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1. Introduction

Diophantine equations of the type
Dyx® + Dy = ck™, ged(Dy,D2) =1, ce€{1,2,4}, (1)

where D1, Da,z,m,c, k,n are positive integers with ged(Dy1 D2, k) = 1, have been considered

2,3,5-7]

by several authors Thanks to a new deep result of Bilu, Hanrot & Voutier™, Yann

Bugeaud!® proved the following:

Theorem BGD Let D > 2 be an integer and let p be an odd prime which does not divide
D. If there exists a positive integer a with D = 3a® + 1 and p = 4a? + 1, then the Diophantine
equation

x? 4+ D™ = p", in positive integers x, m and n, (2)

has at most three solutions (x, m,n), namely, (a, 1,1), (8a®+3a, 1,3), (x3,m3,n3), with ms (if the
third solution exists) even. Otherwise, the Diophantine equation (2) has at most two solutions.

Wel®19 have alreadly applied the main result of [1] and improved Yann Bugeaud’s result
by proving that if a > 1 and either 4a® + 1 or 3a® + 1 is a prime, then the only positive integer

solutions of the Diophantine equation

22+ (3a® +1)™ = (4a® + 1) (3)
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are (z,m,n) € {(a,1,1), (8a® + 3a, 1, 3)}.

In this paper, we use the same idea and some fine results on the representation of the
solutions of quadratic Diophantine equations to solve completely the exponential Diophantine
equations

22+ (3a* = 1)™ = (46®* — 1)" in integers x > 0,m > 0,n >0 (4)

when 3a? — 1 is an odd prime or a prime power.

Theorem Let a > 1 and 3a? — 1 be a prime (therefore a is even). Then the only solutions of
Diophantine equation (4) are (x,m,n) € {(a,1,1), (8a®> — 3a,1,3)}.

Remark We have excluded the case 3a%2 —1 = 2 or 3a? — 1 is a power of 2, since the Diophantine

equation z2 + 2™ = y", in positive integers &, m,y and n > 2, has been solved[?].
2. Some lemmas

Definition 1 A Lucas pair is a pair («, () of algebraic integers such that (o + () and «of are
non-zero coprime rational integers and «/ is not a root of unity. For a given Lucas pair («, ),

one defines the corresponding sequence of Lucas numbers by
a — Bn

Un:un(avﬁ)_ a—p )

Definition 2 Let (o, 3) be a Lucas pair. The prime number p is a primitive divisor of the Lucas

n=0,1,2,....

number uy, (o, 3) if p divides u,,(c, 3) but does not divide (o — 3)*uy -+ up_1.
One of the key arguments for our proof is the result obtained by Bilu, Hanrot & Voutier!!.

Theorem BHV For any integer n > 30, every n-th term of any Lucas sequence has a primitive
divisor. Further, for any positive integer n < 30, all Lucas sequence whose n-th term has no

primitive divisor are explicitly determined.

Lemma 11'2l For any odd positive integer n (5 <n < 30), all Lucas sequence whose n-th term

un (e, B) has no primitive divisor are given as follows:

1+4v5 175 14++/—7 ilqm/—?

TL:5,(O[,6):(:|: 2 + 2 )a(i 2 2 )a(i

(£(6 £ v/—19), £(6 F v—19)), (£(1 £ vV—10), =(1 F v_10)),
(4 1E . BLL LS : “ (46 + VTBAT), +(6 T v=3AT));

1+£+v— 1FvV-— 1£+v/-1 1 -1
N

n=13,(0.0) = (22T 4 1EVT)

We do not state here the complete list of the n-th term of Lucas sequences without primitive

1+£+v-15 :|:1:FV_15)
2 ) )

2

n="1,(a,p)=( );

divisor and we refer the readers to [12].

Lemma 28 The only positive integer solution of the equation 2z = x* + y*, ged(z,y) =1 is

r=y=1.
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The following two lemmas are certainly known, but we have never seen a complete proof in

available literature before. Recently, Yuan has given a complete proof in [11].

(11]

Lemma 3 Let D ¢ {1,3} be a square-free positive integer. The solutions of equation

X2+ DY?=P" X,Y,n€ Z ged(X,DY)=1,2 [P,n >0 (5)

(P)=1 classes. Further, in each such class S, there is a unique solution

can be put into at most 2*
(X1,Y1,n1) such that X7 > 0,Y7 > 0 and ny is minimal among the solutions of S. Moreover,

every solution (X2,Ys,n2) of (4) belonging to S can be expressed as
Nng = nlt, (XQ + }/2\/ —D) = :l:(Xl + Y1 V —D)t,
where t > 0 is an integer, and w(P) denotes the number of distinct prime factors of P.

Lemma 4" (a) For all (X,Y, n) belonging to the same class, there is a unique rational integer
l satisfying
P
I?’=-D (mod P),X ==+IY (mod P),0<1< 5 (6)

(b) For distinct classes, the rational integer | as claimed in (a) is distinct.

Lemma 5" The only solution of the equation x> + 1 = 2y", z,y,n € N, 2 tn,n>1Iis
r=y=1.

3. Proof of the theorem

Proof Let (x,m,n) be a solution of (4). We divide the proof into three cases.

First, we consider the case that 2|n. By (4), we have
[(4a* —1)2 — 2][(4a®> = 1)% + 2] = (3a®> — 1)™.

Noting 3a% — 1 is prime, therefore, (4a%2 —1)% —x =1, (4a® —1)% +z = (3a® —1)™, and it follows
that
2(4a® —1)% = (3a®> = 1)™ + 1. (7)

We recall that a is even. Considering the above equality and taking modulo 4a® we get
(-1)22=3ma®+ (-1)"+1 (mod 4a?). (8)

Since a > 1, we see from (8) that 2|m. If n = 2, one can easily derive that (7) does not hold for
a>1.If § is odd and % > 1, by lemma5 we can also derive that (7) does not hold for a > 1. If
% is even, we infer from (8) that 4|m, and we see from (7)and Lemma 2 that a = 0.

Now, we turn to the case 2|m,2 Jn. By taking modulo 4 we get from (4) that 2% + 1= —1
(mod 4), which is not possible.

Now , we deal with the case2 fmn. We can rewrite our equation (4) under the form:

2? — (4a® — )" = —(3a® — 1)™. (9)
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By (9), we can get the following decomposition in the algebraic integers ring Z[v/4a? — 1]:

[z + (4da® — 1)"T V4a2 — 1)[z — (4a® — 1)"T V/4a2 — 1]
=(atvV4a? - 1)"(a F V4a? - 1)". (10)

One easily verifies that ged(z + (402 — 1)"= V4aZ — 1,z — (4a® — 1)"= V4a® — 1) = ¢, where
£ = +(2a+ v4a% — 1)* is a unit in Z[v/4a? — 1]. Since 3a® — 1 is prime, both (a ++/4a? — 1) and
(a —v/4a% — 1) are prime ideals in Z[v/4a? — 1]. Observing that 2a 4+ v/4a2 — 1 is a fundamental
unit, by (10), we have

4+ (4a®—1)"7 Va2 — 1 = £(2a + V4a2 — 1)¥(a + V4a2 — 1)™ (11)
and
z— (462 — 1)"T V4a2 — 1 = £(2a F V4a2 — D)¥(a F V4a2 — 1)™. (12)

We see from (9) that a|z. If 2 fk, by taking modulo a we get from (11) that

k+

2 =41 (mod a).

x:l:\/4a2—15:|:\/4a2—1k\/4a2—1m =+(4a® - 1)

It follows that x = £1 (mod a), which is not possible since a > 1. Let k = 2k;. We can rewrite
(11) in the form

n—1
2

z+ (4a® — 1) 402 —1 = £(2a + V4a? — 1)?" (a + /4a2 — 1)™.

By taking modulo 4a® — 1, we get

r = £((20)%* + 4ak, \/W)(am + mcm/ﬁ) (mod 4a® — 1).
It follows that

z = +((4a>)k a™) AV4a? — 1= +a™ + AV4a? — 1 (mod 4a® — 1),
where A = +(2a)**1ma + 4a™*1k;. Hence, x = +a™ (mod 4a® — 1). Observe that

m—1 m—1

(3a> —1)"z =(-a®)"2 =+a™' (mod 4a*® — 1)

and
m—1

r=+a"=+a-(3¢>—1) 2 (mod 4a* —1).

m—1

By Lemma 4 we know that two solutions (x, (3> — 1)z ,n) and (a, 1, 1) of the equation

2?2+ (3a® — 1)y? = (4a® — 1)" (13)

belong to the same class. By Lemma 3 we get

m—1
2

x4 (3a* — 1) —(3a%2 —1) = +(a £ /—(3a2 — 1))"

and
2—(3a>—1)"7 /(32— 1) = £(a F /—(3a% — 1))".
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It follows that

9 moy (a++/—Ba?—=1))" = (a —/—(Ba? = 1))"
(3a2 —1)"7" == T . (14)
We see that (a + /—(Ba?—1)+a—+/—(Ba?—1)) and (a + /—(3a%2 — 1))(a — v/—(3a% — 1))
—(3a2-1)

are non-zero coprime integers. Notice that 2 is a root of (4a? — 1)z? + (4a® — 2)x +

4a® =1 = 0 and ged(4a® — 1,4a® — 2) = 1. This implies that “~V 02—
, ' a—+/—(3a2—-1)

of unit. By Definition 1, (a + y/—(3a? —1),a — y/—(3a? — 1)) is a Lucas pair. Since [(a +
V—08a2—1)) — (a — /—(3a2 — 1))]?> = —4(3a® — 1) and 3a?® — 1 is prime, by Definition 2 and
(14), we know that the only prime factor 3a? —1 of u,,(a++/—(3a2 — 1),a—+/—(3a% — 1)) is not

its primitive divisor, which implies that u,, has not any primitive divisor. By Theorem BHV, we

is not a root

have n < 30; by Lemma 1, we have n = 1 or 3. If n = 1, by (14) we get a solution of (3), namely
(x,m,n) = (a,1,1). If n = 3, by (14) we get another solution (z,m,n) = (84> — 3a, 1, 3). O

Remark By the proof of Theorem, if 3a% — 1 is a power of an odd prime number, one can get

the same result.
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