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Abstract: In this paper, we introduce the concept of monotonicity of interval functions and
give the characterization of fuzzy valued functions which satisfies the H-difference. Further-
more, relations among H-difference, H-differentiability and S-differentiability are discussed.
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1. Introduction

The differential and integral calculus for the fuzzy-valued functions, shortly fuzzy calculus,
have been developed in the recent papers of O.Kaleval*!, M.L.Puri, D.A.Ralescul® | Gong Zengtai
and Wu Congxinl?l. In [4], in order to show the existence of the solution of fuzzy differential
equations, Kaleva discussed the properties of differentiability of fuzzy-valued mappings by the
concept of H-differentiability. However, the discussion of H-differentiability is very difficult be-
cause the function considered must satisfy H-difference. H-difference was first presented by Puri
and Ralescul® in 1983. For H-differentiability of fuzzy-valued functions, we have pointed out
that there exists a fuzzy-valued function which is Kaleva integrable on [0, 1], but its primitive is
not differentiable almost everywherel'). Another definition of fuzzy-valued functions was given
by Seikkala in 1987[6]. We call it S-differentiability. In this paper, first we have to recall some
basic results of fuzzy numbers and definition of H-difference of fuzzy-valued functions. Next,
we introduce the definition of the monotonicity of interval functions and use it to character-
ize H-difference. In addition, relations among H-difference, H-differentiability, and Seikkala

differentiability are discussed.

2. Notations and preliminaries

Let F(R) be the class of all fuzzy subsets on R. For A € F(R), let A satisfy the following
conditions:
(1) A is normal, i.e., there exists zo € R, such that A(zo) = 1;
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(2)
3)
(4) [A)lo = {x € R : A(z) > 0} is compact.
Then we say A is a fuzzy number. Let E' denote the set of all fuzzy numbers3—5.
For A,B € E', k € R, we define A+ B = C iff Ay + By = C\,\ € [0,1], iff A + B =
CY, Ay + B, =Cy, for any A € [0,1]. [kA]\ = kA, X € [0,1], where A\ = {z|A(z) > \}. We
easily prove that Ay is a close interval, and write [A} , A]B=5).

Define D(A, B) = sup max(|A; — By |,|AT — BY).
A€0,1]

A'is a convex fuzzy set, i.e., A(tz+(1—t)y) > min(A(z), A(y)), for any z,y € R, t € [0, 1];
A

i
(z) is upper semi-continuous;

Definition 2.145 Let f : [a,b] — E'. We say f satisfies H-difference on [a,b], if for any
T1, 29 € [a,b] satisfying x1 < xq, there exists A € E' such that f(zy) = f(x1) + A, denoted by

fla2) = fz1) = A.
3. Characterize of H-difference

Lemma 3.183) If A € E', then

(1) Ay is nondecreasing function on [0, 1],

(2) AT is nonincreasing function on [a, b],

(3) Ay, AY are bounded and left continuous on (0, 1], and right continuous at A = 0, and

(4) A7 < Af.

Conversely, if a()), b(\) satisfy (1)-(4), then there exists a unique A € E' such that Ay =
[a(X),b(N)] for any A € [0,1].

In order to study the characterization of H-difference condition, we will give the concept of

interval function and its monotonicity.

Definition 3.2 Let f : [a,b] X [¢,d] — R be two variable function. F(I) is called the interval
function induced by f, if

F(I) = f(z2,y2) — f(22,y1) — f(21,92) + f(z1,91),

for nondegenerate interval I = [x1, 2] X [y1,y2], where [z1, 2] C [a,b], [y1,y2] C [c,d]. In par-
ticular, for degenerate interval I, = [x1, 2] X [y, y](z1 < x2), F(Iy) = f(z2,y) — f(x1,y). For
degenerate interval I* = [x,x] X [y1,y2](y1 < y2), F(I*) = f(z,y2) — f(x,y1). For degenerate
interval I} = [z, 2] X [y,y], F'(I]) = f(x,y).

Definition 3.3 Let F(I) be the interval function induced by f. F(I) is said to be nondecreasing
(nonincreasing), if F(I) > 0 (F(I) <0), for any I C [a,b] x [0, 1].
Theorem 3.4 Let f : [a,b] — E', and [f(z)]y = [fy (@), £y (z)]. Then f(x) satisfies H—difference
if and only if:

(1) FH(1) > F(I),

(2) F~(I) is nondecreasing,
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(3) F*(I) is nonincreasing.
Here Iy = [x1, 2] % [1,1], ([x1,22] C [a,b] and 1 < x2), for nondegenerate interval I C [a,b] X
[0,1], and F~(I) and F*(I) are the interval functions induced by f~ and f7, respectively.

Proof If f(x) satisfies H-difference on [a, b], then for any 1,z € [a, b] satisfying 21 < 2, there
exists A € E' such that f(zq) = f(z1) + A. This gives that

(1) FH(L) = fi (z2) — fi (z1) = AT, F~ (L) = f{ (z2) — f; (z1) = Ay . Since A is a fuzzy
number, by Lemma 3.1, we have A7 < A, ie., F~(I;) < FH(I}).

(2) By Lemma 3.1, we have that Ay = f, (z2) — f, (1) is nondecreasing. For any 0 <
A < A2 <1, we have fy (z2) — £, (z1) > fi, (z2) — f3, (21), then F~(I) = f{ (22) — [, (z1) —
Iy, (@2) + f, (w1) > 0. Here I = [x1, 2] X [A1, A2].

Hence F~(I) is nondecreasing.

(3) By Lemma 3.1, we have that AT = £y (z2) — fi (z1) is nonincreasing. For any 0 < A\ <
A2 < 1, we have f;;(:zzg) - f;;(xl) < f;rl(xg) - f;\rl(xl), that is FT(I) = f;;(:zzg) - f;;(xl) -
f;'l (x2) + f)': (z1) <0. Here I = [1,22] X [A1, Ao

Hence F'*(I) is nonincreasing.

Conversely, for any x1,z2 € [a,b] satisfying ©1 < zo and each A € [0, 1], let [a(\),b(N)] =
[fy (x2) = [y (1), fi (z2) — fi (z1)]. We can show that a(\) and b(A) (A € [0,1]) satisfy the
conditions of Lemma 3.1.

(1) For any Ay, A2 € [0, 1] satisfying A1 < A2, we have

a(A2) —a(M) = (fy, (x2) — 1, (1)) = (fy, (22) = [y, (z1))
= fr, (@2) = fy, (21) = [ (x2) + f5, (v1) = F'~(I) > 0.

Here I = [x1, 23] X [A1, A2]. Hence a(A2) > a(A\1), i.e., a()) is a nondecreasing function on [0, 1].
(2) For any A1, A2 € [0, 1] satisfying A1 < Az, we have

b(A2) — b(A1) = (f5, (x2) — £ (@1)) = (f5 (z2) — f¥, (1))
= fi (@2) — f (@1) = [ (x2) + [ (z1) = FH(I) <.

Here I = [z1, 23] X [A1, A2]. i.e. b(A2) < b(A1). Hence b()) is nonincreasing on [0, 1].
(3) Obviously, a(\),b(A\) are bounded and left continuous on (0, 1], and right continuous at
A=0.
(4) b(1) = fi (w2) = fi (@1) = F*(N),a(1) = fi (v2) — fy (1) = F~(I1). Hence, a(l) <
b(1).

~—

By Lemma 3.1, a()\), b(\) determine a fuzzy number B € E' such that f(z) — f(x1) = B.
This is, there exists B € E' such that f(z2) = f(z1) + B .

The proof is complete.

Proposition 3.5 Let f,§: [a,b] — E'. For any x € [a,b], the H-difference f(z) — j(z) exists
if and only if:
(1) (F~ = G7)UT) < (FF = GT)(I7),
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(2) (F~ — G~)(I*) is nondecreasing,

(3) (F* — G*)(I*) is nonincreasing.
Here (F — G)(I) denote interval function F(I) — G(I). F~(I), F™(I),G~(I) and G (I) are the
interval functions induced by f~, f*,g9~ and g, respectively.

Proof Iff() ()—i—fl()foranyxe[ab]ie f(x) — g(x) = A(x) € E', then
(1) (F~=G)UT) = fi (2) =gy (2) = Ay (2) < A (2) = [, (2) —g{ (¥) = (FF = G)(I}),
(2) Ay (z ) = fy (z) — g, (z) is nondecreasing on [0,1]. For any )\1,)\2 € [0,1] satisfying
A1 < Ao, we have

(F~ = G)U") = [, (@) — g5, (2) = (f5, (2) — g5, (2)) = A}, (z) — A (z) =0,

ie., (F~ —G7)(I*) is nondecreasing.

(3) The proof is similar to (2).

Conversely, for any x € [a,b], we can prove that f (z) — g5 (), fi (z) — g (z)(X € [0,1])
satisfy the condition of Lemma 3.1.

(i) For any A1, A2 € [0,1] satisfying Ay < Ag, we have
(fxo (@) = g5, (2)) = (5, () — g5, () = (F~ =G7)(I") = 0

Le, [, (@) =gy, (@) > (fy, (x) — gy, (x)). Hence, fy (x) — g, (z) is nondecreasing on [0, 1].

(ii) Similarly, fy (z) — g} (z) is nonincreasing on [0, 1].

(iii) Obviously, fy () — gy (z), f (¥) — g¥ (x) are bounded and left continuous on (0, 1], and
right continuous at A = 0.

(iv) f (@) =gy (@) = (F~ = GO)(I}) < (FF = GH)(I}) = fi (2) — g{ ().
By Lemma 3.1, [f, () — g, (2), f ;( ) — g¥ ()] (X € [0,1]) determines a fuzzy A(z) € E*, such
that f(z) - §(z) = A(x). ie., f(z) = j(z) + A(z).

Hence, H-difference f(x) — §(x) exists, for all € [a, b].

4. Seikkala differentiability, H-differentiability and H-difference

Remark 4.1 Let f : [a,0] — E'. For each x € [a,b] there exists a §(z) > 0 such that the
H-differences f(x + h) — f(x) and f(z) — f(z — h) exist for all 0 < h < 3(x). Then f satisfies
the H-difference on [a, b].

Proof By the Heine-Borel covering theorem we easyly prove.

Definition 4.2[6 Let f:[a,b] — E'. f is said to be Seikkala differentiable at x € [a, b] if there
exists f'(z) € E' such that

[F/@)x = [(fx @), (3 @)'],

for any \ € [0,1]. In this case, f is called S-differentiable at x € [a, b].

Theorem 4.3 Let f : [a,b] — E'. If f is S-differentiable on [a,b], then f satisfies the H-

difference on [a, b].
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Proof For any = € [a,b], since f(z) is S-differentiable at z, there exists f/(x) € E' such that

[F'@)x = [(F5 (@), (5 (@))']

(1) By Lemma 3.1, (f, (z))" is nondecreasing on A € [0, 1]. For any A1, A2 € [0, 1] satisfying
M < Ao, we bave (f5 (1)) < (f (), ke, (fi(2) — Fr (@) > 0. Henee i, (2) — fi. (@) is
nondecreasing on [a,b]. For any x1,z2 € [a,b] satisfying 71 < z2, we have f (22) — fy (z2) >
I, (@) = [y (1), ie, fy (z2) — fy (z2) — [y, (z1) + fy, (z1) > 0. This implies that F'~(I) is
nondecreasing, where I = [z1,x2] X [A1, A2] C [a,b] x [0, 1] is arbitrary nondegenerate interval.

(2) (fy (z))" is nondecreasing on A € [0,1]. For any A, A2 € [0, 1] satisfying A1 < A2, we
have (f;\;(:zr))’ < (f/{"1 (), ie, (fy,(x) = fy,(z)) < 0. So f;;(x) - fjl (x) is nondecreasing on
[a,b]. For any x1,z5 € [a,b] satisfying 1 < x, we have f} (z2) — fi (z2) > fi (21) — f¥ (21),
Le., fi (z2) = f (x2) = £ (z1) + f¥, (x1) < 0. This implies that F*(I) is nonincreasing, where
I =[xy, 2] X [A1, A2] C [a,b] x [0, 1] is arbitrary nondegenerate interval.

(3) By Lemma 3.1, (f; (z)) < (f{ (x))’, for any x € [a,b]. There exists a 3(z) > 0 such
that

fr (@) = fi (1) < fif (22) = £ (1),

for any 0 < h < (), 21,22 € [x — h,x + h] satisfying x1 < 2, i.e., F~ (1) < F*(I).
By using Theorem 3.4 and Remark 4.1, f satisfies the H-difference on [a, b].

Definition 4.44% Let f : [a,b] — E! satisfy H-difference. f is said to be H-differentiable at
xo € [a, b] if there exists f'(x) € E' such that the limits

lim fzo+ ) — f(xo) and lim
h—0+ h h—0+

flxo) = flzo — 1)
h

exist and equal f'(z).
Here the limit is taken in the metric space (E!, D). At the end points of [a,b] we consider

only the one-sided derivatives.

Lemma 4.5) Let f : [a,b] — E'. Then f satisfies H-difference and H-differentiable on [a, b]
if and only if fy (z) and f{ (z) (X € [0,1]) are differentiable, and

Bath) = /@) gy - ath) - @)

G () = ; .

converge to (fy (z))', (fy (z)) uniformly, respectively, and (fy (z))’, (fy (z))’ determine a fuzzy
number, for any x € [a, b].

Example 4.7 shows that the following Proposition 4.6 hold.

Proposition 4.6 Let f : [a,b] — E', and f be S-differentiable on [a,b]. Although f satisfies
the H-difference on [a,b], it does not imply that f is H-differentiable on [a,b].

Example 4.7 Define
1, s =0,
G)(s)=<¢ z—%, 0<s<2z,
0, otherwise,
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the A-level set is

G'(z) = f(a),
where
B 1, s=0,
f@)(s)=q =, 0<s<2
0, otherwise,
and 0, 0] A<
) ) :L. < S )
[ﬂ@h_{[am r<A<L
Furthermore,

G(z) = G(0) + /0 ' f(t)dt

satisfies H-difference. However, G(z) is not H-differentiable. In fact, for any z € [0,1] and
h > 0, we have

G h) - G(z) ~
A N OE w6+ ) = G@IE - k@
= l sup (2(x+h-N) =2
I xe(e,z+h
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