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1. Introduction

The singular integral operators and their commutators have been extensively studied in
recent years, and the results are plentiful and substantial. Especially, their boundedness on some
spaces have been resolved with the establishment of the decomposition theory on these spaces.
But the commutators of 6(¢)-type Calderén-Zygmund operators which were introduced in [18]
by Yabuta and in [15] by Lizhong Peng, have not been discussed extensively. However, the
introduction of this kind of operators has profound background of partial differential equation.
By the studies of 6(t)-type Calderén-Zygmund operators, we know that the studies of this kind of
operators and commutators are more complicated and difficult than those of standard Calderén-
Zygmund operators and commutators, see [1], [2], [3], [18] and [19] etc for details. In 2002,
Shanzhen Lu, Qiang Wu and Dachun Yang studied the boundedness of commutators generated
by standard Calderén-Zygmund operators and Lipschitz functions on the Hardy type spaces in
[14]. Inspired by the results in [14] and other papers, we studied the commutators generated
by generalized Calderén-Zygmund operators and Lipschitz functions. By the Minkowski integral
inequality and the Jensen inequality to control some inequalities, in this paper, we obtain the
boundedness of the commutator [b, T] generated by 0(t)-type Calderén-Zygmund operator T and
Lipschitz function b on the Hardy spaces and Herz type Hardy spaces. On critical point, we prove
that this commutator is bounded from Hardy spaces to weak Lebesgue spaces and from Herz
type Hardy spaces to weak Herz spaces.

First of all, let us introduce the definitions of 6(¢)-type Calderén-Zygmund operator, cf.
[18], [15] and [19] etc for details.
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Definition 1.1 Suppose that T is a bounded operator from Schwartz class S(R™) to its dual
S’(R™), satisfying the following conditions:

(i) There exists C' > 0, such that for any f € C§°(R"™), [|Tf|lr2®n) < C|fl2®n)-

(ii) There exists a continuous function k(x,y) defined on Q = {(z,y) € R" x R" : z # y}
and C' > 0 such that

a) |k(z,y)| < Clx —y|™™ for all (z,y) € Q;

b) for all z,x,y € R™ with 2|x — x¢| < |y — 0|,

|zo — |

|zo — yl

[k(x,y) — k(zo,y)| + |k(y, ©) — k(y, z0)| < CO( )zo —y|™",
where 6(t) is a nonnegative nondecreasing function on [0, +00) with fol @dt < +o0 and 0(0) = 0,
6(2t) < CO(t);

¢c) Tf(z)= [k(z,y)f(y)dy, a.e. x ¢ suppf. Then T is said to be a (t)-type Calderdn-
Zygmund operator.

For some properties of §(t)-type Calderén-Zygmund operator defined above, especially the
boundedness on some spaces, see [15], [18] and [19] etc for details.

Similar to the definitions of other commutators, we introduce the definition of commutator

generated by 6(t)-type Calderén-Zygmund operator and Lipschitz function as follows.

Definition 1.2 Let b € Lipg(R"), and T be a 0(t)-type Calderén-Zygmund operator. The
commutator [b, T| generated by b and T is defined by

b, T1f(z) = b(z)T f(x) = T(bf)(x) = /k(%y)(b(x) —b(y))f (y)dy. (1.1)

For 3 > 0, Lipschitz space Lipg(R") is defined by

Lipg®") = {f : |flupyery = sup LD =W

5 < 00} (1.2)
syeRmozy |z —y|

Obviously, if 3 > 1, then Lipg(R") only includes constant, and [b, T] = 0 is trivial. So we
restrict 0 < 8 < 1.
Secondly, let us introduce Riesz integral I, and its boundedness on Lebesgue spaces which

are useful to the proofs of theorems in the following.

Definition 1.31'¢) For 0 < o < n, Riesz integral I, is defined by

() = [ LY

—27 __dy.
R T —yle Y

Lemma 1.11'6 Let 0 < o <n, 1 <p < q < o0, 1/¢ =1/p— a/n. Then there exists C > 0,
such that

Ha(Hlla < Cllf -

The boundedness of commutator [b,T] on the Legesgue spaces is as follows
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Proposition 1.1 Let b € Lipg(R™)(8 = n(% - %)), 1 <p < q<oo. Then commutator [b,T] is
bounded from LP(R™) to L4(R™).

Proof Let f € LP(R™). Then

b, T1f] = I/k(ﬂ?,y)(b(x)—b(y))f(y)dyl
< / [k(z,y)] - [b(z) = b(y)] - | f(y)Idy

< Cblluipy ey / o — "1 () ldy
= Clblluipy ey Ta () (@):

So
16:T)f llq < ClbllLip, e[ La (Dl -

Applying Lemma 1.1 for I, we have

I16: T1f1lq < CllbllLip, @y 1 f1ln -

This completes the proof of Proposition 1.1. O
Here, we write the Minkowski integral inequality, which plays an important role in this

paper, as the Lemma 1.2 below!®.

Lemma 1.2 Let p and v be o-finite measures, and 1 < p < oco. If f(x,y) is measurable on

v X u, then
”/f(xay)dV(I)HLP(u) < /Hf(y)l\m(u)dV(x)- (1.3)

Obviously, when p = 1, Lemma 1.2 is the Fubini theorem.
We will study the boundedness of the commutator on Hardy spaces and Herz type Hardy

spaces in Sections 2 and 3, respectively.

2. Boundedness on Hardy spaces

In this section, we discuss the boundedness of commutator [b,T] generated by 6(t)-type
Calderén-Zygmund operator T and Lipschitz function b on the classical Hardy spaces. And the
boundedness of commutator [b, T] from the Hardy spaces to weak Lebesgue spaces is obtained.

First, let us review the atomic decomposition of the Hardy spaces, which is important to
study the boundedness of operators. For the following definition and lemma, please see [4], [11]
and [17] for details.

Definition 2.1 Let 0 < p < 1. A function a(z) on L?*(R") is said to be a (p,2)-atom, if it
satisfies the following conditions.
1) There exist xy € R™ and r > 0, such that supp a C B(zg,7r) = {x € R" : |x — z¢| < r};
2) llallz < |B(xo, )|/~ 1/7;
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3) fRn a(z)xVdx =0 for |y| < [n(1/p —1)],

where [s] is the largest integer not bigger than s.

Lemma 2.1 Let 0 < p < 1. A distribution f on R" is said to belong to HP(R"™) if and only if
[ can be written as f = >0

= oo Ajaj in the sense of distribution, where a; is (p,2)-atom, and

{\;j} is a sequence of numbers with 3772 |\;[P < co. Moreover
o 1/p
HfHHp(Rn) mnf{ > |Aj|p} , (2.1)
j=—00

where the infimum is taken over all the atomic decompositions of f.

Here we obtain the following results.

Theorem 2.1 Let b € Lipg(R") (0 < < 1), n/(n+p) <p<1andl/g=1/p—F/n. If

1

o(t

/ tl(T;dt < 400, then [b,T] is bounded from HP(R™) to LI(R™).
0

Proof By Lemma 2.1, we only need to prove that there exists a constant C' > 0, for any
(p, 2)-atom a, such that [|[b, Tall; < C||b|Lip, (C being independent of a).
Suppose suppa C B = B(xzg,r). It is easy to see that

ol < ([ wraeran) ([ )
—rtm. 0 (2.2)

Pick real numbers p; and ¢; satisfying 1 < p1 < min(2,n/3), 1/¢1 = 1/p1 — 5/n. Using the
Holder inequality and applying the (LP', L%) boundedness of [b,T] in the Proposition 1.1 and

the size condition of a, we obtain

1< C|bllLip, llally, | BIY 4 % < Cllbllip, lall2| B[P~ < CllblLip,- (2.3)
For II, the Minkowski inequality says that
q 1/4q
w=( [ [ ke -] o)
|t—xzo|>2r | /B
q 1/q
([ Jow -t [ el )
|x—zo|>271 B
q 1/q
(/ [ K)0) ~ ao)atu)as| a)
|t—xo|>2r | /B
=11 + Il. (2.4)
If | — x| > 2r, then
ly — o/’
k(z,y)(b(y) — b(wo))a(y)dy| < Cl|bllLip, [ ——p—la(y)ldy
B B lz—yl

< Olblluip, |z — o[ ™" /B |y — @ol”la(y)|dy

< C|bllLip, |z — x| PP O/P),
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Therefore,

Iy < C|[b]|pip,r 1/ (/
|

T—x0|>2r

1/q
|z — x0|_"qu)

1/q
< C|b|Lip, PP </ t"‘”"ldt)
[t]>2r

< C|bf|Lip, - (2.5)

For II;, by the vanishing condition of a, using the Lemma 1.2 and the Holder inequality, we
have
() = 0(s0) [ (KGw.9) = K a))as)y

q 1/q
II, = (/ dx)
|z—z0|>27 B
|y _ x0| B q 1/q

< Cllblus </ <|a:—xo|ﬁ/ 9( & — ol a(y)ldy ) da

be |z—x0|>21 |=T - =TO|
< bl [ ol [ oo (220 00)
>~ Li - T

i B |x—xo|>2r |$ - I0|

i 64(t) 1a
< Clitluin, | la)]- Iy = aol? ”q( /t<1/2mdt) dy.

And the Jensen inequality tells us

1 09(¢) 1/q
( /0 ta(B—n)+1+n dt)

29— k+1

[e'e] q 1/‘1
Z/ 97(t)dt
Pt ta(B—n)+1+n

IN

IN
Q

Mg

1/q
g(27F+1) Qk(q(ﬁn)Jrn))

el
Il

1

Mg

IN

2
C k+1 2k(ﬁ—n+n/q))l/2>

(
(2
(L (ﬁ ) )
([ #50) ([ )

IN

Q
Eod
)—Aﬂt

IN A
aQ Q

Thus
B—n+n
II, < C||b||L1pB/ la(y)] - |y — o] "0y < Cbl|vip, (2.6)

So, by the estimates (2.3), (2.4), (2.5) and (2.6), we get that [|[b,T]ally < C||bl|Lip,. This
completes the proof of Theorem 2.1. O
Noticing the fact that BMO(R™) is the dual space of H'(R"), we obtain a corollary of

Theorem 2.1 as follows.

1
o(t
Corollary 2.1 Let b € Lipg(R")(0 < 8 < 1), and / 1&; dt < +o0. Then [b,T] is bounded
from L™B(R™) to BMO(R").
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Generally, [b, T] is not bounded from H™/("*+8) to L' except for the trivial case, but it has

the following weak type estimate.

1
o(t
Theorem 2.2 Let b € Lipg(R") (0 < 8 < 1), and/ 1&25 dt < 4+00. Then [b,T] is bounded
0
from H™ ("+8)(R™) to weak L'(R™).

Proof By the Lemma 2.1, we know that there exist (n/(n + §),2)-atom a;, suppa; C B; =
B(zj,7), and number \;, j € Z, such that

f: Z )\jaj, and Z |/\j|p<OO.
It is easy to see that
[0, T]f(x) = Z Aj(b(x) = b(z;))Ta;(x)x2; (x)+
Z As( b(x;))Ta;(x)X 2B, (x)—
AIRVE b(wmaj) (@)
::Il +12 —|—13 (27)

By the Holder inequality and the boundedness of T on L2, we have

1(b = b(x;))Taj(x)xzs, [l = / [b(2) = b(x;)] - |Ta;|dz

< b, / o —a,l/ITa,lda

J

< Cl|bllLip, </23 |z - lewdx) ITajl2

J

+n/2
< Cblluip, T [la2

< CblLip,-

And the vanishing condition of atom a; shows that

(b(x) - b(z;)) / (2, y)a; (y)dy|de

B;

104 Tes@xam el = f

< Clblh, [, Jr=ail?] [ () ko s )ty

5)

|y $| —-n
<Cllty, [ lo—al” | 9( o = 2y ay ()| dyde
(2B;)e Bj |z — ]

J

1
o(t
<l [ last)l -1y [ Gy

J

S C”b”Lin'



No.1 ZHAO K, et al: Boundedness of commutators of generalized Calderén-Zygmund operators 59

Therefore,

o e R™: LI > A3} < OA YL <ox ™t Y |l i=1.2 (2.8)

j=—o00

By
[(b—b(xj))ajlli < CIIbIILipﬁ/B rPla(y)|dy < C,

J

and the weak type (1.1) property of T', we have

> N0 = b(x;))a;

j=—o00

Hox e R™: |I3] > \/3}| < OA?

<ONT YL (2.9)
1

j=—o00

Noticing the fact that n/(n 4+ ) < 1 and using the Jensen inequality, we get
3
{z e R™:|[b,T]f ()] > A} <D {z € R : [I(x)] > A/3}]
i=1

<oy Iy

j=—c0

00 (n+B)/n
gcxl( > |)\j|"/("+ﬁ)) : (2.10)

j=—oco

Taking infinum over all the central atomic decomposition of f finishes the proof of Theorem
2.2. O

3. Boundedness on Herz type Hardy spaces

In this section, we discuss the boundedness of the commutator [b, T generated by 0(t)-type
Calderén-Zygmund operator T and Lipschitz function b on the Herz type Hardy spaces.
First, we introduce the definition of Herz type Hardy space and its atomic decomposition

characterization as follows[8:12.

Definition 3.1 Let S'(R™) be the distribution function space on R, and o € R, 0 < p,q < 0.
For k € 7Z, suppose that B, = {z € R" : |z| < 2¥}, B, = B¥\ B*! and xx = xg, is the
characteristic function of Ej.

(i) The homogeneous Herz space K, o P(R™) is defined by

KgPRY) = {f : f € L, R\ {0}), | f]l gonemy < o0},

where

> 1/p
llizran ={ 3 2 Walagen | -

k=—o0

(i) The nonhomogeneous Herz space K{*P(R") is defined by

KgP(R™) = {f : f € LL R, || fll sy < 00},
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where

£ kg my = (1 xollh + D 257Xl f) 7.
k=1

For all 0 < p < oo and o € R, it is easy to check that

-0, ny __ 0, ny __ n o /p, ny __
KYP(R") = KOP(R") = LP(R"), and K/PP(R") =LV

||

(R™).

So, the Herz spaces are the generalization of the Lebesgue spaces, and the homogeneous Herz
spaces contain the Lebesgue spaces with power weights.
Noticing the fact that [b, T]f(z) < C||b|Lip, L5(|f])(x), by the Theorems 2.3 and 2.4 of [10],

we can obtain the boundedness of commutator [b, T| on the Herz spaces as follows.

Proposition 3.1 Let b € Lipg(R") (0 < 3 < 1). If0 < p < 00, 1 < q1,¢2 < o0, and
/g2 =1/q1 —B/n, —n/q2 < a < n(1—1/q2), then [b,T] is bounded from Kg‘l’p(R") to Kgp(R")
and from KoP(R™) to K&P(R™).

Definition 3.2 Let S’(R™) be the distribution function space on R™. Suppose that G(f) is the
grand maximal function of f1217 and a € R, 0 < p,q < co.
(i) The homogeneous Herz type Hardy space HK?*I’(R") is defined by

HEP(R") = {f € §'(R") : G(f) € KgP(R™)}.
Moreover, we define

1l igr@ny = 1GU o memy-

(ii) The nonhomogeneous Herz type Hardy space HK, g‘*’(R") is defined by

HKSP(R™) = {f € §'(R") : G(f) € Ko7 (R™)}.
Moreover, we define

1l zrcer@ny = 1G()| ko @ny-

For 0 < p < o0, it is easy to check that

-0, ny __ 0, ny __ n o /p, ny __ n
HEK,?(R") = HK,?(R") = HP(R"), and HKp/p”(R )= HP . (R™).

|]

This means that the Herz type Hardy space is the generalization of the classical Hardy spaces,
and the homogeneous Herz type Hardy space contains the classical Hardy spaces with power
weights.

For 1 < ¢ < 400, it can be proved that if —n/g < @ <n(1 —1/g), then

HEKSP(R") = K&P(R™), and HKSP(R") = KOP(R™).
And if & > n(1 — 1/q), then one can prove that

o, n o, n a, n a, n\[10,12
HKXP(R™) # KSP(R™), and HKXP(R™) C K&P(R™)IO12]
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Now, we introduce the atomic decomposition of the Herz type Hardy spaces, which makes

the study of the boundedness of operators on these spaces convenient.

Definition 3.3 Let a € R, 1 < ¢ < oo. A function a(xz) on R™ is called a central («, ¢)-atom,
if it satisfies the following conditions.

1) There exists r > 0, such that suppa C B(0,7);

2) lallg < [B(0,r)|=*/";

3) Jgna(z)z¥dz =0, for |y| < [a —n(1 —1/q)].
Lemma 3.1 Let 0 <p < o0,1< g < oo, and a > n(l —1/q). Then a distribution f on R" is
said to belong to HK{*P(R™) if and only if f can be written as f = "

distribution, where ay, is central («, q)-atom with support By, and {\} is a sequence of number

with 77 |A\k|P < co. Furthermore

oo 1/p
ey ~int{ 3 I} 1)

k=—o00

Apag In the sense of

— 00

where the infimum is taken over all atomic decompositions of f[12l.

Here, we obtain that the commutator [b, T] generated by 0(¢)-type Calderén-Zygmund oper-
ator T and Lipschitz function b is bounded from the Herz type Hardy spaces to the Herz spaces.
That is the following theorem.

Theorem 3.1 Let b € Lipg(R") (0 < g < 1). For 0 < p < 400, 1 < q1, @2 < +00,
1/g2 = 1/q1 — B/n, and n(1 — 1/q1) < o < n(l —1/q1) + B. Suppose /1 :;(Tt;dt < 00. Then
[b,T] is bounded from HKSP(R™) to K&P(R™). ’

Proof By Lemma 3.1, we know that f = Zzozfoo Arag, where ay, is a central (a, g1 )-atom with
support By, and Y po | A\g|P < oo. Write

— 00

1B T oo = D~ 2l T X1,

j=—00
e’} j—2 P
<y 2@( 3 |Ak|-||<[b,T1ak>xj|q2) n
j=—00 k=—o
00 _ 00 P
Y 2( 3 |Ak|-||<[b,T1ak>xj|q2)
j=—o0 k=j—1
=1 + 1L (3.2)

Noticing the fact that [ax|, < 27°*, and using the (L%, L%) boundedness of [b, 7] in the

Proposition 1.1, the Abel lemma and the Holder inequality, one can obtain that

=c 3 (Y Pl 1 Tlol
k

j=—o00 =j—1
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e’} 0 P
< iy, 30 2730 Il lloula )
j=—o0 k=j—1
%) k+1
D kP Y 20her, ifp<1
p k=—o0 Jj=—00
< C”b”Lipﬁ o] o0 ) o0 ) , p/p’
3 ( 3 |Ak|p2<yk>ap/2)< S gl /2> Citps1
j=—o00 Nk=j-1 k=j—1
%) k+1 ‘
STl D 2tmher, ifp<1
<Oy, T e
STl Yo 2imher/z, ifp>1
k=—o0 j=—o00
< Ollbligs,, Y 1Al (3.3)
k=—oc0

For I, we have

g2 1/qz
10 Thow s =( [ R ACCR e )
g2 1/qz
g( /B . (b(x) — b(0)) /B k k(z, y)an(y)dy dx) N
g2 1/q2
(/Bj\le /Bk(b(y)—b(o))k(fﬂ,y)ak(y)dy dx)
=0 +1p. (3.4)
In addition
B
|/, 000 =00 s < o, [ ol
" By [z =l

< CHb”LipB |$|_n2k(6+"(1_1/1h)—a)'

Therefore,
Iy < C|lb||Lip,2 720~ Remn(=1/a)=5) e O|b]| i, 277 W (j, k), (3.5)

where

W, k) = 9(i—k)(a—n(1-1/q1)=0)

For I, noticing that j > k + 2, by the vanishing condition of a;, and the Lemma 1.2, we get
() = 0(0) [ (o) = K, 0))au )y

92 1/q2
Bj\Bj—1 Bi
|y| q2 1/qz
< C[bl|Lip, 7 [0 = )2l a(y)ldy ) da
|
B;\Bj_1 By, I|
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Y, o\ L\
<l | |ak<y>|< / . (e(m)m ) d:v> dy
k J j—1

bomsma—t/an+e [ [ 020 Y
< ClbllLip,, lar(y)| - ly[7277'" n odt dy. (3.6)
B o t +8q2
k

In addition the Jensen inequality, one shows that

Lo (t) Y >, 2 e (t) Has - k+1y ok s
Z_\ -\ - . 9kB
</O prevrs dt) < <kz:1/” e dt) < O( 0271y .2 )q2>

k=1

—k+1Y _ okB
gc;:l:e@ )-2 gc/o Tl < C.

Thus

I < OHbHLipﬁ2_k(a_n(1_l/q1)_6)2_j(n(1—1/q1)+ﬁ)
= C|bllLip, 272Uk (@=n(=1/0)=F)

= CIb|Lip, 277 W (j, k). 3.7)

Similar to (3.3), we have that

oo j—2 p
I <Clblty,, > ( > |Ak|W<j,/~c)>
j=—00 “k=—00
! o) j—2
ST IPW (L k)P, ifp<1
j=—00 k=—00
S CHb”ZI)ApB ! oo j—2 ji—2 p/p/ (38)
> ( > IAkI”W(j,k))( 3y W(j,k)) ifp>1
j=—00 “k=—o0 k=—o00
<ClblE,, S Il
k=—o0

Colligating the above estimates of (3.3) and (3.8), we have

0 1/p
1. T1 1 g < Cloluin, ( > |Ak|p> . (3.9)
k=—o0
Taking the infinum over all the central atomic decomposition of f, we finish the proof of
Theorem 3.1. O
Similarly, the results related to the nonhomogeneous Herz spaces also hold. And the proof
is similar to Theorem 3.1. Here, we omit the details.
On critical point, the commutator [b, T] generated by 6(t)-type Calderén-Zygmund operator
T and Lipschitz function b has weak type estimate similar to Theorem 2.2. So, we introduce the

definition of the weak Herz spaces, which was introduced in [1] initially.

Definition 3.4 Let « € R, 0 < p < 0o and 0 < ¢ < oo (B, and E}, are the same as Definition
3.1).
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(i) A measurable function f on R™ is said to belong to the homogeneous weak Herz spaces
WESPR), i |l ey = SUPxs0 MG g 27| € B : [£(2)] > A}P/1}1/7 < o,

(ii) A measurable function f on R™ is said to belong to the nonhomogeneous weak Herz
spaces WK P(R"), if

1wz ey =sup M o € Bo s )] > )P+

1/p
S 2w € By - ()] > A}W}
k=1
<0Q0.

For all 0 < p < oo and a € R, one can get
WKpP(R") = WKPP(R") = WLP(R"), and WKp/PP(R") = WLP . (R").

This shows that the weak Herz space contains weak LP(R"™) space, and the homogeneous weak

Herz space contains weak LP(R™) spaces with power weights.

Theorem 3.2 Let b € Lipﬁ(R")(O < B <1). Suppose that 0 < p < 1,1 < g1,q2 < +00,

o(t n
1/q¢2 =1/q¢1 — B/n, and / 1(+23dt < 0. Then [b,T] is bounded from HK, (1 1/‘11)+ﬁp(R") to

WK;;(l—l/m)-l-ﬁm(Rn).

Proof Let f € HK;(lfl/ql)Jrﬁ’p(R"). By Lemma 3.1, one has

Z Akag,

k=—o0

where ay, is a central (n(l — —) + B, q1)-atom with support By, and Y 7o |Ax]P < co. Write

— 0o

([, T]fHWKnu R ili% AP Z 2;'(n(14/¢11)+ﬁ)10|{jj € Ej:|bT]f| > )\}|p/q2

j=—o00
i—2 p/q2
< Csup NP Z 21 (n(1=1/q)+B)p {xe Bt Y M(b(x) = b(0)Tak(w)| > /\/3} +
A>0 j=—00 k=—o0
j—2 p/q2
C'sup AP Z 29I (n(1=1/a1)+B)p {x €E;: Z AT ((b—b(0))ag)(x)| > /\/3} +
A>0 j=—o00 k=—c0
p/q2
Csup N Z 93 (n(1=1/q1)+B)p {erj >/\/3}
A>0 . —
J=—00 =j—1
= My + My + Ms. (3.10)
Similar to II in Theorem 3.1, it is easy to know that
o0 o0 P o0
My < C Y 200 e Ol NN b, Tlag(x)y, | < ClIbIEs,, > P (3.11)
j=—o00 k=j—1 q2 k=—o00
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Similar to I; in Theorem 3.1, we deduce that

p [eS)
M, <C Z 21 (n(1=1/q1)+8)p Z A (b b(0)Tar(w)xs|| < ClIbE,, >l
j=—o00 k=—c0 q2 k=—o00
(3.12)
Noticing the fact that € F;, we have
S AT -] =| 3 x [, ko) 0
k=—o0 k=—o0
- lyl? - -
< Clbllip, | Y Ak/ nak(y)dy‘ < C2bllLip, D 1Ml
k=—o0 By, |:E - y| k=—00
< O277blluip, Y Al (3.13)
k=—oc0
Choosing jo € Z such that
290m < BCAHblluip, Y [Ak| <200t (3.14)
k=—o0
For j > jo + 1, it is easy to see that
j—2
{zeE:| Y MT((b—0b(0)ar)(x)| > A/3}
k=—oc0
is an empty set. Therefore,
o P
My < C'sup \P 97(n(1- 1/q1)+6)pE ple2 < C|lb . < A )
2 oo j;oo | | H HL Ps k;OJ k|
<O, Y el (3.15)
k=—oc0

For any central atomic decomposition of f, colligating the estimates of M7, Ms, M3 above,

we have
00 1/p
1711y e < Ol (32 W) (3.16)
Taking the infinum, we complete the proof of Theorem 3.2. O

The similar results related to the nonhomogeneous weak Herz spaces also hold. The details

are omitted to save the space.
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T~ X Calderén-Zygmund BEFAZH-FFE Hardy EIZS[8]_EAIHF it

(1. FHRFHER, LR Hi 206071 2. SEHRZHRREFER, 1WA 3EMH 266109)

f&%: (b, T) 3R/R"H Lipschitz %L b 5 X Calderén-Zygmund 57 T HEREISCHT. ASCHE
KT [b,T) 7L Hardy ZS[EM Herz A Hardy 2506 LA 5, FEHERASBERIEH T %
LT\ Hardy 258355 Lebesgue Z5[a]PA B Herz & Hardy F55 Herz Z5[6)5 R .

H#iE: AT  Lipschitz p%(; Hardy Z8[8); Herz Z5[6]; B A4,



