Vol.27, No.3 Aug., 2007

Interpolation Spaces between L^1 and BMO on Spaces of Homogeneous Type

LI Gang¹, LI Wen-ming²

- (1. Teaching Department, Hebei Radio and TV University, Hebei 050071, China;
- 2. Department of Mathematics, Hebei Normal University, Hebei 050016, China) (E-mail: lwmingg@sina.com)

Abstract: We study the interpolation spaces between L^1 and BMO on spaces of homogeneous type. For $0 < \theta < 1$, $1 \le q \le \infty$, we obtain $(L^1, \text{BMO})_{\theta,q} = L_{pq}$, where $\theta = 1 - \frac{1}{p}$.

Key words: spaces of homogeneous type; BMO; interpolation space.

MSC(2000): 46E30; 42B30 CLC number: O174.42

1. Introduction and result

The interpolation spaces between function spaces such as L^p spaces, H^p spaces, BMO and other function spaces on R^n have been well developed^[1,2]. In [3], we study the interpolation spaces between Hardy spaces H^1 and L^{∞} on spaces of homogeneous type using the maximal function characterization obtained in [4]. The purpose of this paper is to study the interpolation spaces between L^1 and BMO on spaces of homogeneous type.

Let (X, ρ, μ) be a space of homogeneous type. In this paper the basic concepts and notations are all same as in [3].

Theorem 1.1^[3] For $0 < \theta < 1$, $1 \le q \le \infty$, we have $(H^1, L^\infty)_{\theta,q} = L_{pq}$, where $\theta = 1 - \frac{1}{p}$. Our main result in this paper is the following theorem.

Theorem 1.2 For $0 < \theta < 1$, $1 \le q \le \infty$, we have $(L^1, BMO)_{\theta,q} = L_{pq}$, where $\theta = 1 - \frac{1}{p}$.

Since the space BMO is modulo constants, and so are the interpolation spaces $(L^1, BMO)_{\theta,q}$. Therefore, more precisely, we have that for any $F \in (L^1, BMO)_{\theta,q}$, there exists a unique $f \in L_{pq}$ such that

$$C_1 ||f||_{pq} \le ||F||_{(L^1, BMO)_{\theta, q}} \le C_2 ||f||_{pq},$$

where C_1, C_2 are not dependent on f and F.

2. The characterization of $K(t, f; L^1, BMO)$

Lemma 2.1^[8] (covering lemma) Let Ω be an open set of finite measure strictly contained in X and $d(x) = \inf\{\rho(x,y) : y \notin \Omega\}$. Given $C \ge 1$, let $r(x) = (2AC)^{-1}d(x)$. Then there exists

Received date: 2005-05-16; Accepted date: 2006-10-11

Foundation item: the Natural Science Foundation of Hebei Province (A2006000129).

a natural number M that depends on C, and a sequence $\{x_n\}$ such that, denoting $r(x_n)$ by r_n , we have

- (i) The balls $B(x_n, (4A)^{-1}r_n)$ are pairwise disjoint;
- (ii) $\cup_n B(x_n, r_n) = \Omega;$
- (iii) For every n, $B(x_n, Cr_n) \subset \Omega$;
- (iv) For every $n, x \in B(x_n, Cr_n)$ implies that $Cr_n \leq d(x) \leq 3A^2Cr_n$;
- (v) For every n, there exists $y_n \notin \Omega$ such that $\rho(x_n, y_n) < 3ACr_n$;
- (vi) For every n, the number of balls $B(x_k, Cr_k)$ whose intersections with $B(x_n, Cr_n)$ are non-empty is at most M.

Lemma 2.2^[4] (partition of the unity) Let Ω be an open set of finite measure strictly contained in X. Consider the sequence $\{x_n\}$ and $\{r_n\}$ given by Lemma 2.1 for C=5A. Then, there exists a sequence $\{\varphi_n(x)\}$ of non-negative functions satisfying

- (i) supp $\varphi_n \subset B(x_n, 2r_n)$;
- (ii) $\varphi_n(x) \geq 1/M$, for $x \in B(x_n, r_n)$;
- (iii) There exists C such that for every $n, \varphi_n \in \mathcal{M}(x_n, r_n, \beta, \gamma)$ and $\|\varphi_n\|_{\mathcal{M}(x_n, r_n, \beta, \gamma)} \leq Cr_n$;
- (iv) $\sum_{n} \varphi_n(x) = \chi_{\Omega}(x)$.

Theorem 2.3 There exist constants C_1 and C_2 , such that for all $f \in L^1 + BMO$ and for any t > 0, we have

$$C_1 t(f^{\#})^*(t) \le K(t, f; L^1, BMO) \le C_2 t(f^{\#})^*(t),$$

where $f^{\#}(x) = \sup_{x \in B} \frac{1}{\mu(B)} \int_{B} |f(z) - f_B| d\mu(z)$ is the sharp function and $f_B = \frac{1}{\mu(B)} \int_{B} f(z) d\mu(z)$.

Proof Let f = b + g, $b \in L^1$, $g \in BMO$. Then $f^\# \le b^\# + g^\# \le b^\# + \|g\|_{BMO}$. Therefore,

$$t(f^{\#})^*(t) \le t(b^{\#})(t) + t||g||_{\text{BMO}} \le 2tM(b)^*(t) + t||g||_{\text{BMO}} \le C(||b||_1 + t||g||_{\text{BMO}}).$$

Taking the supremum for all f = b + g, we get the first inequality.

We now prove the second inequality. Fix $f \in L^1 + \text{BMO}$ and t > 0, and write $\Omega = \{x \in X : f^{\#}(x) > (f^{\#})^*(t)\}$ and $F = \Omega^c$. This set is open and $\mu(\Omega) \leq t$. Let $\{\varphi_n(x)\}$ be the partition of unity given by Lemma 2.2, which is associated Ω . Then for every n, let

$$m_n(f) = \left[\int \varphi_n(z) d\mu(z) \right]^{-1} \int f(z) \varphi_n(z) d\mu(z),$$

$$b(z) = \sum_n b_n(z) = \sum_n [f(z) - m_n(f)] \varphi_n(z),$$

$$g(z) = \sum_n m_n(f) \varphi_n(z) + f(z) \chi_F(z).$$

For b(x), we have

$$||b||_1 = \sum_n \int |f(z) - [\int \varphi_n(z) d\mu(z)]^{-1} \int f(x) \varphi_n(x) d\mu(x) |\varphi_n(z) d\mu(z)$$

$$\leq C \sum_n \int_{B(x_n, 2r_n)} |f(z) - f_{B(x_n, 2r_n)}| d\mu(z)$$

$$\leq C \sum_{n} f^{\#}(t) \mu B(x_n, 2r_n) \leq C \mu(\Omega) f^{\#}(t) \leq C t f^{\#}(t).$$

In the following, we prove that $g \in BMO$ and $||g||_{BMO} \le C(f^{\#})^*(t)$. We have only to prove that for any $B(x_0, r)$, there exists constant a such that

$$A(B) = \frac{1}{\mu(B)} \int_{B} |g(z) - a| d\mu(z) \le C(f^{\#})^{*}(t).$$
 (1)

For fixed k_0 , define $J_0 = \{n : B(x_n, 2Ar_n) \cap B(x_{k_0}, 2Ar_{k_0}) \neq \emptyset\}$. By Lemma 2.1 (vi), J_0 has elements at most M. By Lemma 2.1 (iv), for any $n \in J_0$, we have

$$(3A^2)^{-1}r_{k_0} \le r_n \le (3A^2)r_{k_0},$$

and

$$\cup_{n \in J_0} B(x_n, 2Ar_n) \subset B(x_{k_0}, 8A^4 r_{k_0}). \tag{2}$$

In fact, for $x \in B(x_n, 2Ar_n)$, take $y \in B(x_n, 2Ar_n) \cap B(x_{k_0}, 2Ar_{k_0})$, then

$$\rho(x, x_{k_0}) \le A[\rho(x, y) + \rho(y, x_{k_0})] \le A[2Ar_n + 2Ar_{k_0}] \le 8A^4 r_{k_0}.$$

So (2) is true. Now we prove (1).

Let $K = \{k : B(x_k, 2r_k) \cap B \neq \emptyset\}$. We have

$$A(B) = \frac{1}{\mu(B)} \int_{B \cap \Omega} |g(z) - a| \mathrm{d}\mu(z) + \frac{1}{\mu(B)} \int_{B \cap F} |g(z) - a| \mathrm{d}\mu(z).$$

If $K = \emptyset$, then $B \subset F$. Taking $a = \frac{1}{\mu(B)} \int_B f(z) d\mu(z)$, we have

$$A(B) = \frac{1}{\mu(B)} \int_{B} |f(z) - a| d\mu(z) \le (f^{\#})^{*}(t).$$

If $K \neq \emptyset$ and there exists $k_0 \in K$ such that $r \leq \frac{1}{3A^2}r_{k_0}$. Taking $y \in B \cap B(x_{k_0}, 2r_{k_0})$, for any $x \in B$, we have

$$\rho(x, x_{k_0}) \le A[\rho(x, y) + \rho(y, x_{k_0})] \le A[2Ar + r_{k_0}] \le 2Ar_{k_0}.$$

By Lemma 2.1 (iii), we know that $B \subset \Omega$. Let $a = \frac{1}{\mu(B(x_{k_0}, 8A^4r_{k_0}))} \int_{B(x_{k_0}, 8A^4r_{k_0})} f(z) d\mu(z)$. Then we have

$$A(B) = \frac{1}{\mu(B)} \int_{B \cap \Omega} |g(z) - a| d\mu(z)$$

$$\leq \frac{1}{\mu(B)} \int_{B \cap \Omega} |\sum_{n} m_n(f) \varphi_n(z) - \sum_{n} \varphi_n(z) a| d\mu(z)$$

$$\leq \sum_{k \in K} \frac{1}{\mu(B)} \int_{B \cap B(x_k, 2r_k)} |m_n(f) - a| \varphi_n(z) d\mu(z)$$

$$\leq \sum_{k \in K} \frac{\mu(B \cap B(x_k, 2r_k))}{\mu(B)} |[\int \varphi_k(z) d\mu(z)]^{-1} \int f(z) \varphi_k(z) d\mu(z) - a|$$

$$\leq \sum_{k \in K} \frac{\mu(B \cap B(x_k, 2r_k))}{\mu(B)} \frac{C}{\mu(B(x_k, 2r_k))} \int_{B(x_k, 2r_k)} |f(z) - a| d\mu(z)$$

$$\leq C \frac{1}{\mu(B(x_{k_0}, 2Ar_{k_0}))} \sum_{k \in J_0} \int_{B(x_k, 2r_k)} |f(z) - a| d\mu(z)$$

$$\leq C \frac{1}{\mu(B(x_{k_0}, 8A^4r_{k_0}))} \int_{B(x_{k_0}, 8A^4r_{k_0})} |f(z) - a| d\mu(z).$$

By Lemma 2.1 (v), we have $B(x_{k_0}, 8A^4r_{k_0}) \cap F \neq \emptyset$, thus $A(B) \leq C(f^{\#})^*(t)$.

If $K \neq \emptyset$ and for all $k \in K$, $r \geq \frac{1}{3A^2}r_k$. It is easy to get $\bigcup_{k \in K} B(x_k, 2r_k) \subset B(x_0, 7A^3r)$. Let $a = \frac{1}{\mu(B(x_0, 7A^3r))} \int_{B(x_0, 7A^3r)} f(z) d\mu(z)$. Then we have

$$A(B) \leq \frac{C}{\mu(B)} \sum_{k \in K} \int_{B(x_k, 2r_k)} |f(z) - a| \varphi_n(z) d\mu(z) + \int_{B \cap F} |f(z) - a| d\mu(z)$$

$$\leq C \frac{1}{\mu(B)} \int |f(z) - a| \sum_{k \in K} \varphi_k(z) d\mu(z) + \int_{B \cap F} |f(z) - a| d\mu(z)$$

$$\leq C \frac{1}{\mu(B)} \int_{B(x_0, 7A^3r)} |f(z) - a| d\mu(z) \leq C (f^{\#})^*(t).$$

The proof is completed.

3. The proof of Theorem 1.2

In order to prove Theorem 1.2, we need the following lemmas.

Lemma 3.1 Let (X, ρ, μ) be a bounded space of homogeneous type, i.e., $\mu(X) < \infty$. Ω is a open subset of X, $\mu(\Omega) \leq \frac{\mu(X)}{2}$. Then there exists a sequence $\{B_k\}$ of balls satisfying

- (i) $\mu(\Omega \cap B_k) \leq \frac{1}{2}\mu(B_k) \leq \mu(\Omega^c \cap B_k);$
- (ii) $\Omega \subset \cup_k B_k$;
- (iii) $\mu(\Omega) \leq \sum_{k} \mu(B_k) \leq C\mu(\Omega)$.

Proof Notice that $\mu(\Omega) \leq \frac{\mu(X)}{2}$ and $\mu(X) < \infty$. We have that for any $x \in X$, there exists a $r_x > 0$ such that

$$\frac{1}{4} < \frac{\Omega \cap B(x, r_x)}{\mu(B(x, r_x))} \le \frac{1}{2}.$$
(3)

Clearly, the set $\{r_x : x \in X\}$ is a bounded set and X is covered by the family of balls $\{B(x, \frac{r_x}{5A^2})\}$. We choose $B(x_1, r_1)$ such that $r_1 \geq \frac{1}{2} \sup\{r_x : x \in X\}$. Suppose that $B(x_1, r_1), B(x_2, r_2), \ldots$, $B(x_k, r_k)$ have already been chosen, then we take $B(x_k, r_k)$ such that $B(x_{k+1}, \frac{r_{k+1}}{5A^2})$ to be disjoint from $B(x_1, \frac{r_1}{5A^2}), B(x_2, \frac{r_2}{5A^2}), \ldots, B(x_k, \frac{r_k}{5A^2})$, and

$$r_{k+1} \ge \frac{1}{2} \sup\{r_x : x \in X, B(x, \frac{r_x}{5A^2}) \cap B(x_i, \frac{r_i}{5A^2}) = \emptyset, \quad i = 1, \dots, k\}.$$

In this way we get the sequence $\{B(x_k, r_k)\}$, k = 1, 2, ..., of balls. This sequence could be finite or infinite. Without loss of generality, we suppose it is infinite. Since $\{B(x_k, \frac{r_k}{5A^2})\}$ are disjoint balls,

No.3

 $\sum_{k} \mu(B(x_k, \frac{r_k}{5A^2})) \leq \mu(X) < \infty, \text{ and } \lim_{k \to \infty} r_k = 0. \text{ For any } x \in \Omega, \text{ we take the first } k \text{ with the property that } r_{k+1} < \frac{1}{2}r_x. \text{ Now the ball } B(x, \frac{r_x}{5A^2}) \text{ must intersect one of the } k \text{ previous balls } B(x_1, \frac{r_1}{5A^2}), B(x_2, \frac{r_2}{5A^2}), \dots, B(x_k, \frac{r_k}{5A^2}), \text{ say } B(x_{k_0}, \frac{r_{k_0}}{5A^2}) \text{ for some } 1 \leq k_0 \leq k, \text{ and } r_{k_0} \geq \frac{1}{2}r_x. \text{ It is easy to obtain that } B(x, \frac{r_x}{5A^2}) \subset B(x_{k_0}, r_{k_0}). \text{ Thus we prove that } \Omega \subset \cup_k B(x_k, r_k), \text{ and so } \mu(\Omega) \leq \sum_k \mu(B(x_k, r_k)). \text{ Let } B_k = B(x_k, r_k), \text{ then } \{B_k\} \text{ satisfy (i), (ii) and the first inequality in (iii). Let } f(x) = \chi_{\Omega}(x). \text{ Noticing the first inequality in (3), we have}$

$$\bigcup_k B(x_k, \frac{r_k}{5A^2}) \subset \{x : M(f)(x) > \frac{1}{4}\}.$$

Thus

$$\sum_{k} \mu(B_{k}) \leq C \sum_{k} \mu(B(x_{k}, \frac{r_{k}}{5A^{2}})) \leq C \mu(\cup_{k} B(x_{k}, \frac{r_{k}}{5A^{2}}))$$

$$\leq C \mu(\{x : M(f)(x) > \frac{1}{4}\}) \leq C \int f(x) d\mu(x) \leq C \mu(\Omega).$$

This shows that the second inequality of (iii) is true.

Lemma 3.2 Let f be an integrable function supported on ball B_0 . Then

$$f^{**}(t) - f^{*}(t) \le C(f_{B_0}^{\#})^{*}(t), \text{ for } 0 < t < \frac{\mu(B_0)}{6},$$

where

$$(f_{B_0}^{\#})^*(t) = \sup_{x \in B, B \subset B_0} \frac{1}{\mu(B)} \int_B |f(z) - f_B| d\mu(z).$$

Proof Since $|f|_{B_0}^{\#} \leq f_{B_0}^{\#}$, without loss of generality, we suppose $f \geq 0$. Let

$$E = \{x \in B_0 : f(x) > f^*(t)\}, \quad F = \{x \in B_0 : f_{B_0}^{\#}(x) > (f_{B_0}^{\#})^*(t)\}.$$

It is easy to see that E and F are open sets and $\mu(E) \leq t$, $\mu(F) \leq t$. Define $\Omega = E \cup F$, then $\mu(\Omega) \leq 2t < \frac{\mu(B_0)}{2}$. By Lemma 3.1, there exists a sequence $\{B_k\}$ of balls satisfying the conditions (i)-(iii).

$$t\{f^{**}(t) - f^{*}(t)\} = \int_{E} (f(x) - f^{*}(t)) d\mu(x)$$

$$\leq \sum_{k} \int_{E \cap B_{k}} (f(x) - f^{*}(t)) d\mu(x)$$

$$\leq \sum_{k} \int_{B_{k}} |f(x) - f_{B_{k}}| d\mu(x) + \sum_{k} \mu(E \cap B_{k}) (f_{B_{k}} - f^{*}(t))$$

$$= I + II.$$

Define $K = \{k : f_{B_k} > f^*(t)\}$, then we have

$$II \le \sum_{k \in K} \mu(E \cap B_k) (f_{B_k} - f^*(t)) \le \sum_{k \in K} \mu(\Omega \cap B_k) (f_{B_k} - f^*(t)).$$

By Lemma 3.1(i), noticing that $f(x) \leq f^*(t)$ for $x \in \Omega^c$, we have

$$II \le \sum_{k \in K} \int_{\Omega^c \cap B_k} (f_{B_k} - f^*(t)) \le \sum_k \int_{B_k} |f(x) - f_{B_k}| d\mu(x) \le I.$$

Thus $t\{f^{**}(t) - f^*(t)\} \leq 2I$. By Lemma 3.1, for any $k, B_k \cap F^c \neq \emptyset$, taking $y_k \in B_k \cap F^c$, we have

$$I \le \sum_{k} \mu(B_k) f_{B_0}^{\#}(y_k) \le \sum_{k} (f_{B_0}^{\#})^*(t) \mu(B_k) \le C \mu(\Omega) (f_{B_0}^{\#})^*(t) \le C t (f_{B_0}^{\#})^*(t).$$

Lemma 3.3 Let f be integrable function on B_0 , $0 < t \le \frac{\mu(B_0)}{6}$. Then

$$([f - f_{B_0}]\chi_{B_0})^{**}(t) \le C \int_t^{\mu(B_0)} (f_{B_0}^{\#})^*(s) \frac{\mathrm{d}s}{s}.$$

Proof Let $g = [f - f_{B_0}]\chi_{B_0}$. By Lemma 3.2, we have

$$g^{**}(s) - g^{*}(s) \le C(g_{B_0}^{\#})^{*}(s), \quad (0 < s \le \frac{\mu(B_0)}{6}).$$

From the definition of g^{**} and Newton-Leibniz formula, we have

$$g^{**}(t) - g^{**}(u) = \int_{t}^{u} (g^{**}(s) - g^{*}(s)) \frac{\mathrm{d}s}{s}.$$

Thus for $0 < t \le u \le \frac{\mu(B_0)}{6}$, we have

$$g^{**}(t) - g^{**}(u) \le C \int_t^u (g_{B_0}^{\#})^*(s) \frac{\mathrm{d}s}{s}$$

Taking $u = \frac{\mu(B_0)}{6}$, and noticing that

$$g^{**}(\frac{\mu(B_0)}{6}) \le \frac{6}{\mu(B_0)} \int_0^{\mu(B_0)} g^*(s) ds = \frac{6}{\mu(B_0)} \int_{B_0} |g(z)| d\mu(z) = 6|g|_{B_0},$$

we have

$$g^{**}(t) \le C\{\int_t^{\mu(B_0)} (g_{B_0}^{\#})^*(s) \frac{\mathrm{d}s}{s} + |g|_{B_0}\}.$$

By the definition of g, we have $|g|_{B_0} \leq f_{B_0}^{\#}(y)$ for any $y \in B_0$. Thus

$$|g|_{B_0} \le \frac{5}{6\mu(B_0)} \int_t^{\mu(B_0)} (f_{B_0}^{\#})^*(s) \frac{\mathrm{d}s}{s}.$$

Lemma 3.4 Let $f \in L_{loc}(X)$, $1 \le q$. If

$$\int_{1}^{\infty} (f^{\#})^*(s) \frac{\mathrm{d}s}{s} < \infty,$$

then the limit $f_{\infty} = \lim_{\mu(B) \to \infty} f_B$ exists.

Proof For fixed $x_0 \in X$, define $B_k = B(x_0, 2^k)$. By Lemma 3.3, we have

$$f_{B_{k+1}} - f_{B_k} = [(f_{B_{k+1}} - f_{B_k})\chi_{B_k}]^{**}(\frac{\mu(B_k)}{6})$$

$$\leq \left[(f - f_{B_k}) \chi_{B_k} \right]^{**} \left(\frac{\mu(B_k)}{6} \right) + \left[(f - f_{B_{k+1}}) \chi_{B_k} \right]^{**} \left(\frac{\mu(B_k)}{6} \right) \\
\leq C \left(\int_{\frac{\mu(B_k)}{6}}^{\mu(B_k)} + \int_{\frac{\mu(B_k)}{6}}^{\mu(B_{k+1})} f^{**}(s) \frac{\mathrm{d}s}{s}, \\
\leq C \left(\int_{\frac{\mu(B_k)}{6}}^{\mu(B_k)} + \int_{\frac{\mu(B_k)}{6}}^{\mu(B_{k+1})} \left[f^{**}(s) \right]^q \frac{\mathrm{d}s}{s}, \\$$

thus $\{f_{B_k}\}\$ is a Cauchy sequence and $\lim_{k\to\infty} f_{B_k}$ exists.

For any $\epsilon > 0$ and M large enough such that

$$C\int_{\frac{M}{2}}^{\infty} (f^{\#})^*(s) \frac{\mathrm{d}s}{s} < \frac{\epsilon}{3},$$

and for any ball B satisfying $\mu(B) > M$, we choose B_k such that $\mu(B_k) > M$ and $|f_{B_k} - f_{\infty}| < \frac{\epsilon}{3}$. Taking ball B' contains B and B_k , we have

$$|f_B - f_{\infty}| \le |f_B - f_{B'}| + |f_{B'} - f_{B_k}| + |f_{B_k} - f_{\infty}|$$

$$\le C(\int_{\mu(B)}^{\infty} + \int_{\mu(B_k)}^{\infty})(f^{\#})^*(s)\frac{\mathrm{d}s}{s} + \frac{\epsilon}{3} < \epsilon.$$

Lemma 3.5 Let $f \in L_{loc}(X)$, $1 \le q$. If

$$\int_{1}^{\infty} (f^{\#})^*(s) \frac{\mathrm{d}s}{s} < \infty,$$

then

$$(f - f_{\infty})^{**}(t) \le C \int_{t}^{\infty} (f^{\#})^{*}(s) \frac{\mathrm{d}s}{s}.$$

Proof For any $\epsilon > 0$ and ball B, we have $|f_B - f_{\infty}| < \epsilon$ as long as $\mu(B)$ large enough. Thus

$$[(f - f_{\infty})\chi_B]^{**}(t) \le [(f - f_B)\chi_B]^{**}(t) + |f_B - f_{\infty}|$$

$$\le C \int_t^{\infty} (f^{\#})^*(s) \frac{\mathrm{d}s}{s} + \epsilon.$$

Let $B \nearrow X$. Since $[(f - f_{\infty})\chi_B]^{**}(t) \nearrow (f - f_{\infty})^{**}(t)$ and ϵ is arbitrary, we know Lemma 3.5 is true.

Proof of Theorem 1.2 Let $F \in (L^1, BMO)_{\theta,q}$. When $q < \infty$, we have

$$\int_0^\infty [t^{-\theta}K(t, F; L^1, BMO)]^q \frac{\mathrm{d}t}{t} < \infty.$$

By Theorem 2.3,

$$\int_1^\infty (F^\#)^*(t)\frac{\mathrm{d}t}{t} = \int_1^\infty t^{-\frac{1}{p}}t^{\frac{1}{p}}(F^\#)^*(t)\frac{\mathrm{d}t}{t} \leq C\int_1^\infty t^{\frac{q}{p}}[(F^\#)^*(t)]^q\frac{\mathrm{d}t}{t} < \infty.$$

From Lemma 3.4, for every f in the equivalent class F, $f_{\infty} = \lim_{\mu(B) \to \infty} f_B$ exists. We choose f such that $f_{\infty} = 0$. By Lemma 3.5, we have

$$f^{**}(t) \le C \int_{t}^{\infty} (F^{\#})^{*}(s) \frac{\mathrm{d}s}{s}, \quad 0 < t < \infty.$$

Noticing $0 < \theta < 1$ and using the Hardy inequality, we obtain $f \in L_{pq}$ and prove the first inequality. When $q = \infty$, the proof is easy and omitted here.

Conversely, if $f \in L_{pq}$ and F belongs to the equivalent class of f, then using $F^{\#}(x) \leq 2M(f)(x)$, we have $(F^{\#})^*(t) \leq Cf^{**}(t)$. Using the Hardy inequality again, we get the second inequality of the Theorem 1.2. This completes the proof of Theorem 1.2.

Corollary 3.6 For $0 < \theta < 1$, $1 \le q \le \infty$, we have $(H^1, BMO)_{\theta,q} = L_{pq}$, where $\theta = 1 - \frac{1}{p}$.

Proof By Theorems 1.1 and 1.2, we have

$$(H^1, L^{\infty})_{\theta, q} = L_{pq} = (L^1, BMO)_{\theta, q}, \quad 0 < \theta < 1, 1 \le q \le \infty,$$

where $\theta = 1 - \frac{1}{p}$. Since $L^{\infty} \hookrightarrow \text{BMO}$ and $H^1 \hookrightarrow L^1$,

$$(H^1, L^{\infty})_{\theta, q} \subset (H^1, BMO)_{\theta, q} \subset (L^1, BMO)_{\theta, q}.$$

This proves the corollary.

References:

- [1] BERGH J, LOFSTROM J. Interpolation Spaces [M]. New York: Springer-Verleg, 1976.
- [2] DENG Dong-guo, HAN Yong-sheng. Theory of H^p Spaces [M]. Beijing: Beijing University Press, 1992.
- [3] LI Wen-ming. Interpolation spaces between H^1 and L^{∞} on spaces of homogeneous type [J]. Approx. Theory Appl., 2002, **18**(3): 86–92.
- [4] LI Wen-ming. A maximal function characterization of Hardy spaces on spaces of homogeneous type [J].
 Approx. Theory Appl., 1998, 14(2): 12–27.
- [5] BENNETT C, SHARPLEY R. Interpolation of Operators [M]. New York: Academic Press, 1988.
- [6] HAN Yong-sheng, SAWYER E T. Littlewood-Paley theory on spaces of homogeneous type and classical function spaces [J]. Mem. Amer. Math. Soc., 1994, 110: 1–136.
- [7] MACIAS R A, ŠEGOVIA C. Lipschitz function on spaces of homogeneous type [J]. Adv. Math., 1979, 33: 257–270.
- [8] MACIAS R A, SEGOVIA C. A decomposition into atoms of distribution on spaces of homogeneous type [J]. Adv. Math., 1979, 33: 271–309.
- [9] COIFMAN R R, WEISS G. Extensions of Hardy spaces and their use in analysis [J]. Bull. Amer. Math. Soc., 1977, 83: 569-645.

齐型空间上 L^1 与 BMO 的内插空间

李刚1, 李文明2

- (1. 河北广播电视大学教务处,河北 石家庄 050071;
- 2. 河北师范大学数学与信息科学学院,河北 石家庄 050016)

摘要: 本文讨论齐型空间上 L^1 与 BMO 的内插空间, 得到下列结果: 对于 $0 < \theta < 1, \ 1 \le q \le \infty$, 有 $(L^1, \text{BMO})_{\theta,q} = L_{pq}$, 其中 $\theta = 1 - \frac{1}{p}$.

关键词: 齐型空间; BMO; 内插空间.