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1. Introduction

The differential and integral calculus for the fuzzy-valued functions, shortly fuzzy calculus,

have been developed in the recent papers of O.Kaleva[4], M.L.Puri, D.A.Ralescu[5], Gong Zengtai

and Wu Congxin[2]. In [4], in order to show the existence of the solution of fuzzy differential

equations, Kaleva discussed the properties of differentiability of fuzzy-valued mappings by the

concept of H-differentiability. However, the discussion of H-differentiability is very difficult be-

cause the function considered must satisfy H-difference. H-difference was first presented by Puri

and Ralescu[5] in 1983. For H-differentiability of fuzzy-valued functions, we have pointed out

that there exists a fuzzy-valued function which is Kaleva integrable on [0, 1], but its primitive is

not differentiable almost everywhere[1]. Another definition of fuzzy-valued functions was given

by Seikkala in 1987[6]. We call it S-differentiability. In this paper, first we have to recall some

basic results of fuzzy numbers and definition of H-difference of fuzzy-valued functions. Next,

we introduce the definition of the monotonicity of interval functions and use it to character-

ize H-difference. In addition, relations among H-difference, H-differentiability, and Seikkala

differentiability are discussed.

2. Notations and preliminaries

Let F (R) be the class of all fuzzy subsets on R. For Ã ∈ F (R), let Ã satisfy the following

conditions:

(1) Ã is normal, i.e., there exists x0 ∈ R, such that A(x0) = 1;
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(2) Ã is a convex fuzzy set, i.e., A(tx+(1−t)y) ≥ min(A(x), A(y)), for any x, y ∈ R, t ∈ [0, 1];

(3) A(x) is upper semi-continuous;

(4) [A]0 = {x ∈ R : A(x) > 0} is compact.

Then we say Ã is a fuzzy number. Let E1 denote the set of all fuzzy numbers[3−5].

For Ã, B̃ ∈ E1, k ∈ R, we define Ã + B̃ = C̃ iff Aλ + Bλ = Cλ, λ ∈ [0, 1], iff A+
λ + B+

λ =

C+
λ , A−

λ + B−

λ = C−

λ , for any λ ∈ [0, 1]. [kA]λ = kAλ, λ ∈ [0, 1], where Aλ = {x|A(x) ≥ λ}. We

easily prove that Aλ is a close interval, and write [A−

λ , A+
λ ][3−5].

Define D(Ã, B̃) = sup
λ∈[0,1]

max(|A−

λ − B−

λ |, |A+
λ − B+

λ |).

Definition 2.1[4,5] Let f̃ : [a, b] → E1. We say f̃ satisfies H-difference on [a, b], if for any

x1, x2 ∈ [a, b] satisfying x1 < x2, there exists Ã ∈ E1 such that f̃(x2) = f̃(x1) + Ã, denoted by

f̃(x2) − f̃(x1) = Ã.

3. Characterize of H-difference

Lemma 3.1[3] If Ã ∈ E1, then

(1) A−

λ is nondecreasing function on [0, 1],

(2) A+
λ is nonincreasing function on [a, b],

(3) A−

λ , A+
λ are bounded and left continuous on (0, 1], and right continuous at λ = 0, and

(4) A−

1 ≤ A+
1 .

Conversely, if a(λ), b(λ) satisfy (1)–(4), then there exists a unique Ã ∈ E1 such that Aλ =

[a(λ), b(λ)] for any λ ∈ [0, 1].

In order to study the characterization of H-difference condition, we will give the concept of

interval function and its monotonicity.

Definition 3.2 Let f : [a, b] × [c, d] → R be two variable function. F (I) is called the interval

function induced by f , if

F (I) = f(x2, y2) − f(x2, y1) − f(x1, y2) + f(x1, y1),

for nondegenerate interval I = [x1, x2] × [y1, y2], where [x1, x2] ⊂ [a, b], [y1, y2] ⊂ [c, d]. In par-

ticular, for degenerate interval Iy = [x1, x2] × [y, y](x1 < x2), F (Iy) = f(x2, y) − f(x1, y). For

degenerate interval Ix = [x, x] × [y1, y2](y1 < y2), F (Ix) = f(x, y2) − f(x, y1). For degenerate

interval Ix
y = [x, x] × [y, y], F (Ix

y ) = f(x, y).

Definition 3.3 Let F (I) be the interval function induced by f . F (I) is said to be nondecreasing

(nonincreasing), if F (I) ≥ 0 (F (I) ≤ 0), for any I ⊂ [a, b] × [0, 1].

Theorem 3.4 Let f̃ : [a, b] → E1, and [f̃(x)]λ = [f−

λ (x), f+
λ (x)]. Then f̃(x) satisfies H−difference

if and only if:

(1) F+(I1) ≥ F−(I1),

(2) F−(I) is nondecreasing,
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(3) F+(I) is nonincreasing.

Here I1 = [x1, x2] × [1, 1], ([x1, x2] ⊂ [a, b] and x1 < x2), for nondegenerate interval I ⊂ [a, b] ×

[0, 1], and F−(I) and F+(I) are the interval functions induced by f− and f+, respectively.

Proof If f̃(x) satisfies H-difference on [a, b], then for any x1, x2 ∈ [a, b] satisfying x1 < x2, there

exists Ã ∈ E1 such that f̃(x2) = f̃(x1) + Ã. This gives that

(1) F+(I1) = f+
1 (x2) − f+

1 (x1) = A+
1 , F−(I1) = f−

1 (x2) − f−

1 (x1) = A−

1 . Since Ã is a fuzzy

number, by Lemma 3.1, we have A−

1 ≤ A+
1 , i.e., F−(I1) ≤ F+(I1).

(2) By Lemma 3.1, we have that A−

λ = f−

λ (x2) − f−

λ (x1) is nondecreasing. For any 0 ≤

λ1 ≤ λ2 ≤ 1, we have f−

λ2
(x2) − f−

λ2
(x1) ≥ f−

λ1
(x2) − f−

λ1
(x1), then F−(I) = f−

λ2
(x2) − f−

λ2
(x1) −

f−

λ1
(x2) + f−

λ1
(x1) ≥ 0. Here I = [x1, x2] × [λ1, λ2].

Hence F−(I) is nondecreasing.

(3) By Lemma 3.1, we have that A+
λ = f+

λ (x2)− f+
λ (x1) is nonincreasing. For any 0 ≤ λ1 ≤

λ2 ≤ 1, we have f+
λ2

(x2) − f+
λ2

(x1) ≤ f+
λ1

(x2) − f+
λ1

(x1), that is F+(I) = f+
λ2

(x2) − f+
λ2

(x1) −

f+
λ1

(x2) + f+
λ1

(x1) ≤ 0. Here I = [x1, x2] × [λ1, λ2].

Hence F+(I) is nonincreasing.

Conversely, for any x1, x2 ∈ [a, b] satisfying x1 < x2 and each λ ∈ [0, 1], let [a(λ), b(λ)] =

[f−

λ (x2) − f−

λ (x1), f
+
λ (x2) − f+

λ (x1)]. We can show that a(λ) and b(λ) (λ ∈ [0, 1]) satisfy the

conditions of Lemma 3.1.

(1) For any λ1, λ2 ∈ [0, 1] satisfying λ1 < λ2, we have

a(λ2) − a(λ1) = (f−

λ2
(x2) − f−

λ2
(x1)) − (f−

λ1
(x2) − f−

λ1
(x1))

= f−

λ2
(x2) − f−

λ2
(x1) − f−

λ1
(x2) + f−

λ1
(x1) = F−(I) ≥ 0.

Here I = [x1, x2] × [λ1, λ2]. Hence a(λ2) ≥ a(λ1), i.e., a(λ) is a nondecreasing function on [0, 1].

(2) For any λ1, λ2 ∈ [0, 1] satisfying λ1 < λ2, we have

b(λ2) − b(λ1) = (f+
λ2

(x2) − f+
λ2

(x1)) − (f+
λ1

(x2) − f+
λ1

(x1))

= f+
λ2

(x2) − f+
λ2

(x1) − f+
λ1

(x2) + f+
λ1

(x1) = F+(I) ≤ 0.

Here I = [x1, x2] × [λ1, λ2]. i.e. b(λ2) ≤ b(λ1). Hence b(λ) is nonincreasing on [0, 1].

(3) Obviously, a(λ), b(λ) are bounded and left continuous on (0, 1], and right continuous at

λ = 0.

(4) b(1) = f+
1 (x2) − f+

1 (x1) = F+(I1), a(1) = f−

1 (x2) − f−

1 (x1) = F−(I1). Hence, a(1) ≤

b(1).

By Lemma 3.1, a(λ), b(λ) determine a fuzzy number B̃ ∈ E1 such that f̃(x2) − f̃(x1) = B̃.

This is, there exists B̃ ∈ E1 such that f̃(x2) = f̃(x1) + B̃ .

The proof is complete.

Proposition 3.5 Let f̃ , g̃ : [a, b] → E1. For any x ∈ [a, b], the H-difference f̃(x) − g̃(x) exists

if and only if:

(1) (F− − G−)(Ix
1 ) ≤ (F+ − G+)(Ix

1 ),
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(2) (F− − G−)(Ix) is nondecreasing,

(3) (F+ − G+)(Ix) is nonincreasing.

Here (F − G)(I) denote interval function F (I) − G(I). F−(I), F+(I), G−(I) and G+(I) are the

interval functions induced by f−, f+, g− and g+, respectively.

Proof If f̃(x) = g̃(x) + Ã(x), for any x ∈ [a, b], i.e., f̃(x) − g̃(x) = Ã(x) ∈ E1, then

(1) (F− −G−)(Ix
1 ) = f−

1 (x)− g−1 (x) = A−

1 (x) ≤ A+
1 (x) = f+

1 (x)− g+
1 (x) = (F+ −G+)(Ix

1 ),

(2) A−

λ (x) = f−

λ (x) − g−λ (x) is nondecreasing on [0, 1]. For any λ1, λ2 ∈ [0, 1] satisfying

λ1 < λ2, we have

(F− − G−)(Ix) = f−

λ2
(x) − g−λ2

(x) − (f−

λ1
(x) − g−λ1

(x)) = A−

λ2
(x) − A−

λ1
(x) ≥ 0,

i.e., (F− − G−)(Ix) is nondecreasing.

(3) The proof is similar to (2).

Conversely, for any x ∈ [a, b], we can prove that f−

λ (x) − g−λ (x), f+
λ (x) − g+

λ (x)(λ ∈ [0, 1])

satisfy the condition of Lemma 3.1.

(i) For any λ1, λ2 ∈ [0, 1] satisfying λ1 < λ2, we have

(f−

λ2
(x) − g−λ2

(x)) − (f−

λ1
(x) − g−λ1

(x)) = (F− − G−)(Ix) ≥ 0,

i.e., f−

λ2
(x) − g−λ2

(x) ≥ (f−

λ1
(x) − g−λ1

(x)). Hence, f−

λ (x) − g−λ (x) is nondecreasing on [0, 1].

(ii) Similarly, f+
λ (x) − g+

λ (x) is nonincreasing on [0, 1].

(iii) Obviously, f−

λ (x)−g−λ (x), f+
λ (x)−g+

λ (x) are bounded and left continuous on (0, 1], and

right continuous at λ = 0.

(iv) f−

1 (x) − g−1 (x) = (F− − G−)(Ix
1 ) ≤ (F+ − G+)(Ix

1 ) = f+
1 (x) − g+

1 (x).

By Lemma 3.1, [f−

λ (x) − g−λ (x), f+
λ (x) − g+

λ (x)] (λ ∈ [0, 1]) determines a fuzzy Ã(x) ∈ E1, such

that f̃(x) − g̃(x) = Ã(x). i.e., f̃(x) = g̃(x) + Ã(x).

Hence, H-difference f̃(x) − g̃(x) exists, for all x ∈ [a, b].

4. Seikkala differentiability, H-differentiability and H-difference

Remark 4.1 Let f̃ : [a, b] → E1. For each x ∈ [a, b] there exists a β(x) > 0 such that the

H-differences f̃(x + h) − f̃(x) and f̃(x) − f̃(x − h) exist for all 0 ≤ h < β(x). Then f̃ satisfies

the H-difference on [a, b].

Proof By the Heine-Borel covering theorem we easyly prove.

Definition 4.2[6] Let f̃ : [a, b] → E1. f̃ is said to be Seikkala differentiable at x ∈ [a, b] if there

exists f ′(x) ∈ E1 such that

[f̃ ′(x)]λ = [(f−

λ (x))′, (f+
λ (x))′],

for any λ ∈ [0, 1]. In this case, f̃ is called S-differentiable at x ∈ [a, b].

Theorem 4.3 Let f̃ : [a, b] → E1. If f̃ is S-differentiable on [a, b], then f̃ satisfies the H-

difference on [a, b].



No.1 GONG Z T, et al: H-difference and differentiability for fuzzy valued functions 39

Proof For any x ∈ [a, b], since f̃(x) is S-differentiable at x, there exists f̃ ′(x) ∈ E1 such that

[f̃ ′(x)]λ = [(f−

λ (x))′, (f+
λ (x))′].

(1) By Lemma 3.1, (f−

λ (x))′ is nondecreasing on λ ∈ [0, 1]. For any λ1, λ2 ∈ [0, 1] satisfying

λ1 < λ2, we have (f−

λ1
(x))′ ≤ (f−

λ2
(x))′, i.e., (f−

λ2
(x) − f−

λ1
(x))′ ≥ 0. Hence f−

λ2
(x) − f−

λ1
(x) is

nondecreasing on [a, b]. For any x1, x2 ∈ [a, b] satisfying x1 < x2, we have f−

λ2
(x2) − f−

λ1
(x2) ≥

f−

λ2
(x1) − f−

λ1
(x1), i.e., f−

λ2
(x2) − f−

λ1
(x2) − f−

λ2
(x1) + f−

λ1
(x1) ≥ 0. This implies that F−(I) is

nondecreasing, where I = [x1, x2] × [λ1, λ2] ⊂ [a, b]× [0, 1] is arbitrary nondegenerate interval.

(2) (f+
λ (x))′ is nondecreasing on λ ∈ [0, 1]. For any λ1, λ2 ∈ [0, 1] satisfying λ1 < λ2, we

have (f+
λ2

(x))′ ≤ (f+
λ1

(x))′, i.e., (f−

λ2
(x) − f−

λ1
(x))′ ≤ 0. So f+

λ2
(x) − f+

λ1
(x) is nondecreasing on

[a, b]. For any x1, x2 ∈ [a, b] satisfying x1 < x2, we have f+
λ2

(x2) − f+
λ1

(x2) ≥ f+
λ2

(x1) − f+
λ1

(x1),

i.e., f+
λ2

(x2)− f+
λ1

(x2)− f+
λ2

(x1) + f+
λ1

(x1) ≤ 0. This implies that F+(I) is nonincreasing, where

I = [x1, x2] × [λ1, λ2] ⊂ [a, b] × [0, 1] is arbitrary nondegenerate interval.

(3) By Lemma 3.1, (f−

1 (x))′ ≤ (f+
1 (x))′, for any x ∈ [a, b]. There exists a β(x) > 0 such

that

f−

1 (x2) − f−

1 (x1) ≤ f+
1 (x2) − f+

1 (x1),

for any 0 < h < β(x), x1, x2 ∈ [x − h, x + h] satisfying x1 < x2, i.e., F−(I1) ≤ F+(I1).

By using Theorem 3.4 and Remark 4.1, f̃ satisfies the H-difference on [a, b].

Definition 4.4[4,5] Let f̃ : [a, b] → E1 satisfy H-difference. f̃ is said to be H-differentiable at

x0 ∈ [a, b] if there exists f ′(x) ∈ E1 such that the limits

lim
h→0+

f̃(x0 + h) − f̃(x0)

h
and lim

h→0+

f̃(x0) − f̃(x0 − h)

h

exist and equal f ′(x).

Here the limit is taken in the metric space (E1, D). At the end points of [a, b] we consider

only the one-sided derivatives.

Lemma 4.5[7] Let f̃ : [a, b] → E1. Then f̃ satisfies H-difference and H-differentiable on [a, b]

if and only if f−

λ (x) and f+
λ (x) (λ ∈ [0, 1]) are differentiable, and

G−

h (λ) =
f−

λ (x + h) − f−

λ (x)

h
, G+

h (r) =
f+

λ (x + h) − f+
λ (x)

h

converge to (f−

λ (x))′, (f+
λ (x))′ uniformly, respectively, and (f−

λ (x))′, (f+
λ (x))′ determine a fuzzy

number, for any x ∈ [a, b].

Example 4.7 shows that the following Proposition 4.6 hold.

Proposition 4.6 Let f̃ : [a, b] → E1, and f̃ be S-differentiable on [a, b]. Although f̃ satisfies

the H-difference on [a, b], it does not imply that f̃ is H-differentiable on [a, b].

Example 4.7 Define

G̃(x)(s) =





1, s = 0,

x − s
2 , 0 ≤ s ≤ 2x,

0, otherwise,
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the λ-level set is

[G(x)]λ =

{
[0, 0], x < λ ≤ 1,

[0, 2(x − λ)], 0 ≤ λ ≤ x.

Obviously, G̃(x) is S-differentiable on [0, 1], and

G̃′(x) = f̃(x),

where

f̃(x)(s) =





1, s = 0,

x, 0 ≤ s ≤ 2,

0, otherwise,

and

[f(x)]λ =

{
[0, 0], x < λ ≤ 1,

[0, 2], x < λ ≤ 1.

Furthermore,

G̃(x) = G̃(0) +

∫ x

0

f̃(t)dt

satisfies H-difference. However, G̃(x) is not H-differentiable. In fact, for any x ∈ [0, 1] and

h > 0, we have

D(
G̃(x + h) − G̃(x)

h
, f̃(x)) ≥

1

h
sup

λ∈(x,x+h]

|[G(x + h) − G(x)]+λ − h[f(x)]+λ |

=
1

h
sup

λ∈(x,x+h]

(2(x + h − λ)) = 2.
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