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1. Introduction

Through this paper, all rings are associative with identity. This paper is composed of
three parts. The first part concerns the relationship between Strong-Armendariz rings and
reduced rings, being motivated by [1,2]. Armendariz rings which was initiated by Armendariz!]
and Rege and Chhawchharial®! is related to polynomial rings, while Strong-Armendariz rings
are related to formal polynomial rings. A ring R is called an Armendariz ring if whenever
flx) =g aixt, g(x) = X1 bja? € R[] satisfy f(z)g(x) = 0, we have a;b; = 0 for each 7, j. A
ring R is called a Strong-Armendariz ring if whenever f(z) = > o2 a;a*, g(z) = o bjz! € R[z]
satisfy f(x)g(x) = 0, we have a;b; = 0 for each 7,5 > 0. A ring is called reduced if it has nonzero
nilpotent elements. We will also show in this paper that the properties of Baer, PP and PS
of R are closed under formal polynomial extension when R is a Strong-Armendariz ring. By
Kaplansky®, a ring R is called Baer if the right annihilator of every nonempty subset of R is
generated by an idempotent. PP rings are closely related to these rings. A ring is called a right
PP ring if each principle right ideal of R is projective, or equivalently, if the right annihilator of
each element of R is generated by an idempotent. A ring R is called a PP ring if it is both a
right and a left PP ring. Baer rings are clearly right PP rings. A ring R is called a left PS ring
if Soc(rR) is projective.

We denote the right annihilator over a ring R by rr(—) and the left annihilator [gr(—). The
second part of this paper concerns the generalization of McCoy’s theorem. McCoy!® proved that
if R is a commutative ring, then whenever g(z) is a zero-divisor in R[z] there exists a nonzero

element ¢ € R such that cg(z) = 0. Yasuyuki Hiranol® generalized this result as follows: Let
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f(z) be an element of the polynomial ring R[x] over a (not necessarily commutative) ring R. If
TRz (f(2)R[z]) # 0, then W(rg,(f(2)R[z])) = rrp(f(z)R[z]) "R # 0. We will show in this
paper that it is still right when R[x,2~!] instead of R[z]. The definition is stated later. The last
part concerns the Skew Laurent polynomial R[z,z~!;a]. Recall the Skew Laurent polynomial
1 1

ring R[z,z71;a] with a ring automorphism o : R — R and relation: 2 'a = a 'z~ ;20 =

V= w;2~lz = a7 (u), u is a central entire, a,u € R. When a = 1, we write R[z, v~ !]

ala)x; xa~
instead of R[z,x~!;a]. we will show in this paper that the properties of Baer, PP, PS, weakly
PP and PS are closed under Ore extension. A ring R is called weakly PP if every principle left
ideal . Rer is projective for each r € R and each primitive idempotent e € R. We give an example
in this paper about R[x,z~';a] which is quasi-Baer, but R is not quasi-Baer. A ring is called

quasi-Baer if the left annihilator of every ideal is generated, as a left ideal, by an idempotent.

2. Strong-Armendariz ring

Lemma 2.1 If R is a reduced ring, then R is a Strong-Armendariz ring.

Proof Let f(z) =ap+a1x+ -+ apz™ +---, f(x) = by + b1z + -+ + bpz™ + - - - € R|[x]] with
0 = f(z)g(x) = aobo + (a1bo + agb1)x + -+ + (anbo + an—1b1 + agby)z™ + ---. So we have the
following system of equations:

(0) aobo = 0;

(1) aibo + agby = 0;

(n) apbo + apn—1b1 + -+ + agb, = 0;

Multiply Eq.(1) on the right side by a1bg, we get aiboaiby + agbra1bo = 0. But agbiaibg = 0
since R is reduced and agbp = 0. Hence (a1by)? = aibpaiby = 0, that is ai1bg = 0. So Eq.(1)
becomes apb; = 0. Now assume that k is a positive integer such that a;b; = 0 for all ¢ + j <
k. Multiply Eq.(k + 1) on the right side by axt1bo, we get ar+1bp = 0. Eq.(k + 1) becomes
arbi + -+ + agbpy1 = 0. Continue the method we get a;b; = 0, for all ¢ + j = k + 1. Therefore
a;b; =0, for all 4,5 > 0. Then R is Strong-Armendariz.

A ring is called abelian if every idempotent of it is central.
Lemma 2.2 If R is a Strong-Armendariz ring, then R is an abelian ring.

Proof Let f(z) = (ere —er) +ex,g(z) = (ere —er) + (e — 1)z € R|[z]], for any e,r € R,e? = e.
ere —er = e(ere —er) = 0, since R is Strong-Armendariz and f(z)g(x) = 0. Let f(z) =
(ere —re) + (e — )z, g(z) = (ere — re) + (e — 1)z € R|[z]], for any e,r € R,e? = e. We get
ere —re = (e — 1)(ere — re) = 0 by the same reason. Hence er = re, for any e,r € R, e? = e.
Then R is abelian.

Lemma 2.31) Suppose that a ring R is abelian, then we have the following:

(1) Every idempotent of R[z] is in R and R|[z] is abelian.
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(2) Every idempotent of R[[z]] is in R and R][[z]] is abelian.

Lemma 2.4 If R is a Strong-Armendariz ring, then for any idempotent e € R, eRe is a Strong-

Armendariz ring.

Proof Let f(x) = >72, aix’,g(x) = 2272, bja’ € eRe[[z]] be polynomials satisfy f(z)g(x) = 0.
Obviously eRe C R, then f(z),g(z) € R[[z]]. Since R is Strong-Armendariz, then a;b; = 0 for
any 4,7 > 0. Then eRe is Strong-Armendariz.

One may suspect that if eRe is a Strong-Armendariz ring for any nonidentity idempotent
e of R, then R is a Strong-Armendariz ring. However, it is not true in general by the following

example.

Example 2.1 Let Z3 be the ring of integers modulo 2 and consider the ring R = (? ZZ;) Then
by Example 1 in [1], R is not Armendariz, so is not Strong-Armendariz. Notice that the only

nontrivial nonidentity idempotents of R are

(oo) (o1 )(oo) = (1)

and that eRe & Z5 is a Strong-Armendariz ring for any nontrivial nonidentity idempotent e in
R.

Lemma 2.5 Let R be a Strong-Armendariz ring. Then R is a Baer ring if and only if R[[z]] is

a Baer ring.

Proof Assume that R is Baer. Let A be a nonempty subset of R[[z]], and R* be the set of
all coefficients of elements of A. Then R* is a nonempty subset of R, and so rr(A*) = eR
for some idempotent e € R. Since e € gy (A4), we get eR[[z]] C 7g()(A). Now, let g =
bo + bz + - + bpa™ + -+ € rRi(A). Then Ag = 0 and hence fg = 0 for any f € A.
Thus bo, b1, -, by, - € TR(A*) = eR since R is a Strong-Armendariz ring. Hence there exists
€Oy C1,y "+ Cn,y -+ € Ry such that g = eco+ec1+---+ecp+--- =e(co+er+-++cepn+---) € eR[[z])-
Therefore, R|[[z]] is Baer.

Conversely, assume that R[[z]] is a Baer ring. Let B be a nonempty subset of R. Then
TR[2]) (B) = eR[[z]] for some idempotent e € R by Lemma 2.3. Hence rg(B) = eR and R is a

Baer ring.

Theorem 2.6 Let R be a Strong-Armendariz ring. Then R is a PP ring if and only if R[[z]] is
a PP ring.

Proof Assume that R is a PP ring. Let p = ap + a1 + -+ + an2™ + - - - € R[[z]]. There exists
e? = e; € R such that 7g(a;) = e;R, for i = 0,1,---,n,---. Let e = egey---e,---. Then by
Lemma 2.2, €2 = ¢ € R and eR = ﬂ;’io rr(a;). So pe = age + ajex + -+ + apex™ + -+ = 0.
Hence eR[[z]] C rgy)(p). Let ¢ = bo + b1 + -+ - + bpx™ + - - - € TR (p). Since pg = 0 and R is
a Strong-Armendariz, a;b; = 0 for all 7,j > 0. Then b; € eR for all j =0,1,---,n,---. Hence

q € eR[[z]]. Consequently, eR[[z]] = rg[js))(p) and R[[z]] is a PP ring.
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Conversely, assume that R[[z]] is a PP ring. Let a € R. By Lemma 2.3, there exists an
idempotent e € R such that rgy(a) = eR|[[z]]. Hence, rr(a) = rp[ay(a) "R =eR and Ris a
PP ring.

Theorem 2.7 Let R be an Armendariz ring. Then R is a PS ring if and only if R[z] is a PS

ring.
Proof By the same method in the proof of Theorem 2.6.

Theorem 2.8 Let R be a Strong-Armendariz ring. Then R is a PS ring if and only if R[[z]] is
a PS ring.

Proof If R is a PS ring, then R[[z]] is a PS ring according to the Theorem 3.1 in [7].

Conversely, if L is a maximal ideal of R, then I = L[[z]] is a maximal ideal of R[[z]].
According to the fact that R[[z]] is a PS ring, we have rgx))(I) = eR[[z]],e? = e € R, because
R is a Strong-Armendariz ring and Lemma 2.3. So rg(L) 2 eR. Assume there exists an element
0 # a € rr(L)—eR,a # 0. For any element g = b,, 2™ +by, 12+ +b,a™ € 1, by, # 0, ga = 0.
That is a € rgj.)(I) = eR[[z]], a contradiction. Thus 7gr(L) = eR as required.

Theorem 2.9 Let R be a reduced ring. Then R is a PS ring if and only if R[z] or R[[z]] is a
PS ring.

Proof We prove the result for R[[z]] only; The proof for R[x] is similar.

The “if” part has been proved by [7]. Let us see the “only if” part. It is clear that
R[[z]] = R[[z;q]], where a = 1. By hypothesis R is a reduced ring, then if ra(r) = 2 = 0,
we have r = 0. Thus R][[z]] is a 1-rigid ring. Let L be the maximal ideal of R, then I = L[[z]]
is a maximal ideal of R[[z]]. So 7(I) = eR[[z]],e? = e € R according to R[[z]] is a 1-rigid
ring. Hence r(L) 2 eR. If there exists an element 0 # a € (rr(L) — eR). For any element
g = bpa™ + byt + oo € by # 0,bymg1,- € Lyga = 0. S0 a € eR[[z]]R = eR, a

contradiction. Thus (L) = eR as required.

3. A generalization of McCoy’s theorem

First define the degree of f(z) = >

i=m

a;x" € R[z,x~!] in this way that deg(f(z)) = |n]| if
n =m; deg(f(z)) =n —m, if n #m.

We begin with the following lemma.

Lemma 3.1 Let f(x) and g(x) be two elements of Rlx,z~']. Then f(x)Rg(z) = 0 if and only
if f(x) Rl, 2 ]g(x) = 0.

Proof Assume that f(z)Rg(z) = 0 and take an arbitrary element > ;_ cpz® of R[z,x1].
Then f(z)(Xf_, cxa®)g(x) = Yi_, f(x)erg(x)z® = 0. This implies f(z)R[z,z~'g(x) = 0.
The “only if part” is clear.
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Theorem 3.2 Let f(x) be an element of Rlx,x™']. If rgy . (f(z)Rlz,271]) # 0, then
TR[m,mfl](f(x)R[xax_l]) NR 7é 0.

Proof We freely use Lemma 3.1 without mention it. Let f(z) = Y. a;z" € Rlz,z7']. If
deg(f(x)) =0 or f =0, the assertion is clear. So let deg(f(z)) =n —m > 0. Assume contrary,
let 0# g(z) =Y'_ 27 € R[z,z" '] € T R,o—1) (f () Rz, ~!]) with minimal degree. Since

j=s

n

(Z ai:vi)R[:v, x_l](z bjxj) =0,

i=m

(Z aixi)R(Z bjaz’) =0,

then a,, Rb; = 0. Hence
an Rz, 27 g(x) = an Rz, v (by_12" "t + -+ 4 bex®)
and
(f(z)R[z,z " Yan) Rz, 27 | (bs_12" ' + - + box®) = (f(x)R[z, 2" )an) Rz, 2~ ]g(z) = 0.
Since g(x) is of minimal degree, we have
anR[z, xil](bt,lxtfl + - 4 bsx®) =0.

Therefore,
an € lp(R[z, 27 bz’ + Rz, o7 (b_12™™t + - + bsz®)).

Hence,
(an_12" 4 ama™)R[z, 7 ) (ba’ + -+ +bs2®) =0 and a,_1Rb; = 0.
Thus we obtain
f@)R[z,z Y (an_1 R[z, 27 (b_1a'™ 4 - + bez®)) = f(2)(R[z, 2" Yan_1 R[z,z " ])g(x) = 0.
Since g(z) is of minimal degree, we obtain a,_1 R[z,z~!](b;_12'~1 + -+ - 4+ bsz®) = 0. Therefore,
Ay a1 € lr(R[z, 2 by’ + Rz, 2™ | (be—12'™! 4+ -+ + bex®)).
Repeating, we obtain
Any -1, am € lp(R[z, 27 b2’ + Rz, 2 (by—12'~ " + - + bsz®)).

This implies that
b57 bs—lu T 7bt € rR[m,w’l](f(:E)R["Eu x_l])'

Contradicted.
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Corollary 3.3 Let R be a semi-commutative ring. If f(z) is a zero-divisor in R[z], then there

exists a nonzero element ¢ € R such that f(x)c = 0.

4. Ore extension of R[z,z7';qa]

[9]

Lemma 4.1 Let R be an a-rigid ring, « is a ring automorphism, a,b € R, then we have:

(1) If ab =0, then aa™(b) = a"(a)b = 0, for any n € Z.
(2) If ac®(b) = o*(a)b = 0, for some k € Z, then ab = 0.
(3) If a is central entire, then a(a) is still a central entire in R.

1

Lemma 4.2 Ore extension R[x,2™';a] is reduced if and only if R is an a-rigid ring. In this

case, a(e) = e, for some e? = e € R.

Proof Suppose that R is a-rigid. Assume to the contrary that R[z,z~';a] is not reduced.
Then there exists 0 # f € R[x,271;a] such that f2 = 0. Since R is reduced, f ¢ R. Thus we
put f = > " a;x', where a; € R, for n <i < m and a, # 0,a, # 0. Since f? = 0, we have
ama™(am) = 0,a,0"(an) = 0. By Lemma 4.1, a2, = 0,a2 = 0 and so a,, = 0,a,, = 0, which is
a contradiction. Therefore, R[z,x~1;a] is reduced.

Conversely, suppose that R[z,r7!;a] is reduced. Clearly, R is reduced as a subring. If
aa(a) = 0 and a(a)za = 0. Thus 0 = a(a)a(a)r = (afa))?z, and so a(a) = 0. Since « is an
automorphism, we have a = 0. Therefore, R is a-rigid.

Next, let e be an idempotent in R. Then e is central, and so ex = xe = aex. This implies

that ae = e.

Lemma 4.3 Let R be an a-rigid ring. Ifp = Y. a;a’,q = 3"

Jj=s
are integers, then pq = 0 if a;b; = 0, for anyn <i <m,s < j <t.

bjzl € Rlz,x~;a],m,n,s,t

Lemma 4.4 Let R be an a-rigid ring. Ife? = e € R[z,x"1;a],e = epa™ +---+eg+- - +ena™,
then e = eg.

Proof Since 1 —e = (1 —eg) — :n — > it ejxy, we get eg(l —eg) = 0 and e? = 0 for

alln <7 < —-1,1 < i < m by Lemma 4.3. Thus e; = 0 for all n < i < m,i # 0, and so
e=ey=¢ef €R.

1

Birkermeier proved if R is a quasi-Baer ring, then R[z, 27 1; a] is a quasi-Baer ring. However

1

the following example shows that there exists R[z, z~"; o] which is quasi-Baer, but R is not quasi-

Baer.

Example 4.1 Let Z be the ring of integers and consider the ring Z & Z with the usual addition
and multiplication. Then the subring R = {(a,b) € Z& Z | a = b(mod2)} of Z® Z is a
commutative reduced ring. Note that only idempotents of R are (0,0) and (1,1). In fact, if
(a,b)? = (a,b), then (a?,b?) = (a,b) and so a® = a,b®> = b. Since a = b(mod2), then (a,b) =
(0,0) or (a,b) = (1,1). Now we claim that R is not quasi-Baer. For (2,0) € R, we note that
rr((2,0)) = {(0,2n) | n € Z}. So we can see that rg((2,0)) does not contain a nonzero
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idempotent of R. Hence R is not a quasi-Baer ring.

Now let @ : R — R be defined by a((a,b)) = (b,a). Then « is an automorphism of R.
Note that R is not a-rigid. We claim that R[z, 2 1;a] is quasi-Baer. Let I be a nonzero right
ideal of R[z,27%;a] and p € I, put p = (ai, b))x* + -+ + (@m, bm) # 0. Then for some positive
integer 2k — i > |i| + |m| + |j| + |n|, 4, n is the integer in g, it will be stated later in the following.
p(1, 1)x2k—i = (a;, b;) ]::H(l)in{ovj} a—h(u)x% NN (am, bm) ]::H(l)in{ovm} a—h(u)x%—i-m—i eI and
p(1, 1)z 171 = (q;, b;) ]Z:rr(l)in{oﬂj} a M (W) 14 (@, b)) ;:n(l)in{oym} a =P (w)a2ktmil=i ¢
I (where a™?(u) = a *(a™'(u)),h = 2). Suppose that 0 # ¢ € Tgjys—1,4)(I) and put ¢ =
(wj,vj)@? +- -+ (up, vy )z"2", where n—j is the smallest integer such that (a;, b;) # 0, (@, by) #
0. Then p(1,1)2%*~%¢g = 0 and p(1,1)z?*+1=%g = 0. So we have

— min{0,i — min{0,i
(as, bi) ﬁ }O‘ih(u)xzk(uja vj)al + - = (@i, by) (ug,v)) ﬁ }O‘ih(u)uf min{0.7} g2k 4
h=0 h=0
and
— min{0,i} — min{0,i}
(@i, b;) H o M(w) e (ug, v)) 20 4+ - = (ag, bi) (uy,v5) H oM (u)u min{0a} 2k 4T
h=0 h=0

Hence (a;uj, b;v;) = (0,0) and (a;vj,biu;) = (0,0). This implies that a;u; = bjv; = 0 and
a;v; = byu; = 0. Since (a;,b;) # 0,a; or b; is nonzero. Then we have (u;,v;) = (0,0), which is a

contradiction. So rgj; »-11(1) = (0,0) and hence R[x,z7'] is quasi-Baer.

Lemma 4.5 Let R be an a-rigid ring. Then R is a PP ring if and only if R[z,x~';a] is a PP

ring.

Proof Assume that R is a PP ring. Let p = a,2"™ + -+ + a2™ € Rlz,z7';a]. There
exists an idempotent e; € R such that rg(a;) = e;R for i = n,---,m. Let e = e, - - - €;,. Then
e?=e€ R,eR=", rr(a;). So by Lemma 4.2, pe = an,a"(e)z" +- -+ anpa™(e)z™ = apex™ +
-+ +amex™ = 0. Hence eR[x, 27 ;0] C gy p-1,0] (). Let ¢ = bea® + - -+ 4 by’ € 1y o—1,01(p)-
Since pg = 0,a;b; = 0 for alln < i < m,s < j < t. Then b; € eR for s < j < ¢, and so
q € R[z,27;a]. Consequently, eR[z,z"1;a] = TRlz,z-1;0](P). Thus R[z,z7';a] is a PP ring.
Conversely, assume that R[z,z7!;a] is a PP ring. Let a € R by Lemma 4.4, there exists an

L. a]. Hence rr(a) = eR. Therefore, R is a

idempotent einR such that rpp, »-1,4)(a) = eR[z, 2~
PP ring.

According to [3,Lemma 1]. Let R be a reduced ring. Then the following statement are
equivalent:

(1) Ris a PP ring; (2) R is a p.q-Baer ring.

Then we have the following corollary:

Corollary 4.6 Let R be an a-rigid ring. Then R is a p.q-Baer ring if and only if R[z,z~; o]

is a p.q-Baer ring.

Theorem 4.7 Let R be an a-rigid ring. Then R is a weakly PP ring if and only if R|x,z71; ]
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is a weakly PP ring.

Proof For every f =" b;x' € Rlz,x~';a] and every primitive idempotent e € R[z,z~1;a],
by Lemma 4.4, e € R. If ef = 0, then R[z,2~!;alef is projective. Suppose that ef # 0. Then
there exists an integer n < k < m such that eby # 0. It is obvious that R[z,z7!;a](1 —e) C
IR[z,2-1;0)(ef). Conversely, for any g € lg[yo-1;0)(ef),9 = Z;:S ajz?, gef = 0. Then by Lemma
4.3, ajeb; = 0. From eby # 0 and R is a weakly PP ring, we get lg(eby) = R(1 — e), thus
aj € R(1—e). By Lemma 4.2, g € R[z,z~';a](1—e). Hence R[z, 2~ 0)(1—€) C gy z-1,0)(ef).
Hence R[z,z71;a] is a weakly PP ring.

1. a] is a weakly PP ring, then for every r € R and every primitive

Conversely, if Rlz, 2~
idempotent e € R, we have lp, ,-1,q)(ef) = Rlz,27 " 0]f, f* = f € Rlz,27";0]. Hence R is a

weakly PP ring.

Theorem 4.8 Let R be an a-rigid ring. Then R is a PS ring if and only if R[z,x~1;a] is a PS

ring.

Proof If L is a maximal ideal of R[z,z~!

;] we show that rpp, ,—1,4](L) = eR[z,27'; a for an
idempotent e? = e € R[x,271;a]. Let I denote the set of all constant coefficients of polynomials
in L. Let J be the left ideal of R which is generated by I. If J = R, then there exists s1,---, s, €
Iy, -+, € R, such that 1 = rys; + -+ + 1,5,. Assume h € Ty, »-1,4)(L), ho # 0, hg is the
constant coefficient of h for any f = ZE:S fiz® € L, foho = 0, for the arbitrary of f, we get
siho = 0,1 <@ < n, so hp =0, a contradiction. Hence rg[; ;-1,q) (L) =0.

Now assume J # R we show that J is a maximal left ideal of R. Let r € (R — J),
obviously 7 € R[z,x~!;q], if r € L, then r € J, a contradiction. So r ¢ L. Then R[z,z~%;a] =
L+R[z, 27 alr. Hence 1 = f+gr = fo+gor,g € Rz, z71;a]. If fo = 0,then 1 € Rr, R = J+Rr.
If fo # 0, then fo € J,R = J + Rr. Hence J is a maximal left ideal of R.

Because R is a PS ring, then there exists an idempotent e € R, such that rr(J) = eR. So
Le = 0. Hence rg[; 51,0 (L) 2 eR[z, x~ 1 a). Conversely, let g = ZT:k bjzl € TRlz,e—1:a] (L), bk #
0, for any f = > " ,a;x" € L,ay # 0, fg = 0. By Lemma 4.3, a;b; = 0,t <i <n,k < j < m.
Particularly, apb; = 0, where ag is the constant coefficient of f. For the arbitrary of f,b; €
rr(J) = eR. So g € eR[z,z~';a]. Hence 1y y-1,0)(L) C eR[z, x5 ). Thus rpp o-1,0)(L) =
eR[x, 2% a). Rlz,271;a] is a PS ring.

Conversely, if L is a maximal left ideal of R, then I = L[z, z71; ] is a maximal left ideal of
R[z,z7%; a]. By hypothesis and Lemma 4.4, r(I) = eR[z, 27 };a],e? = e € R. Hence r(L) D eR.
Assume there exists an element 0 # a € r(L) — eR. For any g = ZE:S git' € I, ga = 0. By using
Lemma 4.1, then a € r(I) = eR[z,z7!;a] (| R = eR, a contradiction. Hence r(L) = eR.

At last we prove the following two Theorems.

Recall that for a ring R with a ring endomorphism « : R — R and an a-derivation d : R — R,
the Ore extension R[x;a, d] of R is the ring obtained by giving the polynomial ring over R with

the new multiplication

xr = ar)z +6(r)
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for all » € R. If we have § = 0, we write R[x; «, 0] is stead of R[x;«,0] and R[z,q] is called Ore
extension of endomorphism type (also called a skew polynomial ring). While R[[z; a]] is called a

skew power series ring.

Theorem 4.9 Let R be an a-rigid ring. Then R[x;«,d] is a PS ring if and only if R is a PS

ring.

Proof The “if” part has been proved in [9]. Let us see the “only if” part. Let L be the maximal
left ideal of R. Then L[z] is a maximal left ideal of R[z;«, ] is a PS ring. So 7gz:a,5)(L[z]) =
eR[z;a,0],e* = e € R. Hence rr(L) 2 eR. If there exists an element 0 # a € 7r(L) — eR, for
any element g = by + by + - + by,2™ € Lfz],ga = 0. Hence a € rgig0,6(L[z]) N R = eR, a
contradiction. Thus rr(L) = eR.

Theorem 4.10 Let R be an R be an a-rigid ring. Then R[[z;«]] is a PS ring if and only if R
is a PS ring.

Proof The proof of this theorem is similar to the proof of Theorem 4.9.
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