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1. Introduction and main result

For z = (21, ..., 2,) € C", we define, for any r € R, |2| = (|21|2+- - -+]|za|2) V2, 7(2) = |2|?,
C*(ry=4{2€C":|z| =r},C"(r) ={z€C": |z <r}. Let C*"[r] = {2z € C": |z| <r},d=
9+ 0,d° = ;=(9 — ). We then write

wn(z) = dd°log |z, 0n(2) = d°log |z]> Aw! 1 (2), 2z € C™\ {0};

Un(2) = dd°|z|%, pu(2) = V1 (2), 2 € C"™.

Thus 0,(z) defines a positive measure on C™(r) with total measure one and p,, is a normalized
Lebesgue measure on C" such that C"(r) has measure 72". Let P! be the Riemann sphere,
and f be a meromorphic function on C", i.e., f can be written as a quotient of two holomorphic
functions which are relatively prime. Thus f can be regarded as a meromorphic map f: C* — P!
such that f~1(oc0) # C™.

For a,b € P!, the chordal distance from a to b is denoted by || a,b ||,

1 b
a0 ll= ——— Jlab = —2=__4pec,
1+ al? V14 a2y/1+ b2
where || a,a ||[=0 and 0 <|| a,b ||=]| b,a ||< 1.

For 0 < s < r, the characteristic of f is defined by
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Let v be a divisor on C™. We identify v with its multiplicity function and define
vir)={zeC":|z| <r} msuppl/,r > 0.

The pre-counting function of v is defined by
n(r,v) = Z v(z), if n=1n(rv)= 7‘272”/ vl n> 1L
z€v(r) v(r)

The counting function of v is defined by
" dt
N(r,v) = / n(t,l/)Y,r > s.

Let f be a meromorphic function on C"*. If a € P! and f~!(a) # C", the a-divisor v(f,a) > 0
is defined, and its pre-counting function and counting function will be denoted by n(r, f,a) and
N(r, f,a), respectively.

If a € P* and f~'(a) # C", then we define the proximity function as follows

1
m(r, f,a) = / log ———0, > 0,7 > 0.
|z|=r || a,f(z) H

For a divisor v on C", let

n(r,v) = Z 1, if n=1; alr,v) =r22"

zev(r)

v n> 1,

—

v(r)

N(r,v) = /T ﬁ(t,y)%, N(r, f,a) = N(r,v(f,a)).

The first main theorem states that

T(va) :N(r,f,a)—i—m(r,f,a) —m(s,f,a).
For a meromorphic function w on C", let

Q1 (z,w, Dw,...,D"w) = Z a@ (z)w (Dw)™ -+ (D"w)"r,
(i)el

Qo(z,w, Dw, ..., D"w) = Z b (z)w’® (Dw)7* - - - (D™ w)’",
(e
where DFw = (9;)%---(9,)*w is the partial derivative of w of order k = ky + --- + kp,
0; = 0/0zj; {a(;)(2)}, {b;)(2)} are meromorphic functions on C”; I, J are two finite sets of multi-
indices (i) = (40,41, --,4n) and (5) = (Jo,J1,- - -, Jn) respectively; and ig, 1, ..., in, J0, J1s - - - 5 Jn
are non-negative integers.
For partial differential polynomials Q4 (z, w, Dw, ..., D™w), Q2(z,w, Dw, ..., D"w), we adopt

the notation, respectively:

A =max{» i}, Ay =max{D (I+ 1)ir}; Ao =max{) _ji}, Ay =max{> (I+1)j}.
=0 =0 =0

=0
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In this paper we consider the following partial differential equation

Q1 (z,w, Dw, ..., D"™w)
Qa(z,w, Dw, ..., D™w)

= H(z,w), (1)

where H(z,w) is a meromorphic function on C"*! with 2 € C" and w € C.
In 1978, N. Steinmetz investigated the problem of the existence of admissible solutions of

algebraic differential equation of the form
Q(z,w) = H(z,w), (2)

where Q(z,w) = 37 ;) ag (2)w' (W) - - (w™ )i and H(z,w) is quotient of entire functions in

variables z and w. They obtained

Theorem Al If the differential equation (2) admits an admissible meromorphic solution w(z),

then (2) must be degenerate into a polynomial in w and
deg,, H(z,w) < A,

where A = max{ig+2i1 + ...+ (n+ 1)i,}.
Recently, the papers(?~4 have investigated the problem of some Malmquist-type theorems
of partial differential equations on C". In particular, [2] extends Theorem A to partial differential

equations:

Theorem Bl®! Let ay,... be a sequence of distinct complex numbers which tends to a finite limit
value a, and set H;(z) = H(z,a;). If the partial differential equation Q(z, w, Dw,...,D"w) =

H(z,w) admits a meromorphic solution w(z) that satisfies the condition

Z T(Taa(i)) +T(Ta HJ) = S(Ta w)a.] = 1527 SRR
(1)erl

then the equation is a polynomial in w and deg,, H(z,w) < w(§) (weight of Q).
In [7] we considered the existence of admissible solution of general algebraic differential

equations of the form
Q1(z,w)
— - =H 3
ol = Hw), 3)

where

0 (Zu w) = Z Q(4) (Z)wm (w')il ... (w("))in7
(%)

(e, w) = 3 by (s (P - (e
(@)
are differential polynomials with meromorphic coefficients {a;} and {b(;)}, respectively, (i) and
(7) are two finite index sets, and H(z,w) is a meromorphic function in z and w.
We obtained
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Theorem C!7l If w(z) is an admissible meromorphic solutions of (3), then H(z,w) must be

rational function in w, and the degree of w satisfies
degw H(Z,U)) <A+ (A - )\)(1 - e(wa OO)) < Av

where A = max{\1, A2}, A = max{Aj, Az}, 0(w,00) = 1 — limsup g((:zj))

For Equation (1), we will prove

Theorem 1 Let ¢1,ca,... be a sequence of distinct complex numbers which tends to a finite
limit value c¢. And set H;(z) = H(z,c;). If Equation (1) admits a meromorphic solution w(z)

that satisfies the condition

ZT(Taa(i)) =+ ZT(Tv b(])) + T(Ta HJ) = S(Ta w)a.] = 15 27 ceey
(%) @)

then H(z,w) must be rational function in w, and the degree of w satisfies
deg,, H(z,w) < A,

where A = max{Ay, As}.

2. Some lemmas

Lemma 15 Let w(z) be a meromorphic function on C". Then
/ log" (ID"w(2)|/|w(z)l)on < 17(log" (rT (r,w))),
Cn(r)

for all large r outside a set I with fl dlogr < oo, where logt 2 = logx, if £ > 1; logT x = 0, if
0<z<1.

Lemma 2 (The second main theorem)?®! Let f(z) be a meromorphic function on C". If

at,...,0q € P! are distinct constants, then
q —_
(q - 2)T(T7 .f) < Z N(Tv fv ai) + Sl(T)a
i=1
where S1(r) < O (log(rT(r, f))) for all large r outside a set I with [, dlogr < oc.

3. Proof of Theorem 1

Let w(z) be an admissible meromorphic solutions of Equation (1). For ¢; € E, set

Ql QQ . Ql — QQH(Z,Cl)
A=) w—a =~ He o) —a) @

p1(z501) =
Because w is a meromorphic solutions of Equation (1), we know that

suppr(w, ¢1) C suppr(v1(z;c1),0).
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Take z € C™ with v(w,c;) > 0 and let 6, , denote the ring of holomorphic functions
defined in some neighborhood of z € C". If w — ¢; is irreducible in 6, ,, then w — ¢; devides
Oy — Q9 H(z,¢1) in 0, . (Weak Nullstellensatz), which implies v(¢1(z;¢1), 00) = 0.

If w — ¢1 is not irreducible, then there exists an irreducible g € 6,, . such that g(z) = 0
and g divides w — ¢; in 6, . because 6, . is a unique factorization domain. Then g divides

Oy — Q9 H(z,¢1) in 0, .. Consequently, we have

v(pi(z;er),00) < v(w,eq) — 1.
Now we take c¢1,c2 € F, ¢ # ¢o and set

o251, 09) = W [H(z,¢c2)(w —c2) — H(z,¢1)(w — ¢1)] B (c1 — 2)Q0H(z,¢1)H(z,c2)
T H(z,c2)(w—co)H(z,¢1)(w — ¢1) H(z,c2)(w—co)H(z,¢1)(w —c1)’

If v(w,cj) > 0 and a(;) # 00,b(j) # o0, H(z,¢j) # 0,00 (j = 1,2), we have

O [H(z,c2)(w —c2) — H(z,c1)(w —¢1)] — (1 — e2)Q2H (z,¢1)H (2, ¢2)
=M[H(z,c)(w—c14+c1 —co) — H(z,e1)(w—c1)] — (1 — e2)Q0H(z,¢1)H(z, ¢2)
=W [H(z,c2)(c1 — ¢2)] — (1 — c2)QH(2,c1)H(z,¢2) = 0.

It shows that v(p2(z;c1;¢2),00) <v(w,¢;) — 1,5 =1,2.

In general, we take distinct c1,co,...,cr € E and set
er(zicr, ... cn) =pp—1(2z5¢1,. .. k1) — @r—1(25¢1,. ., Ch—2,Ck)
k
=(21Qu-1(2w) = ©Qu—2(z,w))/ [T H(z.e)(w - ¢)), (5)

j=1

where Qi (z,w) is a polynomial of degree k — 1 in w, and its coefficients are combination with
Hj(z)(j = 1,2,...,k). By induction, from Equation (5), if v(w,c;) > 0, and ag;) # 00,b(;) #
00, H(z,¢j) #0,00 (j =1,2,...,k), we have

v(er(z;c1,ca,. .., c5),00) < v(w,e;) — 1.

Next we prove that ¢g1 = 0 if w(2) is a meromorphic solution of Equation (1).

Suppose deg,, H(z,w) = k = A and @11 Z 0. By the first main theorem, it follows that

k1 k
T(r,w) =T (r,w — cxy1) + O(1) = T(r, H —¢j) H —¢j)) +o(1)
j=1 j=1
k+1
T(r, ons1/ H —e) + Tlragrn/ [[(w - ) + O(1). 6)
=1

Now we estimate T (7, pr4+1/ H?Zl(w —¢;)) and T'(r, ox+1/ Hf:ll (w = ¢ )).

Ohi1 ) =m(r, kal)le(Zaw) - Q?Qkk—l(zuw) )

Hw=e) T #Gew=) [w-c)

Jj=1

m(r,
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91 Qi(z,w) Qo
—m(/r7 k+1 ) +m('f‘, k ) +m( ) k+1 )+
I (w—c) [1 (w—cj) [I(w—c¢)
j=1 j=1 j=1
Qk 1(z,w)
m(r, )+2 Z m(r Hlec) )+ 0(1)
Hl (w—¢;) “
J=

We note that
lw/(w —c)| <14 |ejl/Jw —¢j] < A+ |e;)(1/|w = )T < e(1/|w —¢5])7,

where |a|™ = max{1, |a|}, ¢ = max{1 + |¢;|}. Thus
k1

|Q/H — ) <Y Jag(2) H| Duw H| D H|

k+1

|QQ/H —¢j |<Ck+12|b7) H| Dw H| D"w H|

(10)

(11)

where [[; |( | is i14-fold product, and [[;(| )+ is (k+1—X —to)(t = 1i,7)-fold product.
So
k+1 k n k+1
rQl/H w —¢j) SZ pra— —i—Zmra(l —i—O{ZZm
Jj=1 a=1j=1
k41 k n k+1
TQ2/H Z w—c. +Zmrbm —‘,—O{ZZm
=1 ) a=1j=1
k k 1 k
m(r,@u(zvw) T[w =) £ Y m(r =)+ S mtr 1) + O(1).
Jj=1 Jj=1 j=1
k k 1 k
m(r Qucs () T[ w0 = ) € ol =)+ S omlr ) +O)
j=1 i=1 j=1

By (8), (9), (10), (11) and Lemma 1, we have

k k
m(r, or+1/ H(w —cj)) §4Zm(7“, s )+ Zm T, ag) Z (r,b(jy)+

J=1 (@) (7
2 Zm(r, Hj) + S(r,w),

where S(r,w) = O{log(rT(r,w))} for all large r outside a set I with [, dlogr < oc.

Similarly, we may deduce that

k+1 k+1

(r, Pr41/ H - ¢j) <4Zm(7"7 ! -) + Zm(T’a(i)) + Zm(T’ b))+

(12)
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2Zm(r,Hj)+S(r,w), (13)

for all large 7 outside a set I with [; dlogr < oc.
Now we estimate N (r, ppt1/ H?Zl (w—¢j)) and N(r, or+1/ Hl;;l (w—c¢j)). By

k+1 k
Prt1/ H = (Qk(z,w) = Q1 (z,w)/ [[ HE ) w—¢) [J(w—c;),  (14)
=1 =1

we know that the poles of ¢gy1/ H?Zl(w — ¢;) may arise from one of the following cases:
(i). The poles of {a(;)(2)}, {by)(2)};

(ii). The poles and the zeros of {H;(2)};

(iii). The zeros of w — ¢; for which the cases (i) and (ii) are not satisfied;

(iv). The poles of w(z).
Case (i). Its contribution to N (r, pr11/ H§:1 (w—cj))is 3 N(r,v(a),00))+>  N(r,v(bg, 00)).
Case (ii). Its contribution to N (r, pk+1/ H?Zl (w—e¢j))is > N(r,v(H;,00))+> N(r,v(H;,0)).

Case (iii). According to the above discussion, we have

SDk-i-l/H ) < 2v(w,cj) — 1.

Thus, its contribution is at most 2521[2N(r, v(w,ej)) — N(r,v(w,c;))].

Case (iv). If zp is a pole of w with multiplicity 7, then it is the poles of the denominator of
right-side of the equality (14) with multiplicity (2A — 1)7. But 2 is at most the poles of the
numerator of right-side of the equality (14) with multiplicity (2A — 1)7. Hence, it follows that
the poles of w(z) does not arise from the poles of pj11/ H?Zl(w —¢j).

From Cases (i)—(iv) if follows that

k
N(Ta <Pk+1/ H(w -
Jj=1
k k
<Y RN(rv(w,c;)) = N(r,v(w, ;)] + Y N(r,v(Hj,00))+
j=1 j=1
k
Z N(r,v(H;,0)) + Z N(r,v(agy,o0)) + Z N (r,v(b(), 00)). (15)
Jj=1 (1) (4)
In a similar fashion, we have
k+1
N(r, pr+1/ H —¢))
k+1 k+1

<Y [2N(r,v(w,c;)) — N(r,v(w,c;)) —I—ZNTVH 00))+

J
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k+1
Z N(r,v(H;,0)) + Z N(r,v(ag,0)) + Z N (r,v(b(;), 00)). (16)
Jj=1 (1) (4)

Combining (6), (12), (13), (15) and (16), we obtain

k1 k+1 k+1
T(r,w <8Z - +Z[4N(T,V(w,cj)) —2N(r,v(w, ¢j))] +2ZT(T’, H;)+
Y =1 j=1
k-‘rl
2ZT +2ZTraZ) +2) T(r,b)) + S(r,w). (17)

(@) (@)

We choose 17 systems which are distinct from each other {¢;} ( =1,2,...,17(k+1)) and apply

Inequality (17) to every system. Combining the above seventeen inequalities, we deduce

17(k+1) . 17(k+1) B
17T (r,w) <8 J; m(r, p— cj) + ]2 AN (r,v(w,c;)) — 2N (r,v(w,c;))]+
17(k+1) 17(k+1) 1
2 ; T(r,Hj) +2 ; T(r, E) + 34%):T(r, ag))+

34 Z T(r,b;)) + S(r,w).
(4)

By Lemma 2, we have

17(k+1)
17T (r,w) <16T(r,w) + 2 Z T(r,H;)+
j=1
17(k+1) 1
2 Z T— +34ZT7‘al) +342Trb]))+S(rw) (18)

(1) (4)

By > T'(r,am) + X T(r, b)) + T(r, Hy) = S(r,w)(j = 1,2,...) and Inequality (18),
we deduce 1 < 0. This is a contradiction. It follows that ¢g11 = 0.

It follows that w satisfies the following equation

D Qr(z,w) = Q2Qr-1(z, w).

Define
Qk(zv ’LU)
Qk—l (Zu ’U}) '

We claim that R(z,¢;) = Rj(z) =0 for j = 1,2,.... Assume to the contrary that R; # 0. Then

R(z,w) = H(z,w) —

N(r,w=cj) <N(r,R; =0) < T(r,R;) + O(1)
k+1
<T(r,Hj)+ ZT(T’, H;) 4+ 0O(1) = S(r,w).
=1
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By Lemma 2, there are at most two values ¢; such that the inequality above holds. Hence
R(z,¢;) =0, or
H(z,¢j) = M, for all z € C™.
Qr-1(z,¢;)

Hence, the identity theorem implies H(z,w) = % This completes the proof.
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