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1. Introduction and result

The interpolation spaces between function spaces such as LP spaces, HP spaces, BMO and
other function spaces on R™ have been well developed!*?. In [3], we study the interpolation
spaces between Hardy spaces H' and L™ on spaces of homogeneous type using the maximal
function characterization obtained in [4]. The purpose of this paper is to study the interpolation
spaces between L' and BMO on spaces of homogeneous type.

Let (X, p, 1t) be a space of homogeneous type. In this paper the basic concepts and notations

are all same as in [3].

Theorem 1.1 For 0 <0 < 1,1 < ¢ < oo, we have (H', L®)g , = Ly, where § = 1 — 1—17.

Our main result in this paper is the following theorem.

Theorem 1.2 For0< 6 < 1,1 < ¢ < oo, we have (L', BMO)g , = L, where § =1 — %.

Since the space BMO is modulo constants, and so are the interpolation spaces (L', BMO)g ;.
Therefore, more precisely, we have that for any F' € (L', BMO)g 4, there exists a unique f € Ly,
such that

CleHpq < ||FH(L1,BMO)9,Q < CZHprq’

where C1, Cy are not dependent on f and F'.

2. The characterization of K (¢, f; L', BMO)

Lemma 2.1[! (covering lemma) Let §2 be an open set of finite measure strictly contained in
X and d(x) = inf{p(z,y) : y ¢ Q}. Given C > 1, let r(x) = (2AC)~'d(x). Then there exists
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a natural number M that depends on C, and a sequence {x,} such that, denoting r(z,) by y,
we have

(i) The balls B(xy, (4A)"tr,) are pairwise disjoint;

(ii) UpB(xn, ) =

(iii) For every n, B(xy,Cry) C §;

(iv) For every n, x € B(zy,,Cry) implies that Cr,, < d(z) < 3A2Cr,;

(v) For every n, there exists y,, ¢ 2 such that p(x,,y,) < 3ACr,;

(vi) For every n, the number of balls B(zy, Cry,) whose intersections with B(x,,,Cr,) are

non-empty is at most M.

Lemma 2.2/ (partition of the unity) Let Q be an open set of finite measure strictly contained
in X. Consider the sequence {x,} and {r,} given by Lemma 2.1 for C = 5A. Then, there exists

a sequence {¢,(x)} of non-negative functions satistying
(i) supppn C B(an,2rn);
(ii) on(x) > 1/M, for x € B(xy,r);
(iii) There exists C such that for every n, ¢, € M(2n, 70, 3,7) and ||onl| M(zn,rn.py) < CTnis

(iv) 22, #n(x) = xa(2).

Theorem 2.3 There exist constants C; and Cs, such that for all f € L' +BMO and for any
t > 0, we have
Cut(f#)"(t) < K(t, f; L', BMO) < Cat (f#)*(¢),

where f#(z) = sup,cp ﬁ S5 |f(z)—fBldu(z) is the sharp function and fp = (B) [ f(z)du(z).
Proof Let f=b+g,be L', g € BMO. Then f# < b# + g#* < b* + ||g|[Bmo. Therefore,
L)) < t07) () + tllglmmo < 26M(6)*(1) +tlgllevo < C(I[bll + ¢l gllBrno)-

Taking the supremum for all f = b+ g, we get the first inequality .
We now prove the second inequality. Fix f € L'+ BMO and ¢ > 0, and write Q = {z € X :
f#(x) > (f7)*(t)} and F = Q°. This set is open and u(Q) < t. Let {¢,(z)} be the partition of

unity given by Lemma 2.2, which is associated €2. Then for every n, let

mn(f):[/ /f z)pn(2)dp(z),

Zb Z — mn(f)len(2),
Zmn 2) + f(2)xr(2).

For b(x), we have

1o =3" / F() - | / on(2)du(2)] ! / F(@)pn () ()| pn (2)d(2)
<cy / FG) = oo ldu(z)

B(xn,2ry)
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<O fFuB(wn, 2r,) < Cu(Q)f#(t) < Ctf#(t).

In the following, we prove that ¢ € BMO and ||g|[smo < C(f#)*(t). We have only to prove that

for any B(xo,7), there exists constant a such that
5 [ la:) = alduta) < 0. )

For fixed kg, define Jy = {n : B(zy,24r,) N B(xk,, 247k,) # 0}. By Lemma 2.1 (vi), Jy
has elements at most M. By Lemma 2.1 (iv), for any n € Jy, we have

(3A2)71Tk0 <r,< (3A2)rk0,

and
UneoB(wn, 24r,) C B(wg,,8A ). (2)

In fact, for © € B(x,,2Ar,), take y € B(xy,, 2Ar,) N B(xg,, 2Ark, ), then
p(xvxko) < A[p(a:, y) + p(ya Iko)] < A[2ATH + 2ATko] < 8A4Tk0'

So (2) is true. Now we prove (1).
Let K = {k: B(xg,2r;) N B # (}. We have

1 1
AB) = = /B o) = aldu(e) + = /B la(e) - aldu(z),

If K =0, then B C F. Taking a = (B) [ f(z)du(z), we have

/ F(2) — aldu(z) < (F#)7 (1),

If K # 0 and there exists ko € K such that r < zizry,. Taking y € BN B(wg,, 21k, ), for

any x € B, we have
p(x7x7€0) < A[p(:v,y) + p(yv‘rko)] < A[2AT‘ + Tko] < 2AT‘]€0.

By Lemma 2.1 (iii), we know that B C Q. Let a = m fB(xk078A4Tk0) f(z)dp(z). Then

we have

1
M /B lo(2) —aldu(2)

n n n d
/Emzn:m )on( Zs@ z)aldp(z)

1
< Z =/ e Imal) el ()

keK

-y u(BﬂB($k=27°k))|[/ or(2)du(2)] ! /f(Z)sok(Z)du(Z) —al

= w(B)

A(B) =
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w(B N B(zg,2r)) c o
: keZK 1(B) w(B(zk, 2ry)) /B(zk.,zm) |f(2) —aldu(z)

1

<C—r—"—— / f(z) —aldu(z
w(B(xg,, 2Arg,) k;{) B(wk,27‘k)| (=) d(2)
1

<C / f(z) — aldu(z).
M(B(xk0,8A4Tk0) B(xk078A4Tk0)| ( ) | ( )

By Lemma 2.1 (v), we have B(zy,,8A%%,) N F # 0, thus A(B) < C(f7)*(t).
If K#0andforallk e K, r > #rk. It is easy to get Upex B(wk,2ry) C B(wo, TA3r).
Let a = m fB(ImM%) f(2)du(z). Then we have

c
AB) € —= ) /B(%m) /(2) — alen(z)du(z) +/ /(2) — aldp(2)

T uB) H BNF
1
scaﬁy/u@>—wggwuammo+émgﬂ@—amma
L Z)—a z #)*
SOy [ ) —aldu(z) £ Y0
The proof is completed. O

3. The proof of Theorem 1.2
In order to prove Theorem 1.2, we need the following lemmas.

Lemma 3.1 Let (X, p,u) be a bounded space of homogeneous type, i.e., u(X) < oco. Q is a
open subset of X, pu(2) < “(TX Then there exists a sequence { By} of balls satisfying

(i) w(QN By) < $u(Bi) < p(2°N By);

(ﬁ) QO C UpBy;

(i) (@) < S u(Be) < Cu(@).

Proof Notice that p(Q2) < @ and u(X) < co. We have that for any x € X, there exists a

rz > 0 such that
1 QnNnB(x,ry)

- < 3
4 pu(B(z,ry)) 3)
Clearly, the set {r, : © € X} is a bounded set and X is covered by the family of balls { B(z, £5=)}.
We choose B(x1,71) such that r; > %sup{rm :x € X}. Suppose that B(z1,71), B(za,72), - .

1
<z
-2

B(x, ) have already been chosen, then we take B(xy, 7y ) such that B(z41, B45 ) to be disjoint
from B(x1, §3z), B(%2, §32), - -+, B(wk, 54z ), and
> 1 { € X,Blx, —2 )N B(as, —=) =0, i=1,...,k}
T —sup{r, : x , B(x, Ti,—=)=0, i=1,...,k}.
F1 =g P 5 A 5 A2

In this way we get the sequence {B(zk,7k)}, k = 1,2, ..., of balls. This sequence could be finite or

infinite. Without loss of generality, we suppose it is infinite. Since {B(z, g4z )} are disjoint balls,
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ok H(B(rk, g42)) < u(X) < 0o, and limp .o 7 = 0. For any x € €, we take the first & with
the property that rpy; < %rz. Now the ball B(z, £57) must intersect one of the k previous balls
%rx. It
is easy to obtain that B(z, g%z) C B(Zk,,7k,). Thus we prove that Q C UpB(xk,7), and so

M(Q) < Zu(B(:vk,rk)). Let By = B(xy,ri), then {By} satisfy (i), (ii) and the first inequality

B(z1, 24z), B(wa, £25), ..., B(wk, =z ), say B(wr,, %) for some 1 < ko < k, and 7y, >

n (iii). Let f(z) = xa(z). Noticing the first inequality in (3), we have

Bk, 5 ) € {os M(H@) > 7}

Thus
> u(By) sc;uwm,%)) Cu(UsB(ar, 55))

1
< Culfe s M(7)(@) > ) <€ [ f@)dute) < Cu(@),
This shows that the second inequality of (iii) is true.

Lemma 3.2 Let f be an integrable function supported on ball By. Then

F) — f1() < C(fR) (), for 0<t< (BO)

where
(L) (1) = / F(2) = Faldu(z).

zGB BCBO

Proof Since |f |§0 < fgo, without loss of generality, we suppose f > 0. Let

E={z€By: f(x)>["(t)}, F={zeBo:fh(x)>(fE) D}

It is easy to see that E and F are open sets and pu(F) < t, u(F) < t. Define Q@ = E U F, then
w(Q) <2t < @. By Lemma 3.1, there exists a sequence { By} of balls satisfying the conditions

(i)-(iii).
HE™ () — (1)) = /E ((2) — F())dpu(z)
<3 /E (@) - £ (0)dn()

k
> [ 7@ = o ldute) + > HEN B fo, = 1°(1)

—I+H.

Define K = {k: fg, > f*(t)}, then we have

<Y uENB)(fo, — () < Y QN Bo)(f, — (1))

keK keK
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By Lemma 3.1(i), noticing that f(x) < f*(¢) for x € Q°, we have

ney [ Un @)<Y [ 150 - faldu) <1
k Bk

kek Y 2°NBk

Thus t{f**(¢t) — f*(¢)} < 2I. By Lemma 3.1, for any k, By N F¢ # (), taking y, € B N F¢, we
have

1< w(BR) (k) <3 (FE ) (n(Br) < Cu(Q)(f5,)* (1) < CH(fE)" ().
k

k

Lemma 3.3 Let f be integrable function on By, 0 < t < @. Then

1(Bo) ds
(If = fBolxB,) ™" (t) < O/ (féi)*(s)?
t
Proof Let g =[f — fB,]xB,- By Lemma 3.2, we have
97 (5) 9" (s) < Ot (), (0<s< LBy
From the definition of ¢** and Newton-Leibniz formula, we have
ds

97 () = g™ (u) = /tu(g**(S) —9°(s))

S .

Thus for 0 <t <u < “(?’), we have

Taking u = £ (f"), and noticing that
Kok M(BO) 6 /M(BO) * 6 /
g < g*(s)ds = —— g(z)|du(z) = 6|g| By,
(=) Bo) o (s) (Bo) Bol()| (2) = 6lglm,
we have

w(Bo) s
<l W) O +lalsa).

By the definition of g, we have |g|p, < fgo (y) for any y € By. Thus
5 #(Bo) “ ds
< — *(s)—.
olon < ooy [ A
Lemma 3.4 Let f € Ljoo(X), 1 <gq. If

| ot eT <.

S

then the limit fo, = lim,(py—o fB exists.
Proof For fixed 2o € X, define By = B(zo,2"). By Lemma 3.3, we have

ka+1 - ka = [(ka+1 - ka)XBk]**(%Bk))
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w(Br) 1(By)

< f ka)XBk] *( 6 )+ [(f_ka+1)XBk]**( 6 )
u(By) Bk+1 dS
< C M(Bk) ‘/i(Bk) S s

u(Bx) Bk+1) ds
q__
ﬁ(sm //»L(Bk) (5)] 5

thus {fp,} is a Cauchy sequence and limy_, fp, exists.

For any € > 0 and M large enough such that

o L ds €
o[, Ures <5

and for any ball B satisfying u(B) > M, we choose By, such that u(By) > M and |fp, — feo| < §
Taking ball B’ contains B and By, we have

lfB — fool <\|fB— fBrl +fB0 — B+ |fBW — [0

o0 o0 ds €
C YV () 4 = < e
s<A®+Aqu><@s+3<

Lemma 3.5 Let f € Ljoo(X), 1 <gq. If
e . ds
[ e <.
1 S

then
(f—nw%wso/ (F#)(s)Z

t S

Proof For any € > 0 and ball B, we have |fg — fs| < € as long as u(B) large enough. Thus

[(f = foo)xBI™ () < [(f - fB)XB]**()+|fB_fOO|

c/ (f)*(

Let B / X. Since [(f — foo)XB]™ () / (f — foo)**(t) and € is arbitrary, we know Lemma 3.5 is

true.

Proof of Theorem 1.2 Let F € (L*,BMO)g ,. When ¢ < oo, we have

/ [t~°K(t, F; L', BMO)] Tt < 0.
0

By Theorem 2.3,
/ (F#)* ()O}f _/ R (PR c/ ()" %@0
1 1

From Lemma 3.4, for every f in the equivalent class F', fo = lim,(p)—o fB exists. We choose
f such that foo = 0. By Lemma 3.5, we have

£ () < C/tm(F#)*(g%, 0< < oo
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Noticing 0 < 6 < 1 and using the Hardy inequality, we obtain f € L,, and prove the first
inequality. When ¢ = oo, the proof is easy and omitted here.

Conversely, if f € L,, and F belongs to the equivalent class of f, then using F#(z) <
2M (f)(z), we have (F#)*(t) < Cf**(t). Using the Hardy inequality again, we get the second
inequality of the Theorem 1.2. This completes the proof of Theorem 1.2. O

Corollary 3.6 For0< 6 <1,1<q< oo, we have (H!,BMO)g 4 = L;,, where § =1 — %.

Proof By Theorems 1.1 and 1.2, we have
(H',L®)g.4 = Lpg = (L', BMO)y,, 0<0<1,1<q< oo,
where § =1 — %. Since L> < BMO and H' — L!,
(H',L>=)9,, C (H,BMO)y,, C (L', BMO)g .

This proves the corollary.
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