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Abstract In this paper, the global exponential stability of fuzzy cellular neural networks with

impulses and infinite delays is investigated. Based on an impulsive delayed integro-differential

inequality and the properties of fuzzy logic operation and M-matrix, an easily verified sufficient

condition is obtained. Moreover, the exponential convergent rate for the fuzzy cellular neural

networks with impulses and infinite delays is also given. An example is given to illustrate the

effectiveness of our theoretical result.
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1. Introduction

Yang et al.[1,2] introduced fuzzy cellular neural networks (FCNN), which integrates fuzzy

logic into the structure of traditional CNN and maintains local connectedness among cells. Un-

like previous CNN structures, FCNN has fuzzy logic between its template and input and/or

output besides the “sum of product” operation, which allows us to combine the low information

processing capability of CNN’s with the high level information processing capability, such as im-

age understanding of fuzzy systems. FCNN is a useful paradigm for image processing problems

and Euclidean distance transformation. Also, FCNN has inherent connection to mathematical

morphology, which is a cornerstone in image processing and pattern recognition. To guarantee

that the performance of FCNN is what we wanted, it is important to study its equilibrium points

and the stability of those equilibrium points. Yang et al.[3] investigated the existence and sta-

bility of equilibrium point of FCNN. And then the delay effect on the stability of equilibrium

point of FCNN has been studied by some researchers. Chen et al.[4] considered the stability of

FCNN with time-varying delays and Liu et al.[5] studied the stability of FCNN with constant
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time delays and time-varying delays. Huang et al.[6] investigated the stability of FCNN with in-

finite delays. However, besides the delay effect, impulsive effect likewise exists in a wide variety

of evolutionary processes in which states are changed abruptly at certain moments of time. For

example, some biological systems such as biological neural networks and bursting rhythm models

in pathology, as well as frequency-modulated signal processing systems, and flying motions, are

characterized by abrupt changes of states at certain time instants. Their study is assuming a

greater importance[7,8]. Xu et al.[9] established an impulsive delay differential inequality and

studied the stability of neural networks with impulses. Guan et al.[10] investigated the impulsive

synchronization for Takagi-Sugeno fuzzy model.

In this paper, we will study the stability of the FCNN with impulses and infinite delays:
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

dxi

dt
= −aixi(t) +

n
∑

j=1

bijµj + Ii+

n
∧

j=1

αijfj(xj(t)) +

n
∧

j=1

γij

∫ t

−∞

kij(t− s)fj(xj(s))ds+

n
∧

j=1

Tijµj+

n
∨

j=1

βijfj(xj(t)) +

n
∨

j=1

θij

∫ t

−∞

kij(t− s)fj(xj(s))ds+

n
∨

j=1

Hijµj , t 6= tk,

xi(t
+
0 ) = φi ∈ R,

∆xi(tk) = xi(t
+
k ) − xi(t

−
k ) = Jik(x1(t

−
k ), . . . , xn(t−k )) + hik, k = 1, 2, . . . ,

(1)

where i = 1, . . . , n, ai > 0, αij and γij are elements of fuzzy feedback MIN template; βij

and θij are elements of fuzzy feedback MAX template; Tij and Hij are elements of fuzzy feed-

forward MIN template and fuzzy feed-forward MAX template, respectively; bij are elements of

feed-forward template;
∧

and
∨

denote the fuzzy AND and fuzzy OR operation, respectively;

xi, µi, Ii denote state, input and bias of the ith neurons, respectively; hik are impulsive constant

input; fi are the activation functions; kij(s) ≥ 0 are the feedback kernels, defined on [0,∞),

satisfying

(H) :

∫ ∞

0

eλ0skij(s)ds <∞, i, j = 1, . . . , n, (2)

where λ0 is a positive constant; tk are the impulsive moments; t1 < t2 < · · · is a strictly increasing

sequence such that limk→∞ tk = ∞.

2. Preliminaries

In what follows, we will introduce some notations and basic definitions.

Let Rn be the space of n-dimensional real column vectors, and let Rm×n denote the set

of m × n real matrices. E denotes an n × n unit matrix. For A,B ∈ Rm×n or A,B ∈ Rn,

A ≥ B (A > B) means that each pair of corresponding elements of A and B satisfies the

inequality “ ≥ (>)”. Especially, A is called a nonnegative matrix if A ≥ 0, and z is called a

positive vector if z > 0.

C[X,Y ] denotes the space of continuous mappings from a topological spaceX to a topological
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space Y . Especially, let C , C[(−∞, 0], Rn].

PC[I, Rn] , {ϕ : I → Rn |ϕ(t+) = ϕ(t) for t ∈ I, ϕ(t−) exists for t ∈ (t0,∞),

ϕ(t−) = ϕ(t) for all but points tk ∈ (t0,∞)}, where I ⊂ R is an interval, ϕ(t+) and ϕ(t−)

denote the left limit and right limit of scalar function ϕ(t), respectively. Especially, let PC =

PC((−∞, 0), Rn).

For x ∈ Rn, A ∈ Rn×n, we define

[x]+ = (|x1|, . . . , |xn|)
T, [A]+ = (|aij |)n×n,

and introduce the corresponding norm for them as follows

||x|| = max
1≤i≤n

{|xi|}, ||A|| = max
1≤i≤n

n
∑

j=1

|aij |.

Definition 1 For any given t0 ∈ R, φi ∈ PC, a function xi(t) ∈ PC[(−∞,+∞), R] is called a

solution of (1) through (t0, φi), if xi(t) satisfies (1) for t ≥ t0, denoted by xi(t, t0, φ) or simply

by xi(t) if no confusion arises. Especially, a point x∗ = (x∗1, . . . , x
∗
n)T is called an equilibrium of

(1), if xi(t) = x∗i is a solution of (1) for i = 1, . . . , n.

Throughout this paper, we assume that for any φi ∈ PC, there exists at least one solution

of (1). Let x(t) = (x1(t), . . . , xn(t))T be any solution of (1). As usual in the theory of impulsive

differential equations, at the points of discontinuity tk of the solution x(t) we define that x(t+k ) ≡

x(tk).

Let x∗ be an equilibrium point of (1). And set y(t) = x(t)−x∗ = (x1(t)−x
∗
1, . . . , xn(t)−x∗n)T.

Substituting them into (1), we can get

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













dyi

dt
= −aiyi(t) +

n
∧

j=1

αijgj(yj(t)) +
n
∧

j=1

γij

∫ t

−∞

kij(t− s)gj(yj(s))ds+

n
∨

j=1

βijgj(yj(t)) +

n
∨

j=1

θij

∫ t

−∞

kij(t− s)gj(yj(s))ds

yi(t
+
0 ) = ϕi ∈ R,

∆yi(tk) = ψik(y1(t
−
k ), . . . , yn(t−k )), k = 1, 2, . . . ,

(3)

where ψik(y1(t
−
k ), . . . , yn(t−k )) = Jik(y1(t

−
k ) + x∗1, . . . , yn(t−k ) + x∗n) − Jik(x∗1, . . . , x

∗
n), gj(yj(t)) =

fj(yj(t) + x∗j ) − fj(x
∗
j ), ϕi = φi − x∗i .

It is clear that the stability of the zero solution of (3) is equivalent to the stability of the

equilibrium point x∗ of (1). Therefore, we may mainly discuss the stability of the zero solution

of (3).

Definition 2 The zero solution of (3) is said to be globally exponentially stable if for any

solution y(t) with the initial condition ϕ = (ϕ1, . . . , ϕn)T ∈ PC, there exist a constant λ > 0

and a vector z > 0 such that

[y(t)]+ ≤ ze−λ(t−t0), t ≥ t0. (4)
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Definition 3[11] For A = (aij) ∈ Rm×n and B = (bij) ∈ Rm×n, define A ◦B as follows:

A ◦B ,







a11b11 · · · a1nb1n

...
...

...

am1bm1 · · · amnbmn






. (5)

Then, A ◦B is called the Hadamard product or Schur product of A and B.

Definition 4[12] Let the matrix D = (dij)n×n have nonpositive off-diagonal elements (i.e., dij ≤

0, i 6= j). Then each of the following conditions is equivalent to the statement “D is a nonsingular

M -matrix”.

(i) All the leading principle minors of D are positive;

(ii) D = C −M and ρ(C−1M) < 1, where M ≥ 0, C = diag{c1, . . . , cn} and ρ(·) is the

spectral radius of the matrix (·);

(iii) The diagonal elements of D are all positive and there exists a positive vector d such that

Dd > 0 or DTd > 0.

For a nonsingular M-matrix D, we denote

ΩM (D) , {z ∈ Rn|Dz > 0, z > 0}.

From (iii) of the definition of M-matrix, we have the following lemma.

Lemma 1 ΩM (D) is nonempty and for any z1, z2 ∈ ΩM (D), we have

k1z1 + k2z2 ∈ ΩM (D), ∀ k1, k2 > 0.

Lemma 2[2] For any aij ∈ R, xj , yj ∈ R, i, j = 1, . . . , n, we have the following estimations:

∣

∣

∣

n
∧

j=1

aijxj −

n
∧

j=1

aijyj

∣

∣

∣ ≤

n
∑

j=1

|aij | |xj − yj |, (6)

and
∣

∣

∣

n
∨

j=1

aijxj −
n
∨

j=1

aijyj

∣

∣

∣
≤

n
∑

j=1

|aij | |xj − yj |. (7)

3. Global exponential stability

In this section, we will first establish an impulsive delayed integro-differential inequality and

then give some sufficient conditions on the global exponential stability of equilibrium point for

system (3).

Theorem 1 Let 0 ≤ u(t) = (u1(t), . . . , un(t))T ∈ PC([t0,∞), Rn) satisfy the following impulsive

delayed integro-differential inequality






















D+u(t) ≤ Pu(t) +

∫ ∞

0

Q(s)u(t− s)ds, t 6= tk, t ≥ t0,

u(t) ≤Wku(t
−), t = tk, k = 1, 2, . . . ,

u(t) = φ(t), −∞ < t ≤ t0,

(8)
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where P = (pij)n×n with pij ≥ 0 for i 6= j, Wk = (wk
ij)n×n ≥ 0, φ(t) ∈ PC, Q(t) = (qij(t))n×n ≥

0 for any t ≥ t0 and satisfies

(H0) :

∫ ∞

0

eλ1sQ(s)ds <∞,

in which λ1 is a positive constant.

Write Q = (
∫ ∞

0 qij(s)ds)n×n. If D = −(P +Q) is a nonsingular M-matrix, then there exists

a positive vector z = (z1, . . . , zn)T ∈ ΩM (D) such that

u(t) ≤ δ1 · · · δk−1ze
−λ(t−t0), t ∈ [tk−1, tk), k = 1, 2, . . . , (9)

where δk = max{1, ||Wk||} and the positive constant λ ≤ λ1 is determined by the following

inequality

[λE + P +

∫ ∞

0

Q(s)eλsds]z < 0, for the given z ∈ ΩM (D). (10)

Proof SinceD is a nonsingular M-matrix, by Lemma 1, there exists a positive vector z ∈ ΩM (D)

such that Dz > 0 or (P +Q)z < 0. By using continuity and hypothesis (H0), we know that (l0)

has at least one positive solution λ ≤ λ1, i.e.

λzi +

n
∑

j=1

(

pij +

∫ ∞

0

qij(s)e
λsds

)

zj < 0. (11)

Since φ(t) ∈ PC is bounded, by Lemma 1, we can always choose a sufficiently large z ∈

ΩM (D) such that

u(t) ≤ ze−λ(t−t0), t ∈ (−∞, t0]. (12)

Now we shall prove that

u(t) ≤ ze−λ(t−t0), t ∈ [t0, t1). (13)

In order to prove (13), we first prove for any l > 1

ui(t) < lzie
−λ(t−t0) , vi(t), t ∈ [t0, t1), i = 1, . . . , n. (14)

If (14) is not true, then from the fact that u(t) is continuous in [t0, t1), there must be a t∗ ∈ [t0, t1)

and some integer m such that

um(t∗) = vm(t∗), D+um(t∗) ≥ v′m(t∗), (15)

ui(t) ≤ vi(t), t ∈ (−∞, t∗], i = 1, . . . , n. (16)

Hence, by (8), (11), the equality of (15), (16) and pij ≥ 0 for i 6= j, qij(t) ≥ 0, we have

D+um(t∗) ≤
n

∑

j=1

(

pmjuj(t
∗) +

∫ ∞

0

qmj(s)uj(t
∗ − s)ds

)

≤
n

∑

j=1

(

pmj +

∫ ∞

0

qmj(s)e
λsds

)

lzje
−λ(t∗−t0)

< −λzmle
−λ(t∗−t0)
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= v′m(t∗),

which contradicts the inequality of (15), so (l4) holds for all t ∈ [t0, t1). Let l → 1. Then (13)

holds for t ∈ [t0, t1).

Using the discrete part of (8), (13), the fact that W1z ≤ ||W1||z, and the definition of δ, we

obtain that

u(t1) ≤W1u(t
−
1 ) ≤W1ze

−λ(t1−t0) ≤ ||W1||ze
−λ(t1−t0) ≤ δ1ze

−λ(t1−t0).

So we have

u(t) ≤ δ1ze
−λ(t−t0), t ∈ (−∞, t1]. (17)

By an argument similar to (13), we can use (17) to derive that

u(t) ≤ δ1ze
−λ(t−t0), t ∈ [t1, t2). (18)

So, by simple induction, we conclude that

u(t) ≤ δ1 · · · δk−1ze
−λ(t−t0), t ∈ [tk−1, tk), k = 1, 2, . . . . (19)

The proof is completed. 2

Now we will state and prove our main results. For convenience, the following notations will

be used.

A0 = diag{a1, . . . , an}, A = (|αij | + |βij |)n×n,

B = (|γij | + |θij |)n×n, K(s) = (kij(s))n×n.

Theorem 2 Assume that the hypothesis (H) holds. Furthermore, suppose the following:

(H1) For any yj ∈ R, j = 1, . . . , n, there exist nonnegative constants Lj such that

|gj(yj)| ≤ Lj|yj |. (20)

(H2) For any yj ∈ R, there exist nonnegative constants wk
ij , k = 1, 2, . . ., i, j = 1, . . . , n such

that

|ψik(y1, . . . , yn)| ≤
n

∑

j=1

wk
ij |yj|. (21)

(H3) Let L = diag{L1, . . . , Ln}, Q(s) = B ◦K(s)L, P = −A0 + AL, Q =
∫ ∞

0 Q(s)ds and

D = −(P +Q) be a nonsingular M-matrix.

(H4) Let

γk = max{1, ||Wk||}, Wk = (wk
ij)n×n. (22)

And there exists a positive constant η such that

ln γk

tk − tk−1
≤ η < λ, k = 1, 2, . . . , (23)

where the positive constant λ ≤ λ0 is determined by the following inequality

[λE + P +B ◦

∫ ∞

0

K(s)eλsdsL]z < 0, for z ∈ ΩM (D). (24)
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Then the zero solution of (3) is globally exponentially stable, i.e., the equilibrium point x∗ of (1)

is globally exponentially stable. The convergent rate is equal to λ− η.

Proof Obviously, the zero solution of (3) is an equilibrium point. The uniqueness of the

equilibrium point follows from the global exponential stability of the equilibrium.

Since D is a nonsingular M-matrix, by Lemma 1, there exists a positive vector z ∈ ΩM (D)

such that Dz > 0 or (P +Q)z < 0. By using continuity and hypothesis (H), we obtain that (24)

has at least one positive solution λ ≤ λ0.

Then calculating the upper right derivative D+|yi(t)| along the solution of (3), we have

D+|yi(t)| =sgn(yi(t))
dyi

dt

≤− ai|yi(t)| + |

n
∧

j=1

αijgj(yj(t))| + |

n
∧

j=1

γij

∫ t

−∞

kij(t− s)gj(yj(s))ds|+

|

n
∨

j=1

βijgj(yj(t))| + |

n
∨

j=1

θij

∫ t

−∞

kij(t− s)gj(yj(s))ds|

≤ − ai|yi(t)| +

n
∑

j=1

(|αij | + |βij |) |gj(yj(t))|+

n
∑

j=1

(|γij | + |θij |) |

∫ t

−∞

kij(t− s)gj(yj(s))ds|

≤ − ai|yi(t)| +

n
∑

j=1

(|αij | + |βij |)Lj |yj(t)|+

n
∑

j=1

(|γij | + |θij |)

∫ ∞

0

kij(s)Lj |yj(t− s)|ds, (25)

where sgn(·) is the sign function, the second inequality is due to Lemma 2 and the third inequality

is due to condition (H1). So by (25), we have

D+[y(t)]+ ≤−A0[y(t)]
+ +AL[y(t)]+ +

∫ ∞

0

B ◦K(s)L[y(t− s)]+ds

=P [y(t)]+ +

∫ ∞

0

Q(s)[y(t− s)]+ds, t ≥ t0. (26)

Using the discrete part of (3) and Condition (H2), we have

[y(tk)]+ ≤Wk[y(t−k )], k = 1, 2, . . . . (27)

So, conditions (H3), (22), (26), (26) and (27) imply that all the conditions of Theorem 1 are

satisfied. Hence we conclude that

[y(t)]+ ≤ γ1 · · ·γk−1ze
−λ(t−t0), t ∈ [tk−1, tk), k = 1, 2, . . . . (28)

From (28), we have γk ≤ eη(tk−tk−1), k = 1, 2, . . ., so

γ1 · · · γk−1 ≤ eη(t1−t0) · · · eη(tk−1−tk−2) = eη(tk−1−t0)

≤ eη(t−t0), t ∈ [tk−1, tk), k = 1, 2, . . . . (29)
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So, combining (28) and (29), we derive that

[y(t)]+ ≤ ze−(λ−η)(t−t0), t ∈ [tk−1, tk), k = 1, 2, . . . , (30)

which implies that the conclusions of Theorem 2 hold. The proof is completed. 2

Remark 1 If there are no impulses in (1), that is, (1) degenerates to the following form:


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
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








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



















dxi

dt
= −aixi(t) +

n
∑

j=1

bijµj + Ii+

n
∧

j=1

αijfj(xj(t)) +
n
∧

j=1

γij

∫ t

−∞

kij(t− s)fj(xj(s))ds+
n
∧

j=1

Tijµj+

n
∨

j=1

βijfj(xj(t)) +

n
∨

j=1

θij

∫ t

−∞

kij(t− s)fj(xj(s))ds+

n
∨

j=1

Hijµj ,

xi(t0) = φi ∈ R, i = 1, . . . , n,

(31)

then, by using Theorem 2, we can obtain the global exponential stability of equilibrium point x∗

of (31).

Corollary 1 Assume that hypothesis (H) holds. Furthermore, suppose that

(H5) For any xj , yj ∈ R, j = 1, . . . , n, there exist nonnegative constants Lj such that

|fj(xj) − fj(yj)| ≤ Lj |xj − yj |; (32)

(H6) D = −(P+Q) is a nonsingular M-matrix, where P, Q are the same as those in condition

(H3).

Then (31) has only one equilibrium point x∗, which is globally exponentially stable.

We can similarly prove the existence and uniqueness of the equilibrium point x∗ by imitating

the proofs of Theorems 1 and 2 in [3]. The global exponential stability of the equilibrium point

follows from Theorem 2.

Remark 2 By the definition of nonsingular M-matrix, we know that condition (H6) is equivalent

to ρ(A−1
0 (AL+B ◦KL)) < 1, where ρ(·) denotes the spectral radius. So Corollary 1 is equivalent

to Theorem 1 in [6]. Note that we drop the condition that fj is a bounded function. Hence,

Corollary 1 improves Theorem 1 in [6], and Theorem 1 extends Theorem 1 in [6] to impulsive

systems.

Remark 3 In general, it is always assumed that there is an equilibrium point for the impulsive

systems to study their stability. However, Corollary 1 shows that there is a unique equilibrium

point x∗ of the continuous part of the system (1) under the conditions (H5) and (H6). In many

cases, x∗ may not be a solution of the discrete part of the system (1) without the external

impulsive input, that is, the entire system (1) may have no equilibrium point. In order to

guarantee that the entire system (1) has an equilibrium point, we introduce the external impulsive

input hik so that x∗ is also an equilibrium point of the discrete part of the system (1).
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4. An illustrative example

In this section, we will give an example to further illustrate the global exponential stability

of FCNN (1).

Example Consider system (1) with the following parameters and activation functions (n = 2,

i, j = 1, 2).

a1 = −10, a2 = −8, α11 = 1, α12 = 2, α21 = 3, α22 = 1, γij = 1,

θ11 = 1, θ12 = 2, θ21 = 2, θ22 = 3, kij(t) = e−(i+j)t, bij = 1,

Tij = 1, Hij = 1, µj = 1, I1 =
7

6
, I2 =

25

6
, fj(xj(t)) = |xj(t)|.

And

x1(tk) = J1k(x1(t
−
k ), x2(t

−
k )) + h1k, x2(tk) = J2k(x1(t

−
k ), x2(t

−
k )) + h2k, (33)

where t0 = 0, tk = tk−1 + 0.5k, for k = 1, 2, . . ..

One can check that all the properties given in (H) are satisfied, provided that 0 < λ0 < 2.

In this example, we may let λ0 = 1. And there exist positive constants L1 = L2 = 1 such that

condition (H1) holds. By the given parameters, we have

A0 =

(

10 0

0 8

)

, A =

(

2 3

5 3

)

, B =

(

2 3

3 4

)

, L =

(

1 0

0 1

)

, K(t) =

(

e−2t e−3t

e−3t e−4t

)

.

So we obtain

P =

(

−8 3

5 −5

)

, Q(t) =

(

2e−2t 3e−3t

3e−3t 4e−4t

)

, Q =

(

1 1

1 1

)

, D =

(

7 −4

−6 4

)

,

where Q(t) = B ◦K(t)L, P = −A0 + AL, Q =
∫ ∞

0 Q(s)ds and D = −(P + Q). We can easily

observe that D is a nonsingular M-matrix.

(I) If Jik(x1, x2) = xi and hik = 0 for i = 1, 2 and k = 1, 2, . . ., then system (1) becomes

FCNN without impulses. By Corollary 1, system (1) has exactly one globally exponentially

stable equilibrium (1, 2)T.

Remark 4 Clearly, the activation functions fj , j = 1, 2, do not satisfy the assumption on

bound, so the exponential stability criteria in [6] cannot be applied here. Hence Corollary 1 is

less conservative than Theorem 1 proposed by [6].

(II) Next we consider the case where

J1k = 0.2e0.05kx1 − 0.6e0.05kx2, J2k = −0.8e0.05kx1 + 0.2e0.05kx2,

h1k = 1 + e0.05k, h2k = 2 + 0.4e0.05k.

We can verify that point (1, 2)T is also an equilibrium point of the FCNN (1) with impulses (33),

and the parameters of conditions (H2) and (H4) are as follows:

Wk = e0.05k

(

0.2 0.6

0.8 0.2

)

, ||Wk|| = e0.05k > 1, k = 1, 2, . . . ,
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ΩM (D) = {(z1, z2)
T > 0 |

3

2
z1 < z2 <

7

4
z1}.

Let z = (3, 5)T ∈ ΩM (D) and λ = 0.15 < λ0 which satisfies the inequality

(λE + P +B ◦

∫ ∞

0

K(s)eλsdsL)z = (−0.0436,−0.8973)T < (0, 0)T.

And we can obtain that for k = 1, 2, . . .

γk = e0.05k = max{1, e0.05k},
ln γk

tk − tk−1
≤

ln e0.05k

0.5k
= 0.1 < λ.

Clearly, all conditions of Theorem 2 are satisfied, so the equilibrium (1, 2)T is globally exponen-

tially stable and the exponentially convergent rate is equal to 0.05.
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