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Abstract: This paper is concerned with the system of equations that model incompressible
non-Newtonian fluid motion with p-growth dissipative potential 1 + n2$2 <p<3in R"
(n = 2,3). Using the improved Fourier splitting method, we prove that a weak solution

decays in L? norm at the same rate as (1 +¢)~™/* as the time ¢ approaches infinity.
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1. Introduction

In this paper we consider the L? time decay for weak solutions to the incompressible non-

Newtonian fluids governed by the following momentum and continuity equations

e+ (u-Vu—V-7 +Vr=0 in R" x (0,00), (1.1)
V-u=0 in R" x (0,00), (1.2)
u(z,0) =up in R, (1.3)

where z = (21,2 - 2,) is the spatial variables with n = 2,3, the gradient V = (9y,,---,0s,),
and the unknown w = (u1,- -+, u,) and 7 denote the velocity and pressure of the fluid motion,

respectively. The stress tensor 7 = (7;;) is specified in the form

T = 2(po + pale(w)[P?)ei; (u), (1.4)
where the viscous coefficients g, 1 are positive constants. And the component of the symmetric

deformations velocity tensor is given by

(s =5 (Gt 52 ) lelwl = (e e

When p = 2, the system (1.1)-(1.4) turns out to be the famous Navier-Stokes equations!®13].

There is an extensive literature on the solutions of the incompressible non-Newtonian fluids.

(8] (10]

Ladyzhenskaya!®' and Lions!"" first discussed the existence and uniqueness of weak solutions of
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6] studied the somewhat more general

(11]

the sort model, and more recently, Du and Gunzguiger
existence and uniqueness results in bounded domains. Pokorny!**! also investigated the Cauchy
problem of (1.1)~(1.4) in whole spaces. Beirao da Veigal!l and Guo and Zhul” examined the

2l and

regularity of weak solutions of (1.1)—(1.4). One may also consult with Bellout et al.
Dong!*? for a study on the other nonlinear viscous fluids. Moreover, based on the Fourier split-
ting method['2'4 the decay rates of the non-Newtonian fluid flows in R™ with high dissipative

potential (p > 3) were recently derived by Guo and Zhul™ as
u()||2 < et~ 272, n>2
lu(t) — e®ugl| 2 — 0, t— oo.

By developing the Fourier splitting method, the optimal algebraic decay rate in R? is derived by
Dong and Lil®! as

lu(®)llze < e +6)72,  u(t) = ePugll2 < e(1+8)7%, V>0,

It should be mentioned that in [3,7], the bounds of p-power (p > 3) potential is obtained by
the energy inequality, whereas the bounds are not applicable for the case 1 + nQ—J:Q <p < 3. The
aim of this paper is to investigate the decay problem of this sort fluids with p-growth dissipative
potential for the case 1 + n2—]:2 < p < 3. With the aid of the improved Fourier splitting method

—n/4 a5 the time

and some inequalities, we prove that a weak solution decays in L? norm at (1+t)
t approaches infinity, which is the same as the decay rates of the solution to the heat equation.

The remains of this paper are organized as follows: In Section 2, we introduce the mathe-
matical preliminaries and state the main results; We present some auxiliary lemmas in Section

3, and prove the main results in the Section 4.

2. Preliminaries and main results

Let || -llg = Il - llea (-1l =1l -ll2 ) be the norm of the Lebesgue space LI(R"™) and
Il = I llwm.a be the norm of the Sobolev space W™4(R"™). The space LL(R™)™ denotes the
Li—closure of Cg%,(R"™)", which is the set of smooth divergence-free vector fields with compact
supports in R"™. The space W&g(R”)" denotes the closure of C§%, (R™)™ in Wh4(R™)™. C or
¢ > 0, independent of the quantities ¢, z, v and v, is a generic constant, which may depend on
the initial data ug. The Fourier transformation of a function f is denoted by f or F[f].

Without loss of generality, we assume that ug = pq = 1 in (1.5). Substitution of (1.4) into
(1.1) produces

ug — Au+ (u-V)u—V - (Je(w)|P2e(u)) + Vr = 0. (2.1)
By a weak solution of the initial value problem (1.2-1.4, 2.1), we mean a function u(z,t) which

is as follows.

Definition 2.11'% Let ug € W2 N L2 and p > 1+ HQ—fQ Then a function u(x,t) where

u € LP((0,T); WHPYn C([0,T); L?) N L2((0,T); Wh?)
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% € L*((0,T);L2) for YT >0

is called a weak solution of the problem (1.2-1.4, 2.1) if

/ dx—/ /nu —d:vds—i—/ /nuja w; deds+
/ /n 1+ |e(uw)P~2)es; (u) - eij(s")dxds_/nuo-so(O)dxzo (2.2)

for every ¢ € C*°([0, 00); C§%,(R")™) vanishing near t = oco. Moreover, the weak solution satisfies
the following energy inequality

1d

2T |u|2dx+/Rn |Vu|2+/n |VulPdz < 0. (2.3)

Theorem 2.1 Let uy € W2 n L? andp > 1+ +2,
solution of the system (1.2-1.4, 2.1) in the sense of Definition 2.1. Moreover, the solution is

n = 2,3. Then there exists a weak

regular, i.e.
u € L>®((0,7); Wh2) n L2((0,T); W*2) N LP((0,T); W*3P). (2.4)

Theorem 2.2 (Main Theorem) Assume ug € WH2 N L2 N LY (n = 2,3) and let u be a weak
solution of the problem (1.2-1.4, 2.1), then

Ju(t)| < C(L+1)"2 if n=2,2<p<3; (2.5)

11
lu(®)]| < CA+t)"F if n=3—- <p<3 (2.6)

3. Some auxiliary lemmas

In this section, we recall and prove some lemmas, which will be employed in the proof of

the theorems.

Lemma 3.1 (Gagliardo-Nirenberg Inequality) For all 1 < p, ¢, » < oo and for all integer
n>1,m>k >0, there exist two constants 0 < a < 1,C > 1, such that for all u € C§°(R")

1k

V¥ ully < CIV ulully ™ for - =& =a(; =)+ <(1-a) (3.1)

q
The only exception is that a # 1, if m — = = k,1 <r < oo.

Lemma 3.2 (Gronwall’s Inequality) Let f(t), g(t), h(t) be nonnegative continuous functions and

satisfy the inequality
g(t) < f(¥) —i—/ g(s)h(s)ds, V>0,
0
where f'(t) > 0. Then
g(t) < f(t)exp </ h(s)ds> , Yt>0. (3.2)
0
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Lemma 3.3 Assume ugp € WH2N L2 N LY, and let u be a weak solution of (1.2-1.4, 2.1). Then

we have

(D) supg<i<no u(®)l < lluoll; (3.3)
(II) Forn=2,2<p<3,

t t 5 3
601 < Juolls + Clel [ ute) ?as-+ 0l [ utsy)o2as) (.9
0 0
< C+ Ot + Clejt™=" (3.5)
(IlI) Forn=3,1 <p <3,
. ‘ s 19g5p
e, < 0+ Clel [ uts)as + Cle ( / ||u<s>|ﬁds) . (3.6)
0 0

Proof From the energy Inequality (2.3), it is easy to get (3.3). To obtain (3.4)—(3.6), applying

the Fourier transformation of (2.1) yields
iy + €70 = FIV - (le(u)P~?e(u) = (u- V)u = V] =: G(&,1). (3.7)

Now we need to estimate G(&,t). First
Fl(u- V)| = |Fldiviu s w)] <) /R |uiug||§]dz
ij TR

<> I ualllugll < 1€l (3.8)

4,J
According to Lemma 3.1, when n = 2,
[E[V - (le(w)P2e(u)]] < [€]|F[le(u)Pe(u)]] < [¢] /Rn VP~ da
< Cle[full | VZul P72, (3.9)

and when n = 3,

|FIV - ([VulP~?Du)]| < [€]|Flle(u)P~?e(u)]] < [¢] - [VulP~'dz

5p—11

< Clelllul) = Va3 (3.10)

Take divergence in (2.1) to get
02 9
AT = lz]: 90z, [Fuivg + le(w)["ei; (u)],

and the Fourier transformation to set

€2 Fla] = Z &8 F[—uu; + le(u)P~ei; (u)).
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Thus we have
|F[V7]| < |F[V - (|VuP~2Du)]| + |F[(u - V)u]|. (3.11)
So combining (3.7)—(3.11) shows that
G(& )] < Clelull® + C|§|||U||||VQUHP*27 for n =2, (3.12)
IG(&,1)] < Clelllull® + Clellull 7 V2ull, ™. for n=3. (3.13)

Moreover, from (3.7), it follows easily that

% (ﬁe“g‘%) < G(ﬁ,t)e_‘g‘%.

Integrating in time gives

t 2
a,t) < eIl )+/ G(&, t)e M E=9)g,,
0

According to Theorem 2.1, we may as well assume that [, |V?u(t)||?dt < C, and C is indepen-

dence of time. Therefore from (3.12), (3.13) we have
(I) whenn=2,2<p<3,

|ﬁ(§7t)|f§|ﬁo(§)|+‘67jﬁ |€|Hu(s)H2d5«+-67j£ lllu(s) [ 92u(s) [P 2ds

4—p

p—2

t t 2 2
< ol +lel [ TuPas +ctel ([ puoiesas) ([ 1vtuitas)

t t =t
SWdu+CMAHM@V®+CM(AHM@P7®>

< C+ClElt + Clet="

(II) When n =3, <p<3,

mgwhqman+cA|wW@Wm+c[jaw@m%Wv%@>”Z

t e}
< luaker + 0l [ loPas+ il ([ 1)

<mwp+om/Nm w@+cm</”u wsmﬁ

Thus the proof of this lemma is completed.

19— lsp

4. Proof of the main theorem

From the energy inequality (2.3), it follows that

1d

|u|2dx+/ |Vul? <0.
2d -

(/|u|mﬂmﬁ

19-5p
8

(4.1)
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Applying Plancherel’s theorem to (4.1) yields

33 [ e oras+ [ 1eplaenide <o, (12)
Let f(t) be a continuous function of ¢ with f(0) =1, f(¢) > 0 and f’(¢) > 0, then we have
G (10 [ aeoras) v200 [ i oras< o [ jieopa
de R" , R" , - Rn ,
Let B(t) ={¢ e R": 2f(t)|£]* < f/(t)}, then
27(6) [ IePla(e 0Pg =270) [ [ePlate g+ 27 [ lePlate o
R B(t) B(t)°
25 2 / . 290 gt . 2
2of) [Pl oPasz £ [l oras— @ [ i orac

B(t)

Therefore we have the following inequality

4 <f(t) | |a<s,t>|2ds> <ro [ s

Integrating in time yields

U 2 aal2 ! ’ ale. )12 N '
(t)/ml (&) déé/ml ol d§+c/0 f(s)/B(s)| (€, 5)[2ded (4.3)

(I) The Casen=2,2<p< 3.
According to (3.4) and (4.3), let A% = —()) and w,, be area of unit ball in R?, then we have

U 2qd Qo|?dé+
2

Cwy, /Ot f'(s) /OA <|uo||+r/s ||u(T)|2dT—|—7°(/S|u(7')||4_2pd7>47p> rdrds
<ose /1o (i (53" ([ o) oo
C/Otf (( ‘3)2(/ I |4pdT> )ds. (4.4)

Applying (3.5) to (4.4) yields

A
10 [ tuenPacs [ il Con [ 76) [ (405 10750 dras

<C+C/ f'(s ( f((s)) + (éf}((?))2(s2+s4—p)> ds.

In(e 2 '
Let f(t) = (In(e + t))3, then f'(t) = 3 i_:;t)) 72ff((?) = (e+t)l:i1(e+t)'

By Plancherel’s theorem,

and simple directly calculating, we have

lu()ll < C(ln(e +1))~". (4.5)
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Note that fot(ln(e +5)) ™ds < Cp,(t + €) In(e + t))~™. Therefore from (4.4) and (4.5), one
shows that
lu(z, )]l < C(ln(e +¢))~

By iteration step by step,
lu®)] < C(ln(e +t))™™, for ¥V m e N. (4.6)

Applying (4.4) and Holder Inequality yields

50 [ ateopazore [ polDac [ (LY [uepas:

' ‘FTP / I(S ? ' a— 4;17
C/o sz f(s) (2f(s ) ( lu(s)| PdS) ds.

Let f(t) = (1 +t)?, then

(1 —|—t)2/R2 la(g,t)2de <C(1+1t) +C(1 +t)/ |lu(s)||*ds+

QT’
Cl + 1) (/ﬁu H4p®)

Noting % < 4%” < 1 and using the Young Inequality to the last term yield

(/ Jus ||4pds) <c/ Ju(s)|[#7ds + C.

Thus from (4.4), we get the following inequality
(140 [l nPds < o+
2

R
' - —m — 7%
C/O ||u(s)|\2(1+s) ((1+s) 1(1n(e—|—s)) +(1+s) 1(111(6—1—5)) v )ds.

Let
o) =1+ [ faenPaE=(+0) [ futeol,
( p—4)
h(t) = (1+ 1) (n(e+1) "™ + (1 + 1) (n(e + 1) "7
When m is suitable large, it is simple to deduce that h(t) satisfies fo t)dt < 0o, so by Lemma

3.2, we have
g(t) < Cexp </ h(t)dt) <C.
0

So
lu(®)]| < CQ+1t)7%.

(II) The Case n =3, <p<3.
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From (3.6) and (4.3), similarly, by Holder Inequality and Young Inequality we have

1) [ tate.oPds < [ ol

2

oo [0 [ (nuon e [ o ([ ) Ea) ) Pards
covef o ((42) ()" o)

o [ 7o (L) o ([ luonBHa) o

v (B2 () )

¢ / 76 () = ([ s+ o) as

Note § < 22292 <1, fg 22 2, and let f(t) = (1 +t)?, then from (3.3) we have

(1412 / (e, 1) 2de
R3
SC(l—Ft) +C 1+t%/ ||u H4d8+01+t%/ Hu |19 ﬁpds

1+t%/|m )[|2ds.

o=

<O +1)

So
(1+ﬂ5A;W@JHd§§0+4?4{u+sﬁmmgnK1+@*hm

According to Lemma 3.2, it is easy to deduce
lu(t)] < C+0)7 1.
Hence the proof of theorem is completed.
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