted map, R = SR/@ 1@ R/, R =Y1@R.@ R/, R'?> = SR.@ R/ ® 1.

If H is also a Hopf algebra with antipode S, then R is invertible, whose inverse is given by
R™'=(S®I)R.

Let (H, R) be a quasitriangular bialgebra. If R~! = 7R, then (H, R) is called a triangular
bialgebra.
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Definition 2.1 Let C be a coalgebra and (H, R) a quasitriangular bialgebra. A linear map
f:C — H is called a cylinder homomorphism if it satisfies

(C1) ef =¢,

(C2) Af(c) = SRIf(e)r| @ Rir! f(c2),
where R=r=%r,@r] ¢ H® H.

A pair of a coalgebra C' and a cylinder homomorphism f : C — H is called a cylinder
coalgebra for (H, R). In the following, we denote by (C, f) a cylinder coalgebra.

Note that if (H, R) is a triangular bialgebra, then the condition (C2) is equivalent to

(C2) RAf(c) = Sf(er)r! @1/ flea)

Example 2.2 (1) Assume that (H, R) is a quasitriangular bialgebra, and (C, f) is a cylinder
coalgebra for (H,R). If Imf C Z(H) (the center of H) or R € Z(H ® 1), then f: C — H is a
coalgebra map, if and only if (H, R) is triangular.

(2) Assuming that (H, R) is a triangular bialgebra, and C'is a coalgebra. If R € Z(H® 1y)
or there exists a map f : C — H such that Imf C Z(H), then f is a cylinder homomorphism if
and only if f is a coalgebra map.

In particular, (k, up) is a cylinder coalgebra, where uy : k — H is the unit of H.

(3) Let (H,R) be a triangular Hopf algebra, and H° denote the finite dual of the Hopf
algebra H. Define A : H* — H,a — X(a, R})RY. Then (H", )\) is a cylinder coalgebra for (H, R)
if and only if for any o € HY,

S\ 1) R @ RY(N, az) = BRI, az) @ RY (N, az).

In particular, when H is commutative, (H°, \) is a cylinder coalgebra for (H, R).
(4) Let H = kZ3 = k{1, g}, and chark # 2. Then, by [1], (H, R) is a triangular Hopf algebra
with R7' =R, where R=1(1®1+1®g9+9®1—-g®g).

Let C' = k{x,y} be a coalgebra. Define its comultiplication and counit as follows:

Alx) =2z @z, e(x) =1,
Aly) =z@y+yow,e(y) =0,

then for any non-zero linear map f : C — H with f(y) # 0, (C, f) are not cylinder coalgebras.
Proof (1) Assume that f: C — H is a coalgebra map. Then, by Definition 2.1, for any ¢ € C,
LR} f(er)r; @ Rirf f(c2) = Xf(e1) @ f(ca).
It follows from Imf C Z(H) or R € Z(H ® 1) that
S(R]ri @ Rir)(f(e1) ® f(c2)) = Ef(e1) @ f(e2).

So LR!v! ® Rir! =1®1, that is, R~' = 7R, (H, R) is triangular.
Conversely, it is straightforward.
(2) It follows from Definition 2.1 that f : C' — H is a cylinder homomorphism if and only

if f is a coalgebra map.
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Since ug : k — H is a coalgebra map, (k, 1p) is a cylinder coalgebra for (H, R).
(3) Indeed, e\ = ¢, and for any a € H®,

AX(@) = TA((a, R)RY) = S{a, R) R}, © Rl
Y S(a, Ririr! @ R} = S{ar, B, vi)r{ © RY
= E)\(Oéz) & )\(al),

s0 TR M an)ri @ Riri Maz) = AX(«) if and only if
Y\, a1) R, @ R (N, ag) = ZRL(\, az) @ R (N, aq).

When H is commutative, since S(\, a1) R, @ RY(\, a2) = SR, ao) @ RY (X, a1), (HO, ) is
a cylinder coalgebra for (H, R).
(4) Assume that (C, f) is a cylinder coalgebra. Then, for f(x) = a, f(y) = b,

A(b) = Af(y) = SR f(y1)ri @ Riri f(y2)
=R f(x)r; ® Rir} f(y) + R} f(y)r; ® R f ()
=YR/ar! @ Rir!b+ RIbrl @ Rirla=a®b+b®a (R*?=1®1).

However, A(b) # a ® b+ b ® a, so the condition (C2) is not satisfied and (C, f) is not a
cylinder coalgebra.

In the following example, we will prove that for any triangular Hopf algebra (H, R), the
twisted coproduct (ko (H),d) is a cylinder coalgebra for (H, R); for any ribbon Hopf algebra
(H, R) with ribbon element y, and the map A : k — H, 1 — y is a cylinder homomorphism if and
only if (R*'R)2=1®1.

e (Crossed coproducts) For the crossed coproduct C X, H, whose coproduct is given by
ACXQH(C X h) =Yc X C2(—1)01 (C3)h1 ® C2(0) X 042(03)]7,2.

The crossed coproduct C'x, H is a coalgebra given in [4] if and only if the following conditions
hold.

(i) (Cocycle condition):

201(—1)041(62) & 041(01(0))042(02)1 & 042(01(0))042(02)2 = Yoy (c1)ar(e2)1 ® az(er)ar(cz) ®
ag(cz2), for any c € C.

(ii) (Twisted comodule condition):

Tey—nai(ez) ® croy—naz(c2) ® cioyo) = Tai(er)eg—1)1 ® az(cr)eg(—1)2 ® ey, for any
ceC.

(iii) (Counit condition): (I ® e)a = pe = (e ® I)av.
e (Ribbon Hopf algebras) Let (H,R) be a quasitriangular Hopf algebra. If there exists an
element y € H such that the following conditions hold.

(y1) 32 = ¢, where ¢ = uS(u) with uw = ©S(R/)R!,

(¥2) S(y) =v,

(¥3) e(y) =1,
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(y4) Aly) = (R*'R)"'(y ® y), where R*! = 7R,
then y is called a quas-ribbon element of (H, R). If y € Z(H) the center of H, then y is called a
ribbon element, in the case (H, R, y) is called a ribbon Hopf algebra as defined in [5].

Example 2.3 (1) Assuming that (H, R) is a triangular bialgebra, and f : k — H,1 +— v such
that e(v) = 1. Then (k, f) is a cylinder coalgebra for (H, R) if and only if RA(v) = (v®1)R(1®v).

In particular, if (H, R) is a triangular Hopf algebra, then the map v : k — H,1 — ¢
is a cylinder homomorphism, and hence (H,~) is a cylinder coalgebra for (H, R), where u =
ES(RY)R,, and t = uS(u) which is called the Casimir element of (H, R) (see [5]).

(2) Let (H, R) be a triangular Hopf algebra, and k, (H) = k X, H be the twisted coproduct,
whose coproduct is given by Ay (m)(1 x h) = X1 x a1(1)h; @ 1 X ag(1)he. Then the twisted
coproduct (ko(H),d) is a cylinder coalgebra for (H, R), where a(1) = R and is denoted by
Yai1(1) ® as(1), and the map § : ko(H) — H is given by 1 x, h — e(h)t.

(3) Let (H, R) be a ribbon Hopf algebra with ribbon element y. Define the map X : k —
H,1+ y, then \ is a cylinder homomorphism if and only if (R*'R)? =1® 1.

Proof (1) If RA(v) = (v® 1)R(1 ® v), then
SR fF()ri @ Rir! f(1) = SR vrl @ Rirv = SR rivy @ Ririve = Yv @ vg = A(v).

So (k, f) is a cylinder coalgebra.

Conversely, it is obvious.

In particular, if (H, R) is a triangular Hopf algebra, then by the proof of Theorem 10.1.3 in
1], A(u)R**'R=u®u. Since R~! = R?', A(u) =u®u and A(t) =t ®.

According to Proposition 10.1.4 in [1], t € Z(H), so RA(t) = EtR; @ R/'t.

By e(t) = 1, it is easy to see that the map v : k — H, 1 ¢ is a cylinder homomorphism.

(2) and (3) are straightforward.

Note that in Example 2.2(4) it is easy to see u = LS(RY)R, = g and ¢ = uS(u) = 1. If let
y = g, then it is easy to show that (kZ, R,y) is a ribbon Hopf algebra with (R*'R)? =1 ® 1.
So by Example 2.3 we know that the map A : k — kZs,1 +— g, is a cylinder homomorphism.

o (Generalized Long dimodules) Let M be both a left A—module via “-” and a left C-
comodule via “p”. If for any a € A,m € M, p(a-m) = ¥m(_1) ® a - m(), then it is called a
generalized [C, A]-Long dimodule, which is a generalization of Long dimodules as defined in [6,7].

For examples, if M is a left C-comodule and A is an algebra, then (M ® A, pprgpa, —) is a

generalized [C, A]—Long dimodule via the following structure maps:
preaA(m ®a) = Xm_1) @ mey ®a; a — (m®b) =m ab.

If M is a left A-module and C is a coalgebra, then (C' ® M, pogar, —) is a generalized

[C, A]-Long dimodule via the following structure maps:

poem(c@m) =S ®c@m; a— (b@m)=b®a-m.
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In the following, we will construct an H—Long dimodule (M, -, ps) via the cylinder homo-

morphism f, where (M, -, p) is is a generalized [C, H]-Long dimodule.

Proposition 2.4 Let (H, R) be a triangular Hopf algebra, and (C, f) a cylinder coalgebra for
(H, R). Define

pr:C—HRC, c— Ef(c1) ® ca,

then (C, py) is a left H-comodule if and only if the R-commutative condition holds:
SR f(e1) @ R f(c2) = Ef (e1) R} @ R} f(ca). (Rf)

In this case, (1) if (C, f) and (D, g) are two cylinder coalgebras for (H, R), and there exists
a coalgebra morphism o : C' — D, then « is a left H-comodule map if and only if go o = f.

(2) Assume that (M,-,p) is a generalized [C, H]-Long dimodule, then (M,-,ps) is an H-
Long dimodule, where the map py : M — H ® M is given by m — X f(m(_1)) ® my.

Proof As a matter of fact, for any c € C, (e ® I)ps(c) = Xef(c1)ea = Ze(er)e2 = ¢, and

(I® ps)ps(c) =2(I @ pg)(f(cr) @ c2) = Lf(e1) ® fle2) @ cs (A)

and
(A®Dps(c) = Ef(c1)1 @ fler)2 @ co = BR] f(er)r; @ Riri f(e2) @ ca. (B)

If the condition (Rf) holds, then
(B) = ZR{7rif(c1) ® Rir{ f(c2) ® c3 = Xf(c1) ® f(c2) ® c3 = (A).
So (C, py) is a left H-comodule.
Conversely, if (A)=(B), then
YR f(c1)rt @ Rirl f(e2) ® e3 = Ef(c1) @ f(e2) ® es.
By applying I ® I ® € into the both sides of the above equality, we get
SR fen)r; @ Rirf f(c2) = Ef(c1) @ f(ea).

Since R™! = 7R, it is easy to show that SR, f(c1) ® R/ f(ca) = Zf(c1)R: ® R/ f(ca).
(1) Tt is obvious that g o = f implies that « is a left H—comodule map. Conversely, if «
is a left H—comodule map, then for any ¢ € C,

Yf(e1) ® a(e2) = Bg(a(er)) ® alcz).

By applying I ® € to the both sides of the above equality, we get f(c) = g o a(c).

(2) Since the condition (Rf) holds, it is easy to see that (M, py) is a left H-comodule and
(M,-, py) is an H-Long dimodule.

e (Cylinder twists) Assume that (C, f) is a cylinder coalgebra for (H, R), and M is both
a left H—module and a left C-comodule. Define the map t5; : M — M, which is given by
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tar(m) = Bf(m1)) - my. If o : M — N is both a left H-module map and a left C-comodule
map, then it is easy to show @ty =ty . In the following, tj; will be called a cylinder twist on
M.

By cylinder twists, we will construct Long equations, Yang-Baxter equations, and four braid
pairs.
e (Yang-Baxter operators and four braid pairs) In [2], Dieck and Oldenburg introduced two
concepts of Yang-Baxter operators and four braid pairs. That is, let V be a left A-module,
(:V®V -V ®Visa linear map, and F' : V — V is an A-linear automorphism with the
following properties:

(1) ¢ is a Yang-Baxter operator, that is, ¢ satisfies the equation

ConIegEel)=T2)Ee)I®])

omVeVeV.

(2) With Y = F ® I, the braid relation Y{Y ¢ = (Y (Y is satisfied.

If (1) and (2) hold, then (¢, F) is called a four braid pair.
e (Long equations) In [6], the author introduced the concept of Long equations: assume that V
is a vector space, and R: V @V — V ® V is satisfied

R12R13 _ R13R12. R12R23 _ R23R12. (LE)
The above equation (LE) is called the Long equation.

Proposition 2.5 Assume that (H, R) is a quasitriangular Hopf algebra, and (C, f) a cylinder
coalgebra for (H, R), and M a generalized [C, H]|-Long dimodule, and there exists amap g : C —
H such that f x. g = g*, f, that is, for any ¢ € C, X f(ca)g(c1) = Xg(c2) f(c1).

Define sy : M — M,m — Xg(m1)) - mq), and R : M @ M — M ® M,m®@n —
trar(m) @ spr(n). Then

(1) R is a solution of Long equations, and so is a solution of Yang-Baxter equations:
R12R13R23 — R23R13R12.

(2) If the map f : C — H has a skew convolution inverse g : C — H, that is, f x. g =
wgec = g *, f, then the cylinder twist ty; has a composition inverse with t;j = Sum-

(3) Let N be a left H-module. Define zpy v : M@ N — N @M, m®@n+— YR/ -n® R} -m.
If for any h € H,m € M, X f(m(_1))h - my = Shf(m1)) - m(, then

NN @ Ing)zpm vt @ IN) = (b @ In)zen,m(tn & Ing)za, N

(4) If f*. f = f, then t3, = ty. Furthermore, if the map f : C — H has a skew
convolution inverse g : C — H and F : M — M is a generalized [C, H|-Long dimodule map,
then (¢,Y = F®1) is a four braid pair, where ( : M @ M — M ® M,m ®@n — tp(m) @ spr(n).
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Proof (1) For any m € M,

smtm(m) = Esa(f(m1)) - m)) = Zg((f(m(-1)) - M) (~1)) - (f(m(-1)) - m0))(0)
= Eg(m(o)(—l)) : (f(m(—l)) : m(o)(o)) = Eg(m(—1)2)f(m(—1)1) ©My0)
= X f(m—1)2)g9(m-1)1) - Moy = tarsa(m),

SO SMtM = tMSM.
Hence, for any m,n,p € M,

R12R23(m RN p) = R12(m® ta(n) ® sm(p))
=tym(m) ® spty(n) @ sp(p) = tar(m) @ tarsm(n) @ su(p)
= RBRZ(m®@np),

R'?2R?3 = R23R'2. 1t is obvious that R'?R'3 = R13R'2, so R is a solution of Long equations.
It is easy to see that R is also a solution of Yang-Baxter equations.
(2) For any m € M, sptn(m) = Sf(m-1)2)g(m(—11) - mey = Zec(m1))ly - m) =
1y -m =m. In a similar way, we can prove tprspr(m) = m, so syt = Ing = tayrsu.
(3) In fact, for any m € M,n € N,

NN @ Ing)zm Nt @ IN)Y(m @ n) = 2y m(En @ In)za, N (Ear(m) @ n)
=Yznm(ty @ In)(R] -n@ R, - tar(m))
= Yenm(tn (R -n) ® R} - tar(m))
=3r/R; - tp(m) @7 - tn(R] -n) (R=3r,®r)).

Since X f (m(—1))h - mgy = Xhf(m_1)) - m(o), ta is a left H-module map. Then

(tar @ IN)en m(tn @ Ing)zarn(m @ n) = Sty @ In)en pm(tn (R -n) @ R -m)
=Yty @ IN)r! R, -me 7, -tn(R! -n))
=Yty (r! R, -m) @7l -tn(R] -n)
=YrR, -ty (m) @7, - tn(R] - n)

and hence zy v (tn @ In)zmn(Ev @ In) = (b @ In)zn m(EN @ Ing)zm,N-

(4) Let fs; f = f. Then for any m € M, t3,(m) = Sf(m_1)2)f(m1y1)-me) = Sf(m_1))-
moy = tar(m).

It forg=pe=g# f,then gs, g = frrgtr gtrg=f 5[5 g%, g%, 9= g.

In a similar way, we can show s%; = sy/.

For the defined map (: M QM — M @ M,m ®@n — ty(m) ® sp(n),

(oD 2¢) (@) (men®p) = 13,(m)®@sytysy(n)@su(p) = tar(m)®@ st (n) @ sy (p)
and

(Ie)CoN)I@C)(me@nep) = ta(m)@tasmtu(n)@s3(p) = tar(m)@tasi(n)@sm(p),
so((RNIRO)CRI) =12 ®C), ¢ is a Yang-Baxter operator.
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It is easy to see F'tpyr =ty F, so, for any m,n € M,
YCY{(m®@n) = FtyFty(m) ® s3,(n) = F2t3,(m) ® s3,(n) = F2ty(m) ® spr(n).
In a similar way, we can show (Y Y (m®@n) = F?ty (m)®@sa(n). So YCY (=YY, (¢, F)

is a four braid pair.

3. Cylinder coproducts for quasitriangular Hopf algebras

Assume that (H, R) is a quasitriangular bialgebra. If there exists an element ® = 3R, @ R/
such that

SRR @ R/R/ =1®1 = XR,R, @ RIR!

then R is called a skew invertible element. In particular, if H is a quasitriangular Hopf algebra
with antipode S, then by Proposition 10.1.8 in [1], R is skew invertible with skew inverse $t =
(I ®S)R.

Lemma 3.1 Let (H, R) be a quasitriangular bialgebra with inverse R~'. Then
(1) SRR ® R'R. @ R'R! = SRR, @ RIR! @ RIR!,
where R™' =XR, @ R/ = YR, ® R/ = YR, ® R!'.
(2) If R is skew invertible with skew inverse R, then
SRR, © RiR! © R{%) = SRR, © R} R, ® R/ R!
where R = YR @ R/ = YR, @ R/, and R~! = ER; ® Rél'
Proof It is well known that R satisfies the following Yang-Baxter equation:
R12R13R23 — R23R13R12
that is,

YRir; @ R!s; @ rl's! = Yris, @ R.s! @ R'r! (YBE)

A ]

where R=YXR,® R/ =%Xr,®r] =Xs,®s].
In the above equality (YBE), consider R~ ® 1 acting on H®? by left multiplication. Then

ri@s;@rls! =XRirls, ® R R.s! @ R/r!.

17171

So we conclude

SR, @ s, R @ r/'s! = SR, © RIR, © RIr!
= YR, @ s|R! ®s] = LR.R)r, ® R/R, ® R/ R/r/!
— SRR s,k @ s/R! = SRR, © R/R, © RI/R/
— SRR, ® R/ ® R/ = SR.R, © R.R/R, ® R/ R} R!
— SRR, ® R R, ® R/R! = SRR, ® RiR! © R/R!
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and (1) holds. In a similar way, we can prove (2).
In the following, we always assume that (H, R) is a quasitriangular bialgebra with inverse
R

Definition 3.2 Let (H, R) be a quasitriangular bialgebra with skew inverse 8. Define a co-

product on H as follows:
A:H— H®H, hw— SRR, @ RYRho,

where R™1 = YR, ® R/, and ® = ¥R, ® R/. This coproduct is called a cylinder coproduct, and
denoted by (H,A).
o (Copaired bialgebras) (H, K, R) are called copaired bialgebras if H and K are two bialgebras
such that R € H ® K satisfies the following conditions:
(R1) (Ig ® ex)R =1,
(R2) (e ® Ix)R =1,
(R3) (Ap®Ixk)R=XR,®r, R/r!,
(R4) Iy ® Axk)R=XR}r,® R @,
where R=YR, ® R =Xr, @ rl.
Furthermore, if R is skew invertible with skew inverse R, then it is easy to show
(R1) (Ig @ ex)R =1,
(R2) (ex @ Ixk)R =1,
(R3) (A ® Ix)R =3R, ® R, @ R/R/,
(R4) Iy @ Ag)R =XRR, @ R @ R,
where 8 = ¥R} ® R} = ¥R} ® R}.
o (Twisted coalgebras) Assume that (H, K, R) are copaired bialgebras, and C is an (H, K)-

bimodule coalgebra. Define
ZR(C) = ZR; -c1 ey - R;/,

then, by [8], (C, Ag, €) is a coalgebra and called the twisted coalgebra. In the following, AR is
called the twisted coproduct, and (C, A, ¢) denoted by (CT, Acr,¢).

Let (H, K, R) be copaired bialgebras with inverse R~1. Then, by Proposition 1.2 in [8], the
following hold.

(R7M) (Ig®@eg)R™ =1,

(R712) (eg @ Ix)R™! =1,

(R13) (Ag @ Ix)R™' = SR, @ 7, @ #' R/,

(R7'4) (Iy ® Ag)R™! = SRi7 @ 7 @ R,
where R™! = SR. ® R/ = X7, @ /.

Furthermore, assume that R is invertible with inverse R~ € Z(H ® K). Define

AR—I(C) = ER;/ 1 ®co - R;;

then it is not difficult to prove that (C, Ap-1, g) is a coalgebra, which is denoted by CE™.
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Let (H, K, R) be copaired bialgebras, and C an (H, K)-bimodule coalgebra. If R € Z(H®K)
with skew inverse R, then

(1) (H, K,R) are copaired bialgebras, and (C%, Ag, ¢) is a coalgebea with comultiplication
Ap(c) =XR, -1 @co - R

(2) If R is invertible with inverse R~!, then (H, K, R™!) are copaired bialgebras, and
(C’B?)Ir1 is the twisted coalgebra, whose comultiplication is given by

Agmyni(€) = SR - e - R, @ RIRY - o,

where R~! = SR} @ R/

In particular, if (H, H, R) are copaired Hopf algebras with R € Z(H ® H), then R has
an invertible element R~! and a skew-invertible element ®, and H® is an (H, H)-bimodule
coalgebra, whose actions are given by multiplication my. Thus, by the above discussion, we get

the twisted coalgebra (H®)R " with comultiplication
A gmyrt (h) = SRR, @ RY Riho
which is exactly the cylinder coproduct given in Definition 3.2.
Theorem 3.3 The cylinder coproduct (H, A, ) given in Definition 3.2 is a coalgebra.

Proof Let R~! = YR, ® R/ and R = LR, @ R.
According to Se(R)R! = 1 = LRie(R!) and Se(R)R/ = 1 = SR,e(RY), then, for any
heH,
(I®e)A(h) =h = (e @ I)A(h),

that is, € is a counit.

By (Q2) and (Q3), one easily obtain the following equalities:
SAR) @R =R, @R, QRN — (C); IR, @ A(R)) = ZR;R, @ R @R} — (D)

(A@DR'=%R, @7 @ R!— (E); (I® A)R™' =R/ @R/ @7 — (F)
Thus, by (C)—(F) and Lemma 3.1, for any h € H, we have

(I ® A)A(h) = (I ® A)(R!R; @ R R,hs)
= SR % @ R} (R Rih2)1 R; @ R{ Ri(R} Rih2)
= SRIMR, @ RIRG Ry ha R, o R RRG Riyhy
2 SRIm Ry, © RIRY Riyho Ry © RIRir! Riyhs (R = Srl @ 17)
"D SR R/, @ RYRY Roho R, @ RY Rir!! Rihy

= SR/'R!'hyri R, @ RY R Riho R @ R R'Rihs (Lemma 3.1)
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and
(A® A(h) = (A ® I)(R!/MR, ® R R}hs)
= SRR MR @ vl R TR © R Riha
= SRR Ry vl @ ] RiRhaRip @ R Rihs
S SRR Rr, @ v BB hoRly @ RYRIRIs

@zmﬁ%m%®ﬁmﬂwm®mmﬁm%
= SRR h R, @ ! RIR!ho R, © RV R, R hs
= SRR hRr, @ ! R Riha R, © R/RY R, R,hs, (by Lemma 3.1)
that is, (A ® )A = (I ® A)A. So (H, A) is a coalgebra.
Let (H,R) and (L, S) be two quasitriangular bialgebras. If there exists a bialgebra map
F: H — L such that (F®F)(R) = 5, then, by Theorem 3.3, F': (H,Ay) — (L,AL),h — F(h),

is a coalgebra map.

Proposition 3.4 Let (H,R) be a quasitriangular bialgebra with skew inverse . Then the
linear map f : C — (H,A) is a cylinder homomorphism if and only if Af = (f ® f)A, and

ef =e.
In other words, the cylinder homomorphism is nothing but a coalgebramap f : C — (H, A).

Proof Assume that f is a cylinder homomorphism. Then, by (C2), for any ¢ € C,
Af(e) = SR f(n R @ RY R f(c)2 = Bf (1) RiR; @ RYRY f(e2) = 2f(e1) @ fle2).

Conversely, if Af = (f ® f)A and ef = ¢, then for any ¢ € C,

SR f(e)1%; @ RY R f(c)2 = Zf(c1) ® f(ca)-
Hence we can conclude

SR f(e)1RiR; ® RV} Ri f(c)2 = Sf(c1) R; ® R} f(c2)

SR{ f(c)h @ Rjf(c)2 = Xf(c1)R; @ R} f(ca).

So Xf(c)1 ® f(c)e = Xr! f(c1)R; @ 7R f(ca).

Example 3.5 Let H be a finite dimensional Hopf algebra with antipode S. Then, by [1], the
multiplication and comultiplication of the Drinfel’d double D(H) = H*¢OF

follows: for f, f' € H*,h,h' € H,
(f pah)(f > h) = Bf(ha = f3) o< (he «= [N
Ap)(f>ah) =X(fa>ahy) @ (f1 < ha).
By Theorem 10.3.6 in [1], the Drinfel’d double D(H) is a quasitriangular Hopf algebra with

antipode

1 H are given as

Spy = BS5(he) = S(f1) © f2 = S(ha).
(1) (D(H )7ZD(H)) is a cylinder coproduct, whose coproduct is given by
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Ap)(f > h) = 3R f3 > haly @ S(€7)(S(hiz — f2) > (S(hi1) « f1)ha,

where {h}, h;} and {£f,¢;} are two dual bases of H.

(2) Let v: H — D(H),h — < h. Then (H,~) is not a cylinder coalgebra for (D(H), R),
where R = Yeg bah; ® hi > 1g.
Proof (1) By the above discussion, we know R~! = X©S(R!) ® R/ and ® = R, @ S(RY).
According to [1], R = Sey > h; @ hi < 1y, it is easy to show R~ = Yey > S(h;) @ hi > 1y
and R = Xeg b h; @ S(h) > 1. Thus, by Definition 3.2, we get easily

(2) It is obvious that v : H — (D(H), Apm)),h — € > h is not a coalgebra map, so, by
Proposition 3.4, v is not a cylinder homomorphism for (D(H), R).
e (Braided coproducts) Let (H, R) be a triangular Hopf algebra, and “ — ” denote a quantum
adjoint action on H: g — h = Xg1hS(g2). Then H has the second coalgebra structure

A(h) = ShiS(R!) ® R, — hs.
which is called the braided coproduct of H (see Theorem 7.4.2 given in [9]).

Proposition 3.6 Let (H, R) be a triangular Hopf algebra, and (H,A) the cylinder coproduct,

and (H, A) the braided coproduct. Then exists an anti-coalgebra isomorphism:

—_ f ~
(H,A) = (H,A),
where the map f : (H,A) — (H,A) is given by h — S(h).

Proof We have only to prove that f is an anti-coalgebra map.

As a matter of fact, for any h € H,

(R @ R Rihy) = DS(R))S(h1)S(R]) ® S(h2)S(R;)S(RY)
LSR;)S(ha)S ( )®S(hz) (R)S(R]) (R™' =7R)
BS(R))S(h)R; ® S(he) RYS(R) ((S @ S)R =R in [1])
= XS(r)S(h)R; ® S(h2) R} S*(r]) (R=(I®S)R)

(
= YriS(h1)R; ® S(ha2) R/ S(r})

(foHAh) =2(fo f)
i)
)

and

TAf(h) = 27(S(h2)S(R)) ® R, — S(h1)) = SR, — S(h1) ® S(ha)S(RY)
= YR} 8(h1)S(Ry) ® S(hy)S(RY)
@) S RS(h)S() @ S(ha)S (R
= YRS (h1)r; @ S(ha)r] S(R]),
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so (f® f)A = 7Af. Tt is obvious that ef = ¢ and hence f is an anti-coalgebra map.
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KTFHI=% Hopt AEHY Cylinder HRAZLFD Cylinder KR

KR=m 2 & F
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3. WL RZERER, WL b 310027)
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