
�26��4! & / 1 � 4  � Vol.26, No.4

2006�115 JOURNAL OF MATHEMATICAL RESEARCH AND EXPOSITION Nov., 2006

Article ID: 1000-341X(2006)04-0685-09 Document code: A

Some Properties on Baer PP and PS Rings

ZHANG Mian-mian

(Dept. of Math., Zhejiang University, Hangzhou 310027, China )

(E-mail: zhmm126@yahoo.com.cn)

Abstract: This paper gives some results on Strong-Armendariz rings and the Ore-extensions
R[x, x−1; α] of Bare, PP and PS rings. And the main two results are: (1) R is a Bear (PP)
ring if and only if R[[x]] is a Baer (PP) ring; (2) If R is an α-rigid ring, then R is a Baer (PP,
PS) ring if and only if R[x, x−1; α] is a Baer (PP, PS) ring.

Key words: Baer ring; PP ring; PS ring; Strong-Armendariz ring; Ore extension.
MSC(2000): 13B02

CLC number: O153

1. Introduction

Through this paper, all rings are associative with identity. This paper is composed of

three parts. The first part concerns the relationship between Strong-Armendariz rings and

reduced rings, being motivated by [1,2]. Armendariz rings which was initiated by Armendariz[1]

and Rege and Chhawchharia[3] is related to polynomial rings, while Strong-Armendariz rings

are related to formal polynomial rings. A ring R is called an Armendariz ring if whenever

f(x) =
∑m

i=0 aix
i, g(x) =

∑n
j=0 bjx

j ∈ R[x] satisfy f(x)g(x) = 0, we have aibj = 0 for each i, j. A

ring R is called a Strong-Armendariz ring if whenever f(x) =
∑∞

i=0 aix
i, g(x) =

∑∞
j=0 bjx

j ∈ R[x]

satisfy f(x)g(x) = 0, we have aibj = 0 for each i, j ≥ 0. A ring is called reduced if it has nonzero

nilpotent elements. We will also show in this paper that the properties of Baer, PP and PS

of R are closed under formal polynomial extension when R is a Strong-Armendariz ring. By

Kaplansky[4], a ring R is called Baer if the right annihilator of every nonempty subset of R is

generated by an idempotent. PP rings are closely related to these rings. A ring is called a right

PP ring if each principle right ideal of R is projective, or equivalently, if the right annihilator of

each element of R is generated by an idempotent. A ring R is called a PP ring if it is both a

right and a left PP ring. Baer rings are clearly right PP rings. A ring R is called a left PS ring

if Soc(RR) is projective.

We denote the right annihilator over a ring R by rR(−) and the left annihilator lR(−). The

second part of this paper concerns the generalization of McCoy’s theorem. McCoy[5] proved that

if R is a commutative ring, then whenever g(x) is a zero-divisor in R[x] there exists a nonzero

element c ∈ R such that cg(x) = 0. Yasuyuki Hirano[6] generalized this result as follows: Let
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f(x) be an element of the polynomial ring R[x] over a (not necessarily commutative) ring R. If

rR[x](f(x)R[x]) 6= 0, then Ψ(rR[x](f(x)R[x])) = rR[x](f(x)R[x]) ∩ R 6= 0. We will show in this

paper that it is still right when R[x, x−1] instead of R[x]. The definition is stated later. The last

part concerns the Skew Laurent polynomial R[x, x−1; α]. Recall the Skew Laurent polynomial

ring R[x, x−1; α] with a ring automorphism α : R → R and relation: x−1a = a−1x−1; xa =

α(a)x; xx−1 = u; x−1x = α−1(u), u is a central entire, a, u ∈ R. When α = 1, we write R[x, x−1]

instead of R[x, x−1; α]. we will show in this paper that the properties of Baer, PP, PS, weakly

PP and PS are closed under Ore extension. A ring R is called weakly PP if every principle left

ideal eRer is projective for each r ∈ R and each primitive idempotent e ∈ R. We give an example

in this paper about R[x, x−1; α] which is quasi-Baer, but R is not quasi-Baer. A ring is called

quasi-Baer if the left annihilator of every ideal is generated, as a left ideal, by an idempotent.

2. Strong-Armendariz ring

Lemma 2.1 If R is a reduced ring, then R is a Strong-Armendariz ring.

Proof Let f(x) = a0 + a1x + · · · + anxn + · · · , f(x) = b0 + b1x + · · · + bnxn + · · · ∈ R[[x]] with

0 = f(x)g(x) = a0b0 + (a1b0 + a0b1)x + · · · + (anb0 + an−1b1 + a0bn)xn + · · ·. So we have the

following system of equations:

(0) a0b0 = 0;

(1) a1b0 + a0b1 = 0;

· · · ;

(n) anb0 + an−1b1 + · · · + a0bn = 0;

· · · ;

Multiply Eq.(1) on the right side by a1b0, we get a1b0a1b0 +a0b1a1b0 = 0. But a0b1a1b0 = 0

since R is reduced and a0b0 = 0. Hence (a1b0)
2 = a1b0a1b0 = 0, that is a1b0 = 0. So Eq.(1)

becomes a0b1 = 0. Now assume that k is a positive integer such that aibj = 0 for all i + j ≤

k. Multiply Eq.(k + 1) on the right side by ak+1b0, we get ak+1b0 = 0. Eq.(k + 1) becomes

akb1 + · · · + a0bk+1 = 0. Continue the method we get aibj = 0, for all i + j = k + 1. Therefore

aibj = 0, for all i, j ≥ 0. Then R is Strong-Armendariz.

A ring is called abelian if every idempotent of it is central.

Lemma 2.2 If R is a Strong-Armendariz ring, then R is an abelian ring.

Proof Let f(x) = (ere− er) + ex, g(x) = (ere− er) + (e− 1)x ∈ R[[x]], for any e, r ∈ R, e2 = e.

ere − er = e(ere − er) = 0, since R is Strong-Armendariz and f(x)g(x) = 0. Let f(x) =

(ere − re) + (e − 1)x, g(x) = (ere − re) + (e − 1)x ∈ R[[x]], for any e, r ∈ R, e2 = e. We get

ere − re = (e − 1)(ere − re) = 0 by the same reason. Hence er = re, for any e, r ∈ R, e2 = e.

Then R is abelian.

Lemma 2.3[1] Suppose that a ring R is abelian, then we have the following:

(1) Every idempotent of R[x] is in R and R[x] is abelian.
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(2) Every idempotent of R[[x]] is in R and R[[x]] is abelian.

Lemma 2.4 If R is a Strong-Armendariz ring, then for any idempotent e ∈ R, eRe is a Strong-

Armendariz ring.

Proof Let f(x) =
∑∞

i=0 aix
i, g(x) =

∑∞
j=0 bjx

j ∈ eRe[[x]] be polynomials satisfy f(x)g(x) = 0.

Obviously eRe ⊆ R, then f(x), g(x) ∈ R[[x]]. Since R is Strong-Armendariz, then aibj = 0 for

any i, j ≥ 0. Then eRe is Strong-Armendariz.

One may suspect that if eRe is a Strong-Armendariz ring for any nonidentity idempotent

e of R, then R is a Strong-Armendariz ring. However, it is not true in general by the following

example.

Example 2.1 Let Z2 be the ring of integers modulo 2 and consider the ring R =
(

Z2 Z2

0 Z2

)

. Then

by Example 1 in [1], R is not Armendariz, so is not Strong-Armendariz. Notice that the only

nontrivial nonidentity idempotents of R are
(

1 0
0 0

)

,

(

0 0
0 1

)

,

(

1 1
0 0

)

and

(

0 1
0 1

)

,

and that eRe ∼= Z2 is a Strong-Armendariz ring for any nontrivial nonidentity idempotent e in

R.

Lemma 2.5 Let R be a Strong-Armendariz ring. Then R is a Baer ring if and only if R[[x]] is

a Baer ring.

Proof Assume that R is Baer. Let A be a nonempty subset of R[[x]], and R∗ be the set of

all coefficients of elements of A. Then R∗ is a nonempty subset of R, and so rR(A∗) = eR

for some idempotent e ∈ R. Since e ∈ rR[[x]](A), we get eR[[x]] ⊆ rR[[x]](A). Now, let g =

b0 + b1x + · · · + bnxn + · · · ∈ rR[[x]](A). Then Ag = 0 and hence fg = 0 for any f ∈ A.

Thus b0, b1, · · · , bn, · · · ∈ rR(A∗) = eR since R is a Strong-Armendariz ring. Hence there exists

c0, c1, · · · , cn, · · · ∈ R, such that g = ec0+ec1+ · · ·+ecn+ · · · = e(c0+c1+ · · ·+cn+ · · ·) ∈ eR[[x]].

Therefore, R[[x]] is Baer.

Conversely, assume that R[[x]] is a Baer ring. Let B be a nonempty subset of R. Then

rR[[x]](B) = eR[[x]] for some idempotent e ∈ R by Lemma 2.3. Hence rR(B) = eR and R is a

Baer ring.

Theorem 2.6 Let R be a Strong-Armendariz ring. Then R is a PP ring if and only if R[[x]] is

a PP ring.

Proof Assume that R is a PP ring. Let p = a0 + a1 + · · · + anxn + · · · ∈ R[[x]]. There exists

e2
i = ei ∈ R such that rR(ai) = eiR, for i = 0, 1, · · · , n, · · · . Let e = e0e1 · · · en · · · . Then by

Lemma 2.2, e2 = e ∈ R and eR =
⋂∞

i=0 rR(ai). So pe = a0e + a1ex + · · · + anexn + · · · = 0.

Hence eR[[x]] ⊆ rR[[x]](p). Let q = b0 + b1 + · · · + bnxn + · · · ∈ rR[[x]](p). Since pq = 0 and R is

a Strong-Armendariz, aibj = 0 for all i, j ≥ 0. Then bj ∈ eR for all j = 0, 1, · · · , n, · · · . Hence

q ∈ eR[[x]]. Consequently, eR[[x]] = rR[[x]](p) and R[[x]] is a PP ring.
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Conversely, assume that R[[x]] is a PP ring. Let a ∈ R. By Lemma 2.3, there exists an

idempotent e ∈ R such that rR[[x]](a) = eR[[x]]. Hence, rR(a) = rR[[x]](a) ∩ R = eR and R is a

PP ring.

Theorem 2.7 Let R be an Armendariz ring. Then R is a PS ring if and only if R[x] is a PS

ring.

Proof By the same method in the proof of Theorem 2.6.

Theorem 2.8 Let R be a Strong-Armendariz ring. Then R is a PS ring if and only if R[[x]] is

a PS ring.

Proof If R is a PS ring, then R[[x]] is a PS ring according to the Theorem 3.1 in [7].

Conversely, if L is a maximal ideal of R, then I = L[[x]] is a maximal ideal of R[[x]].

According to the fact that R[[x]] is a PS ring, we have rR[[X]](I) = eR[[x]], e2 = e ∈ R, because

R is a Strong-Armendariz ring and Lemma 2.3. So rR(L) ⊇ eR. Assume there exists an element

0 6= a ∈ rR(L)−eR, a 6= 0. For any element g = bmxm+bm+1x
m+1+· · ·+bnxn ∈ I, bm 6= 0, ga = 0.

That is a ∈ rR[[x]](I) = eR[[x]], a contradiction. Thus rR(L) = eR as required.

Theorem 2.9 Let R be a reduced ring. Then R is a PS ring if and only if R[x] or R[[x]] is a

PS ring.

Proof We prove the result for R[[x]] only; The proof for R[x] is similar.

The “if” part has been proved by [7]. Let us see the “only if” part. It is clear that

R[[x]] = R[[x; α]], where α = 1. By hypothesis R is a reduced ring, then if rα(r) = r2 = 0,

we have r = 0. Thus R[[x]] is a 1-rigid ring. Let L be the maximal ideal of R, then I = L[[x]]

is a maximal ideal of R[[x]]. So r(I) = eR[[x]], e2 = e ∈ R according to R[[x]] is a 1-rigid

ring. Hence r(L) ⊇ eR. If there exists an element 0 6= a ∈ (rR(L) − eR). For any element

g = bmxm + bm+1x
m+1 + · · · ∈ I, bm 6= 0, bm+1, · · · ∈ L, ga = 0. So a ∈ eR[[x]]

⋂

R = eR, a

contradiction. Thus r(L) = eR as required.

3. A generalization of McCoy’s theorem

First define the degree of f(x) =
∑n

i=m aix
i ∈ R[x, x−1] in this way that deg(f(x)) = |n| if

n = m; deg(f(x)) = n − m, if n 6= m.

We begin with the following lemma.

Lemma 3.1 Let f(x) and g(x) be two elements of R[x, x−1]. Then f(x)Rg(x) = 0 if and only

if f(x)R[x, x−1]g(x) = 0.

Proof Assume that f(x)Rg(x) = 0 and take an arbitrary element
∑q

k=p ckxk of R[x, x−1].

Then f(x)(
∑q

k=p ckxk)g(x) =
∑q

k=p f(x)ckg(x)xk = 0. This implies f(x)R[x, x−1]g(x) = 0.

The “only if part” is clear.
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Theorem 3.2 Let f(x) be an element of R[x, x−1]. If rR[x,x−1](f(x)R[x, x−1]) 6= 0, then

rR[x,x−1](f(x)R[x, x−1]) ∩ R 6= 0.

Proof We freely use Lemma 3.1 without mention it. Let f(x) =
∑n

i=m aix
i ∈ R[x, x−1]. If

deg(f(x)) = 0 or f = 0, the assertion is clear. So let deg(f(x)) = n − m > 0. Assume contrary,

let 0 6= g(x) =
∑t

j=s xj ∈ R[x, x−1] ∈ rR[x,x−1](f(x)R[x, x−1]) with minimal degree. Since

(

n
∑

i=m

aix
i)R[x, x−1](

t
∑

j=s

bjx
j) = 0,

(
n

∑

i=m

aix
i)R(

t
∑

j=s

bjx
j) = 0,

then anRbt = 0. Hence

anR[x, x−1]g(x) = anR[x, x−1](bt−1x
t−1 + · · · + bsx

s)

and

(f(x)R[x, x−1]an)R[x, x−1](bt−1x
t−1 + · · · + bsx

s) = (f(x)R[x, x−1]an)R[x, x−1]g(x) = 0.

Since g(x) is of minimal degree, we have

anR[x, x−1](bt−1x
t−1 + · · · + bsx

s) = 0.

Therefore,

an ∈ lR(R[x, x−1]btx
t + R[x, x−1](bt−1x

t−1 + · · · + bsx
s)).

Hence,

(an−1x
n−1 + · · · + amxm)R[x, x−1](btx

t + · · · + bsx
s) = 0 and an−1Rbt = 0.

Thus we obtain

f(x)R[x, x−1](an−1R[x, x−1](bt−1x
t−1 + · · · + bsx

s)) = f(x)(R[x, x−1]an−1R[x, x−1])g(x) = 0.

Since g(x) is of minimal degree, we obtain an−1R[x, x−1](bt−1x
t−1 + · · ·+ bsx

s) = 0. Therefore,

an, an−1 ∈ lR(R[x, x−1]btx
t + R[x, x−1](bt−1x

t−1 + · · · + bsx
s)).

Repeating, we obtain

an, an−1, · · · , am ∈ lR(R[x, x−1]btx
t + R[x, x−1](bt−1x

t−1 + · · · + bsx
s)).

This implies that

bs, bs−1, · · · , bt ∈ rR[x,x−1](f(x)R[x, x−1]).

Contradicted.
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Corollary 3.3 Let R be a semi-commutative ring. If f(x) is a zero-divisor in R[x], then there

exists a nonzero element c ∈ R such that f(x)c = 0.

4. Ore extension of R[x, x−1; α]

Lemma 4.1[9] Let R be an α-rigid ring, α is a ring automorphism, a, b ∈ R, then we have:

(1) If ab = 0, then aαn(b) = αn(a)b = 0, for any n ∈ Z.

(2) If aαk(b) = αk(a)b = 0, for some k ∈ Z, then ab = 0.

(3) If a is central entire, then α(a) is still a central entire in R.

Lemma 4.2 Ore extension R[x, x−1; α] is reduced if and only if R is an α-rigid ring. In this

case, α(e) = e, for some e2 = e ∈ R.

Proof Suppose that R is α-rigid. Assume to the contrary that R[x, x−1; α] is not reduced.

Then there exists 0 6= f ∈ R[x, x−1; α] such that f2 = 0. Since R is reduced, f /∈ R. Thus we

put f =
∑m

i=n aix
i, where ai ∈ R, for n ≤ i ≤ m and an 6= 0, am 6= 0. Since f2 = 0, we have

amαm(am) = 0, anαn(an) = 0. By Lemma 4.1, a2
m = 0, a2

n = 0 and so am = 0, an = 0, which is

a contradiction. Therefore, R[x, x−1; α] is reduced.

Conversely, suppose that R[x, x−1; α] is reduced. Clearly, R is reduced as a subring. If

aα(a) = 0 and α(a)xa = 0. Thus 0 = α(a)α(a)x = (α(a))2x, and so α(a) = 0. Since α is an

automorphism, we have a = 0. Therefore, R is α-rigid.

Next, let e be an idempotent in R. Then e is central, and so ex = xe = αex. This implies

that αe = e.

Lemma 4.3[9] Let R be an α-rigid ring. If p =
∑m

i=n aix
i, q =

∑t

j=s bjx
j ∈ R[x, x−1; α], m, n, s, t

are integers, then pq = 0 if aibj = 0, for any n ≤ i ≤ m, s ≤ j ≤ t.

Lemma 4.4 Let R be an α-rigid ring. If e2 = e ∈ R[x, x−1; α], e = enxn + · · ·+e0 + · · ·+emxm,

then e = e0.

Proof Since 1 − e = (1 − e0) −
∑−1

i=n −
∑m

j=1 ejxj , we get e0(1 − e0) = 0 and e2
i = 0 for

all n ≤ i ≤ −1, 1 ≤ i ≤ m by Lemma 4.3. Thus ei = 0 for all n ≤ i ≤ m, i 6= 0, and so

e = e0 = e2
0 ∈ R.

Birkermeier proved if R is a quasi-Baer ring, then R[x, x−1; α] is a quasi-Baer ring. However

the following example shows that there exists R[x, x−1; α] which is quasi-Baer, but R is not quasi-

Baer.

Example 4.1 Let Z be the ring of integers and consider the ring Z ⊕Z with the usual addition

and multiplication. Then the subring R = {(a, b) ∈ Z ⊕ Z | a ≡ b(mod2)} of Z ⊕ Z is a

commutative reduced ring. Note that only idempotents of R are (0, 0) and (1, 1). In fact, if

(a, b)2 = (a, b), then (a2, b2) = (a, b) and so a2 = a, b2 = b. Since a ≡ b(mod2), then (a, b) =

(0, 0) or (a, b) = (1, 1). Now we claim that R is not quasi-Baer. For (2, 0) ∈ R, we note that

rR((2, 0)) = {(0, 2n) | n ∈ Z}. So we can see that rR((2, 0)) does not contain a nonzero



No.4 ZHANG Mian-mian: Some properties on Baer PP and PS rings 691

idempotent of R. Hence R is not a quasi-Baer ring.

Now let α : R → R be defined by α((a, b)) = (b, a). Then α is an automorphism of R.

Note that R is not α-rigid. We claim that R[x, x−1; α] is quasi-Baer. Let I be a nonzero right

ideal of R[x, x−1; α] and p ∈ I, put p = (ai, bi)x
i + · · · + (am, bm) 6= 0. Then for some positive

integer 2k− i > |i|+ |m|+ |j|+ |n|, j, n is the integer in q, it will be stated later in the following.

p(1, 1)x2k−i = (ai, bi)
∏−min{0,j}

h=0 a−h(u)x2k + · · ·+(am, bm)
∏−min{0,m}

h=0 a−h(u)x2k+m−i ∈ I and

p(1, 1)x2k+1−i = (ai, bi)
∏−min{0,j}

h=0 a−h(u)x2k+1+· · ·+(am, bm)
∏−min{0,m}

h=0 a−h(u)x2k+m+1−i ∈

I (where a−2(u) = α−1(α−1(u)), h = 2). Suppose that 0 6= q ∈ rR[x,x−1;α](I) and put q =

(uj , vj)x
j +· · ·+(un, vn)xnxn, where n−j is the smallest integer such that (ai, bi) 6= 0, (am, bm) 6=

0. Then p(1, 1)x2k−iq = 0 and p(1, 1)x2k+1−iq = 0. So we have

(ai, bi)

−min{0,i}
∏

h=0

α−h(u)x2k(uj , vj)x
j + · · · = (ai, bi)(uj , vj)

−min{0,i}
∏

h=0

α−h(u)u−min{0,j}x2k+j + · · ·

and

(ai, bi)

−min{0,i}
∏

h=0

α−h(u)x2k+1(uj , vj)x
j+· · · = (ai, bi)(uj , vj)

−min{0,i}
∏

h=0

α−h(u)u−min{0,j}x2k+1+j+· · · .

Hence (aiuj, bivj) = (0, 0) and (aivj , biuj) = (0, 0). This implies that aiuj = bivj = 0 and

aivj = biuj = 0. Since (ai, bj) 6= 0, ai or bi is nonzero. Then we have (uj , vj) = (0, 0), which is a

contradiction. So rR[x,x−1](I) = (0, 0) and hence R[x, x−1] is quasi-Baer.

Lemma 4.5 Let R be an α-rigid ring. Then R is a PP ring if and only if R[x, x−1; α] is a PP

ring.

Proof Assume that R is a PP ring. Let p = anxn + · · · + amxm ∈ R[x, x−1; α]. There

exists an idempotent ei ∈ R such that rR(ai) = eiR for i = n, · · · , m. Let e = en · · · em. Then

e2 = e ∈ R, eR =
⋂m

i=n rR(ai). So by Lemma 4.2, pe = anαn(e)xn + · · ·+amαm(e)xm = anexn +

· · ·+ amexm = 0. Hence eR[x, x−1; α] ⊆ rR[x,x−1;α](p). Let q = bsx
s + · · ·+ btx

t ∈ rR[x,x−1;α](p).

Since pq = 0, aibj = 0 for all n ≤ i ≤ m, s ≤ j ≤ t. Then bj ∈ eR for s ≤ j ≤ t, and so

q ∈ R[x, x−1; α]. Consequently, eR[x, x−1; α] = rR[x,x−1;α](p). Thus R[x, x−1; α] is a PP ring.

Conversely, assume that R[x, x−1; α] is a PP ring. Let a ∈ R by Lemma 4.4, there exists an

idempotent einR such that rR[x,x−1;α](a) = eR[x, x−1; α]. Hence rR(a) = eR. Therefore, R is a

PP ring.

According to [3,Lemma 1]. Let R be a reduced ring. Then the following statement are

equivalent:

(1) R is a PP ring; (2) R is a p.q-Baer ring.

Then we have the following corollary:

Corollary 4.6 Let R be an α-rigid ring. Then R is a p.q-Baer ring if and only if R[x, x−1; α]

is a p.q-Baer ring.

Theorem 4.7 Let R be an α-rigid ring. Then R is a weakly PP ring if and only if R[x, x−1; α]
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is a weakly PP ring.

Proof For every f =
∑m

i=n bix
i ∈ R[x, x−1; α] and every primitive idempotent e ∈ R[x, x−1; α],

by Lemma 4.4, e ∈ R. If ef = 0, then R[x, x−1; α]ef is projective. Suppose that ef 6= 0. Then

there exists an integer n ≤ k ≤ m such that ebk 6= 0. It is obvious that R[x, x−1; α](1 − e) ⊆

lR[x,x−1;α](ef). Conversely, for any g ∈ lR[x,x−1;α](ef), g =
∑t

j=s ajx
j , gef = 0. Then by Lemma

4.3, ajebi = 0. From ebk 6= 0 and R is a weakly PP ring, we get lR(ebk) = R(1 − e), thus

aj ∈ R(1−e). By Lemma 4.2, g ∈ R[x, x−1; α](1−e). Hence R[x, x−1; α](1−e) ⊆ lR[x,x−1;α](ef).

Hence R[x, x−1; α] is a weakly PP ring.

Conversely, if R[x, x−1; α] is a weakly PP ring, then for every r ∈ R and every primitive

idempotent e ∈ R, we have lR[x,x−1;α](ef) = R[x, x−1; α]f, f2 = f ∈ R[x, x−1; α]. Hence R is a

weakly PP ring.

Theorem 4.8 Let R be an α-rigid ring. Then R is a PS ring if and only if R[x, x−1; α] is a PS

ring.

Proof If L is a maximal ideal of R[x, x−1; α] we show that rR[x,x−1;α](L) = eR[x, x−1; α] for an

idempotent e2 = e ∈ R[x, x−1; α]. Let I denote the set of all constant coefficients of polynomials

in L. Let J be the left ideal of R which is generated by I. If J = R, then there exists s1, · · · , sn ∈

I, r1, · · · , rn ∈ R, such that 1 = r1s1 + · · · + rnsn. Assume h ∈ rR[x,x−1;α](L), h0 6= 0, h0 is the

constant coefficient of h for any f =
∑t

i=s fix
i ∈ L, f0h0 = 0, for the arbitrary of f , we get

sih0 = 0, 1 ≤ i ≤ n, so h0 = 0, a contradiction. Hence rR[x,x−1;α](L) = 0.

Now assume J 6= R we show that J is a maximal left ideal of R. Let r ∈ (R − J),

obviously r ∈ R[x, x−1; α], if r ∈ L, then r ∈ J, a contradiction. So r /∈ L. Then R[x, x−1; α] =

L+R[x, x−1; α]r. Hence 1 = f+gr = f0+g0r, g ∈ R[x, x−1; α]. If f0 = 0, then 1 ∈ Rr, R = J+Rr.

If f0 6= 0, then f0 ∈ J, R = J + Rr. Hence J is a maximal left ideal of R.

Because R is a PS ring, then there exists an idempotent e ∈ R, such that rR(J) = eR. So

Le = 0. Hence rR[x,x−1;α](L) ⊇ eR[x, x−1; α]. Conversely, let g =
∑m

j=k bjx
j ∈ rR[x,x−1;α](L), bk 6=

0, for any f =
∑n

i=t aix
i ∈ L, at 6= 0, fg = 0. By Lemma 4.3, aibj = 0, t ≤ i ≤ n, k ≤ j ≤ m.

Particularly, a0bj = 0, where a0 is the constant coefficient of f. For the arbitrary of f, bj ∈

rR(J) = eR. So g ∈ eR[x, x−1; α]. Hence rR[x,x−1;α](L) ⊆ eR[x, x−1; α]. Thus rR[x,x−1;α](L) =

eR[x, x−1; α]. R[x, x−1; α] is a PS ring.

Conversely, if L is a maximal left ideal of R, then I = L[x, x−1; α] is a maximal left ideal of

R[x, x−1; α]. By hypothesis and Lemma 4.4, r(I) = eR[x, x−1; α], e2 = e ∈ R. Hence r(L) ⊇ eR.

Assume there exists an element 0 6= a ∈ r(L) − eR. For any g =
∑t

i=s git
i ∈ I, ga = 0. By using

Lemma 4.1, then a ∈ r(I) = eR[x, x−1; α]
⋂

R = eR, a contradiction. Hence r(L) = eR.

At last we prove the following two Theorems.

Recall that for a ring R with a ring endomorphism α : R → R and an α-derivation δ : R → R,

the Ore extension R[x; α, δ] of R is the ring obtained by giving the polynomial ring over R with

the new multiplication

xr = α(r)x + δ(r)
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for all r ∈ R. If we have δ = 0, we write R[x; α, 0] is stead of R[x; α, 0] and R[x, α] is called Ore

extension of endomorphism type (also called a skew polynomial ring). While R[[x; α]] is called a

skew power series ring.

Theorem 4.9 Let R be an α-rigid ring. Then R[x; α, δ] is a PS ring if and only if R is a PS

ring.

Proof The “if” part has been proved in [9]. Let us see the “only if” part. Let L be the maximal

left ideal of R. Then L[x] is a maximal left ideal of R[x; α, δ] is a PS ring. So rR[x;α,δ](L[x]) =

eR[x; α, δ], e2 = e ∈ R. Hence rR(L) ⊇ eR. If there exists an element 0 6= a ∈ rR(L) − eR, for

any element g = b0 + b1 + · · · + bmxm ∈ L[x], ga = 0. Hence a ∈ rR[x;α,δ](L[x]) ∩ R = eR, a

contradiction. Thus rR(L) = eR.

Theorem 4.10 Let R be an R be an α-rigid ring. Then R[[x; α]] is a PS ring if and only if R

is a PS ring.

Proof The proof of this theorem is similar to the proof of Theorem 4.9.
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