
�27��2) 5 A B � I ( % Vol.27, No.2

2007'5L JOURNAL OF MATHEMATICAL RESEARCH AND EXPOSITION May, 2007

Article ID: 1000-341X(2007)02-0236-05 Document code: A

On the Exponential Diophantine Equation
x

2 + (3a2 − 1)m = (4a2 − 1)n

HU Yong-zhong

(Department of Mathematics, Foshan University, Guangdong 528000, China )

(E-mail: fsyzhujx@pub.foshan.gd.cn)

Abstract: We apply a new, deep theorem of Bilu, Hanrot & Voutier and some fine results
on the representation of the solutions of quadratic Diophantine equations to solve completely
the exponential Diophantine equation x

2 + (3a
2
− 1)m = (4a

2
− 1)n when 3a

2
− 1 is a prime

or a prime power.

Key words: exponential Diophantine equations ; Lucas sequences; primitive divisors; Kro-
necker symbol.

MSC(2000): 11D25; 11D61

CLC number: O156

1. Introduction

Diophantine equations of the type

D1x
2 + Dm

2 = ckn, gcd(D1, D2) = 1, c ∈ {1, 2, 4}, (1)

where D1, D2, x, m, c, k, n are positive integers with gcd(D1D2, k) = 1, have been considered

by several authors[2,3,5−7]. Thanks to a new deep result of Bilu, Hanrot & Voutier[1], Yann

Bugeaud[2] proved the following:

Theorem BGD Let D > 2 be an integer and let p be an odd prime which does not divide

D. If there exists a positive integer a with D = 3a2 + 1 and p = 4a2 + 1, then the Diophantine

equation

x2 + Dm = pn, in positive integers x, m and n, (2)

has at most three solutions (x, m, n), namely, (a, 1, 1), (8a3+3a, 1, 3), (x3, m3, n3), with m3 (if the

third solution exists) even. Otherwise, the Diophantine equation (2) has at most two solutions.

We[9,10] have alreadly applied the main result of [1] and improved Yann Bugeaud’s result

by proving that if a > 1 and either 4a2 + 1 or 3a2 + 1 is a prime, then the only positive integer

solutions of the Diophantine equation

x2 + (3a2 + 1)m = (4a2 + 1)n (3)
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are (x, m, n) ∈ {(a, 1, 1), (8a3 + 3a, 1, 3)}.
In this paper, we use the same idea and some fine results on the representation of the

solutions of quadratic Diophantine equations to solve completely the exponential Diophantine

equations

x2 + (3a2 − 1)m = (4a2 − 1)n in integers x > 0, m > 0, n > 0 (4)

when 3a2 − 1 is an odd prime or a prime power.

Theorem Let a > 1 and 3a2 − 1 be a prime (therefore a is even). Then the only solutions of

Diophantine equation (4) are (x, m, n) ∈ {(a, 1, 1), (8a3 − 3a, 1, 3)}.

Remark We have excluded the case 3a2−1 = 2 or 3a2−1 is a power of 2, since the Diophantine

equation x2 + 2m = yn, in positive integers x, m, y and n > 2, has been solved[3].

2. Some lemmas

Definition 1 A Lucas pair is a pair (α, β) of algebraic integers such that (α + β) and αβ are

non-zero coprime rational integers and α/β is not a root of unity. For a given Lucas pair (α, β),

one defines the corresponding sequence of Lucas numbers by

un = un(α, β) =
αn − βn

α − β
, n = 0, 1, 2, . . . .

Definition 2 Let (α, β) be a Lucas pair. The prime number p is a primitive divisor of the Lucas

number un(α, β) if p divides un(α, β) but does not divide (α − β)2u1 · · ·un−1.

One of the key arguments for our proof is the result obtained by Bilu, Hanrot & Voutier[1].

Theorem BHV For any integer n > 30, every n-th term of any Lucas sequence has a primitive

divisor. Further, for any positive integer n ≤ 30, all Lucas sequence whose n-th term has no

primitive divisor are explicitly determined.

Lemma 1
[12] For any odd positive integer n (5 ≤ n ≤ 30), all Lucas sequence whose n-th term

un(α, β) has no primitive divisor are given as follows:

n = 5, (α, β) = (±1 ±
√

5

2
,±1 ∓

√
5

2
), (±1 ±

√
−7

2
,±1 ∓

√
−7

2
), (±1 ±

√
−15

2
,±1 ∓

√
−15

2
),

(±(6 ±
√
−19),±(6 ∓

√
−19)), (±(1 ±

√
−10),±(1 ∓

√
−10)),

(±1 ±
√
−11

2
,±1 ∓

√
−11

2
), (±(6 ±

√
−341),±(6 ∓

√
−341));

n = 7, (α, β) = (±1 ±
√
−7

2
,±1 ∓

√
−7

2
), (±1 ±

√
−19

2
,±1 ∓

√
−19

2
);

n = 13, (α, β) = (±1 ±
√
−7

2
,±1 ∓

√
−7

2
).

We do not state here the complete list of the n-th term of Lucas sequences without primitive

divisor and we refer the readers to [12].

Lemma 2
[8] The only positive integer solution of the equation 2z2 = x4 + y4, gcd(x, y) = 1 is

x = y = 1.
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The following two lemmas are certainly known, but we have never seen a complete proof in

available literature before. Recently, Yuan has given a complete proof in [11].

Lemma 3
[11] Let D 6∈ {1, 3} be a square-free positive integer. The solutions of equation

X2 + DY 2 = Pn X, Y, n ∈ Z, gcd(X, DY ) = 1, 2 6 |P, n > 0 (5)

can be put into at most 2ω(P )−1 classes. Further, in each such class S, there is a unique solution

(X1, Y1, n1) such that X1 > 0, Y1 > 0 and n1 is minimal among the solutions of S. Moreover,

every solution (X2, Y2, n2) of (4) belonging to S can be expressed as

n2 = n1t, (X2 + Y2

√
−D) = ±(X1 ± Y1

√
−D)t,

where t > 0 is an integer, and ω(P ) denotes the number of distinct prime factors of P .

Lemma 4
[11] (a) For all (X, Y, n) belonging to the same class, there is a unique rational integer

l satisfying

l2 ≡ −D (mod P ), X ≡ ±lY (mod P ), 0 < l ≤ P

2
. (6)

(b) For distinct classes, the rational integer l as claimed in (a) is distinct.

Lemma 5
[13] The only solution of the equation x2 + 1 = 2yn, x, y, n ∈ N , 2 ∤ n, n > 1 is

x = y = 1.

3. Proof of the theorem

Proof Let (x, m, n) be a solution of (4). We divide the proof into three cases.

First, we consider the case that 2|n. By (4), we have

[(4a2 − 1)
n

2 − x][(4a2 − 1)
n

2 + x] = (3a2 − 1)m.

Noting 3a2−1 is prime, therefore, (4a2−1)
n

2 −x = 1, (4a2−1)
n

2 +x = (3a2−1)m, and it follows

that

2(4a2 − 1)
n

2 = (3a2 − 1)m + 1. (7)

We recall that a is even. Considering the above equality and taking modulo 4a2 we get

(−1)
n

2 2 ≡ 3ma2 + (−1)m + 1 (mod 4a2). (8)

Since a > 1, we see from (8) that 2|m. If n = 2, one can easily derive that (7) does not hold for

a > 1. If n
2 is odd and n

2 > 1, by lemma5 we can also derive that (7) does not hold for a > 1. If
n
2 is even, we infer from (8) that 4|m, and we see from (7)and Lemma 2 that a = 0.

Now, we turn to the case 2|m, 2 6 |n. By taking modulo 4 we get from (4) that x2 + 1 ≡ −1

(mod 4), which is not possible.

Now , we deal with the case2 6 |mn. We can rewrite our equation (4) under the form:

x2 − (4a2 − 1)n = −(3a2 − 1)m. (9)
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By (9), we can get the following decomposition in the algebraic integers ring Z[
√

4a2 − 1]:

[x + (4a2 − 1)
n−1

2

√

4a2 − 1][x − (4a2 − 1)
n−1

2

√

4a2 − 1]

= (a ±
√

4a2 − 1)m(a ∓
√

4a2 − 1)m. (10)

One easily verifies that gcd(x + (4a2 − 1)
n−1

2

√
4a2 − 1, x − (4a2 − 1)

n−1

2

√
4a2 − 1) = ε, where

ε = ±(2a±
√

4a2 − 1)k is a unit in Z[
√

4a2 − 1]. Since 3a2−1 is prime, both (a+
√

4a2 − 1) and

(a−
√

4a2 − 1) are prime ideals in Z[
√

4a2 − 1]. Observing that 2a +
√

4a2 − 1 is a fundamental

unit, by (10), we have

x + (4a2 − 1)
n−1

2

√

4a2 − 1 = ±(2a ±
√

4a2 − 1)k(a ±
√

4a2 − 1)m (11)

and

x − (4a2 − 1)
n−1

2

√

4a2 − 1 = ±(2a ∓
√

4a2 − 1)k(a ∓
√

4a2 − 1)m. (12)

We see from (9) that a|x. If 2 6 |k, by taking modulo a we get from (11) that

x ±
√

4a2 − 1 ≡ ±
√

4a2 − 1
k√

4a2 − 1
m

≡ ±(4a2 − 1)
k+m

2 ≡ ±1 (mod a).

It follows that x ≡ ±1 (mod a), which is not possible since a > 1. Let k = 2k1. We can rewrite

(11) in the form

x + (4a2 − 1)
n−1

2

√

4a2 − 1 = ±(2a ±
√

4a2 − 1)2k1(a ±
√

4a2 − 1)m.

By taking modulo 4a2 − 1, we get

x ≡ ±((2a)2k1 ± 4ak1

√

4a2 − 1)(am ± ma
√

4a2 − 1) (mod 4a2 − 1).

It follows that

x ≡ ±((4a2)k1am) ± A
√

4a2 − 1 ≡ ±am ± A
√

4a2 − 1 (mod 4a2 − 1),

where A = ±(2a)2k1ma ± 4am+1k1. Hence, x ≡ ±am (mod 4a2 − 1). Observe that

(3a2 − 1)
m−1

2 ≡ (−a2)
m−1

2 ≡ ±am−1 (mod 4a2 − 1)

and

x ≡ ±am ≡ ±a · (3a2 − 1)
m−1

2 (mod 4a2 − 1).

By Lemma 4 we know that two solutions (x, (3a2 − 1)
m−1

2 , n) and (a, 1, 1) of the equation

x2 + (3a2 − 1)y2 = (4a2 − 1)n (13)

belong to the same class. By Lemma 3 we get

x + (3a2 − 1)
m−1

2

√

−(3a2 − 1) = ±(a ±
√

−(3a2 − 1))n

and

x − (3a2 − 1)
m−1

2

√

−(3a2 − 1) = ±(a ∓
√

−(3a2 − 1))n.
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It follows that

(3a2 − 1)
m−1

2 = ± (a +
√

−(3a2 − 1))n − (a −
√

−(3a2 − 1))n

2
√

−(3a2 − 1)
. (14)

We see that (a +
√

−(3a2 − 1) + a −
√

−(3a2 − 1)) and (a +
√

−(3a2 − 1))(a −
√

−(3a2 − 1))

are non-zero coprime integers. Notice that
a+

√
−(3a2

−1)

a−
√

−(3a2
−1)

is a root of (4a2 − 1)x2 + (4a2 − 2)x +

4a2 − 1 = 0 and gcd(4a2 − 1, 4a2 − 2) = 1. This implies that
a+

√
−(3a2

−1)

a−
√

−(3a2
−1)

is not a root

of unit. By Definition 1, (a +
√

−(3a2 − 1), a −
√

−(3a2 − 1)) is a Lucas pair. Since [(a +
√

−(3a2 − 1)) − (a −
√

−(3a2 − 1))]2 = −4(3a2 − 1) and 3a2 − 1 is prime, by Definition 2 and

(14), we know that the only prime factor 3a2−1 of un(a+
√

−(3a2 − 1), a−
√

−(3a2 − 1)) is not

its primitive divisor, which implies that un has not any primitive divisor. By Theorem BHV, we

have n ≤ 30; by Lemma 1, we have n = 1 or 3. If n = 1, by (14) we get a solution of (3), namely

(x, m, n) = (a, 1, 1). If n = 3, by (14) we get another solution (x, m, n) = (8a3 − 3a, 1, 3). 2

Remark By the proof of Theorem, if 3a2 − 1 is a power of an odd prime number, one can get

the same result.OX[\�
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