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1. Introduction

In the last decades, generalizations of the class of Clifford semigroups have been extensively

investigated by many authors and some interesting results have been obtained[1−18]. Fountain[2]

introduced rpp monoids with central idempotents, briefly called C-rpp semigroups, which are

one of significant generalizations of Clifford semigroups. He showed that a semigroup is C-rpp if

and only if it is a strong semilattice of left cancellative monoids. The class of C-rpp semigroups

includes the class of Clifford semigroups but is out of the range of regular semigroups. In Ref. [18],

Zhu, Guo and Shum generalized the class of Clifford semigroups to the class of left C-semigroups

which is also in the range of regular semigroups. They showed that a semigroup is a left C-

semigroup if and only if it is a semilattice of left groups. Guo, Zhu and Shum in Ref. [7] had

defined and investigated the structure of left C-rpp semigroups, where they showed that a rpp

semigroup is a left C-rpp semigroup if and only if it is a semilattice of left stripes. By a left

stripe, it means that it is a direct product of a left cancellative monoid and a left zero band.

On the other hand, in 1997, Tang[13] generalized Fountain’s work on C-rpp semigroups to the

class of semigroups called C-wrpp semigroups, and he showed that a semigroup is a C-wrpp

semigroup if and only if it is a strong semilattice of left-R cancellative monoids. Du and Shum[1]

introduced the concept of left C-wrpp semigroups. The class of left C-wrpp semigroups includes

the class of C-wrpp semigroups and the class of left C-rpp semigroups. The authors established

the semi–spined product structure for left C-wrpp semigroups.
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Refined semilattice of semigroups was firstly studied by Zhang, Shum and Zhang in Ref. [16].

It is a natural generalization of the notation of strong semilattice of semigroups. Thus, a

number of results in the literature concerning strong semilattice decomposition can be further

developed[8,14,15,17]. Recently, Zhang[17] has investigated the refined semilattice structure of left

C-rpp semigroup, and he showed that a left C-rpp semigroup S is a refined semilattice of left

stripes if and only if it is a spined product of C-rpp component and a left regular band.

In this paper, we study the structure of refined semilattice for left C-wrpp semigroups. We

shall prove that a left C-wrpp semigroup S is a refined semilattice of left-R cancellative stripes

if and only if it is a spined product of a C-wrpp component and a left regular band. It shows

that our main result is a generalization of the refined semilattice decomposition of left C-rpp

semigroups. Some methods in Ref. [17] are adopted.

For notation and terminologies not mentioned in this paper, readers are referred to [1], [16],

[19] or [20].

2. Preliminaries

It will be convenient to make use of the following notations and lemmas in the remainder of

this paper.

Definition 2.1[13] Let S be a semigroup. We define the L∗∗-relation by aL∗∗b for a, b ∈ S if

and only if (ax, ay) ∈ R ⇔ (bx, by) ∈ R for x, y ∈ S1, where R is the usual Green’s R-relation

on S.

For a ∈ S, the equivalence relation L∗∗-class containing the element a is denoted by L∗∗
a .

Definition 2.2[1] A semigroup S is called wrpp semigroup if the following conditions are satis-

fied:

(1) Each L∗∗-class of S contains at least one idempotent of S;

(2) For all e ∈ E(L∗∗
a ), a = ae.

Definition 2.3[13] A semigroup S is said to be a C-wrpp semigroup if each L∗∗-class of S

contains an idempotent and all idempotents of S are central in S.

Definition 2.4[14] A wrpp semigroup S is called an adequate wrpp semigroup if for each a ∈ S,

there exists a unique idempotent e satisfying aL∗∗e and a = ea.

Hereafter, we denote the unique idempotent e in Definition 2.4 by ea.

Definition 2.5[1] An adequate wrpp semigroup S is said to be a left C-wrpp semigroup if

it satisfies aS ⊆ L∗∗(a) for all a ∈ S, where L∗∗(a) represents the smallest left ∗∗-ideal of S

generated by a ∈ S. By a left ∗∗-ideal L of S, we mean that it is a left ideal of S and satisfies

that L∗∗
x ⊆ L for all x ∈ L.

Definition 2.6[13] A semigroup S is said to be left-R cancellative if for all a, b, c ∈ S, (ca, cb) ∈ R

implies (a, b) ∈ R.
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Lemma 2.7[1] Let S be an adequate wrpp semigroup. Then the following conditions are

equivalent:

(1) S is a left C-wrpp semigroup;

(2) L∗∗ is a semilattice congruence on S;

(3) E(S) is a left regular band and L∗∗ is a congruence on S;

(4) S is a semilattice of left-R cancellative stripes.

It is easy to verify the following corollary.

Corollary 2.8 If an adequate wrpp semigroup S is a semilattice of left-R cancellative stripes,

then every left-R cancellative stripe is a L∗∗-class.

Next, we introduce the concept of refined semilattice of semigroups.

Definition 2.9[16,17] Let Y be a semilattice and {Sα : α ∈ Y } a family of disjoint of semigroups

of type T , indexed by Y . For each pair α, β ∈ Y with α ≥ β, let D(α, β) be a set of index and

{Sd(α,β) : d(α, β) ∈ D(α, β)}

a congruence partition of Sβ (i.e., the relation σ on Sβ defined by (bβ, b
′

β) ∈ σ if and only if

bβ, b
′

β ∈ Sd(α,β) for some d(α, β) ∈ D(α, β) is a congruence on Sβ), and for α ≥ β ≥ γ, the

partition

{Sd(α,γ) : d(α, γ) ∈ D(α, γ)}

is dense in the partition

{Sd(β,γ) : d(β, γ) ∈ D(β, γ)},

i.e., for any d(β, γ) ∈ D(β, γ), there exists D
′

(α, γ) ⊆ D(α, γ) such that

Sd(β,γ) = ∪d(α,γ)∈D′(α,γ)Sd(α,γ).

Moreover, let

{Φd(α,β) : Sα → Sd(α,β) : d(α, β) ∈ D(α, β)}

be a family of homomorphisms. Suppose the following conditions are satisfied:

(a) D(α, α) is singleton and Φd(α,α) is the identical automorphism of Sα for each α ∈ Y ,

where d(α, α) is the unique element of D(α, α).

(b) (i) For any α, β, γ ∈ Y with α ≥ β ≥ γ,

{Φd(α,β)Φd(β,γ) : d(α, β) ∈ D(α, β), d(β, γ) ∈ D(β, γ)}

⊆ {Φd(α,γ) : d(α, γ) ∈ D(α, γ)}.

(ii) For any d(α, αβ) ∈ D(α, αβ) and d(αβ, αβγ) ∈ D(αβ, αβγ),

Sd(α,αβ)Φd(αβ,αβγ) ⊆ Sd(α,αβγ),

where d(α, αβγ) satisfies

Φd(α,αβγ) = Φd(α,αβ)Φd(αβ,αβγ).
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(c) For α, β, γ ∈ Y with γ ≤ αβ and for any fixed aα ∈ Sα, d(αβ, γ) ∈ D(αβ, γ), there exists

d̄(β, γ) ∈ D(β, γ) such that

{aαΦd(α,γ) : d(α, γ) ∈ D(α, γ)} ∩ Sd(αβ,γ) ⊆ Sd̄(β,γ).

(d) For α, β ∈ Y with α ≥ β and aα ∈ Sα, bβ ∈ Sβ, d(α, β) ∈ D(α, β), d
′

(α, β) ∈ D(α, β),

bβ(aαΦd′ (α,β)) ∈ Sd(α,β) ⇒ bβ(aαΦd′(α,β)) = bβ(aαΦd(α,β)),

and

(aαΦd′(α,β))bβ ∈ Sd(α,β) ⇒ (aαΦd′(α,β))bβ = (aαΦd(α,β))bβ .

We now form the set S = ∪{Sα : α ∈ Y } and define a multiplication ◦ on S by the following

statements.

For any aα ∈ Sα, bβ ∈ Sβ , define

aα ◦ bβ = (aαΦd̄(α,αβ))(bβΦd̄(β,αβ)),

where d̄(α, αβ) ∈ D(α, αβ), d̄(β, αβ) ∈ D(β, αβ) which satisfy the following conditions:

{aαΦd(α,αβ) : d(α, αβ) ∈ D(α, αβ)} ⊆ Sd̄(β,αβ)

and

{bβΦd(β,αβ) : d(β, αβ) ∈ D(β, αβ)} ⊆ Sd̄(α,αβ).

Then (S = ∪α∈Y Sα, ◦) is a semigroup as it has been shown in Ref. [16]. Hence, the semigroup

(S, ◦) is called the refined semilattice of type T semigroups and is denoted by

{Y ;Sd(α,β),Φd(α,β), D(α, β);Sα}.

In the following, we give a lemma of the semi-spined product structure for left C-wrpp

semigroups.

Recall that if T = ∪α∈Y Tα and I = ∪α∈Y Iα are semilattice compositions of the semigroups

Tα and Iα, respectively, then we can form the set union S = ∪α∈Y Sα, where Sα = Tα × Iα is

the Cartesian product of Tα and Iα. Let Tl(I) be the left transformation semigroup acting on

I and define a mapping η : S → Tl(I) by (a, i) → η(a, i) such that η(a, i)j = (a, i)♯j for every

j ∈ I. Suppose that the mapping η satisfies the following conditions:

(S1) If (a, i) ∈ Sα, j ∈ Iβ , then (a, i)♯j ∈ Iαβ ;

(S2) If (a, i) ∈ Sα, j ∈ Iβ with α ≤ β, then (a, i)♯j = ij, where ij is the semigroup product

in the semigroup I = ∪α∈Y Iα;

(S3) If (a, i) ∈ Sα, (b, j) ∈ Sα, then η(a, i)η(b, j) = η(ab, (a, i)♯j), where ab is the semigroup

product in the semigroup T = ∪α∈Y Tα.

Then we define a multiplication ◦ on S = ∪α∈Y Sα by (a, i) ◦ (b, j) = (ab, (a, i)♯j). It can

be easily verified that ◦ is a binary associative operation on S, so that S becomes a semigroup

under the multiplication ◦. We denote the semigroup (S, ◦) by S = T ×η I and call S = T ×η I

the semi-spined product of the semigroups T and I with respect to η[1,5].

Definition 2.10[20] Let M and T be semigroups and also H their common morphic image.
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Let S = {(a, b) ∈ M × T |aϕ = bψ}, where ϕ : M → H and ψ : T → H are the semigroup

homomorphisms which map from M and T onto H respectively. Then we call S the spined

product of the semigroups M and T with respect to H , ϕ and ψ, denoted by S = M ⊗H,ϕ,ψ T .

Definition 2.11[1] Let T = ∪α∈Y Tα be a C-wrpp semigroup (that is, T is a strong semilattice

of left-R cancellative monoids [Y ;Tα;ϕα,β ] by the theorem of Tang in Ref. [13]) and let I be a left

regular band which is expressed as a semilattice of left zero bands Iα (that is, I = ∪α∈Y Iα). Then

we call the semi-spined product T ×η I = ∪α∈Y Sα, where Sα = Tα×η Iα, the curler formed by T

and I under the structure mapping η defined by conditions (S1)–(S3) if the following condition

(Q) is satisfied:

(Q) : kerη(a, i) = kerη(b, j) for all (a, i), (b, j) ∈ Sα.

Lemma 2.12[1] Let I be a left regular band and M a C-wrpp semigroup. Then the curler

constructed by S = M×η I is a left C-wrpp semigroup. Conversely, every left C-wrpp semigroup

S can be expressed by a curler S = M ×η I, where I is a left regular band and M a C-wrpp

semigroup.

Lemma 2.13[1] Let I be a left regular band and M a C-wrpp semigroup. If the curler con-

structed by S = M ×η I is a left C-wrpp semigroup, then the following statements hold:

(1) S is a spined product of M and I if and only if ρ = {((a, i), (b, j)) ∈ S × S : i = j} is a

congruence on S;

(2) S is a left C-rpp semigroup if and only if S is an rpp semigroup.

Lemma 2.14[16] A band is regular band if and only if it is a refined semilattice of rectangular

bands.

By Lemma 2.14, we can get the following corollary.

Corollary 2.15 A band is left regular band if and only if it is a refined semilattice of left zero

bands.

3. Refined semilattice of left C-wrpp semigroups

Before proving our main theorem, we also need the following important properties.

Lemma 3.1[13] Each left-R cancellative monoid contains a unique idempotent.

By Lemma 3.1, we can immediately get the following result.

Corollary 3.2 Let Sα = Mα × Iα be a left-R cancellative stripe. Then we have that E(Sα) =

{eα} × Iα, where eα is the unique idempotent of left-R cancellative monoid Mα. And in the

following, we always use eα × Iα to denote {eα} × Iα.

Proposition 3.3 Let S = {Y ;Sd(α,β),Φd(α,β), D(α, β);Sα = Mα × Iα}, where Mα is a left-

R cancellative monoid and Iα a left zero band for any α ∈ Y . For any d(α, β), d
′

(α, β) ∈
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D(α, β)(α ≥ β), if (aα, iα)Φd(α,β) = (aβ , iβ) and (aα, iα)Φd′ (α,β) = (bβ , jβ), then

(i) (eα, iα)Φd(α,β) = (eβ , iβ);

(ii) (eβ , iβ) ∈ Sd(α,β);

(iii) aβ = bβ;

(iv) For any α ≥ β and d1(α, β) ∈ D(α, β), if (bβ, jβ) ∈ Sd1(α,β), then (eβ , jβ) ∈ Sd1(α,β).

Proof Firstly, we prove (i) and (ii). To see (i) holds, we observe that

(aβ , iβ) = (aα, iα)Φd(α,β) = (eα, iα)Φd(α,β)(aα, iα)Φd(α,β) = (eα, iα)Φd(α,β)(aβ , iβ).

If put (eα, iα)Φd(α,β) = (bβ, jβ), then by the above argument we immediately have jβ = iβ. Also,

since

(bβ , jβ) = (eα, iα)Φd(α,β) = [(eα, iα)(eα, iα)]Φd(α,β) = (eα, iα)Φd(α,β)(eα, iα)Φd(α,β) = (bβ , jβ)
2,

i.e., (bβ , jβ) is an idempotent, by Corollary 3.2, we have bβ = eβ . Hence, we have proved that

(eα, iα)Φd(α,β) = (eβ , iβ), and then (i) holds. At this time, by the definition of refined semilattice,

we immediately have (eβ , iβ) ∈ Sd(α,β), and it means that (ii) holds.

Secondly, we prove (iii). Since

(eβ , iβ)(aα, iα) = (eβ , iβ)[(aα, iα)Φd(α,β)] = (aβ , iβ)

and

(bβ, jβ) = (eβ , jβ)(bβ , jβ) = (eβ , jβ)[(aα, iα)Φd′(α,β)] = (eβ , jβ)(aα, iα)

= (eβ , jβ)(eβ , iβ)(aα, iα) = (eβ, jβ)(aβ , iβ) = (aβ , jβ),

we have aβ = bβ. Hence, (iii) holds.

Finally, we prove (iv). If (bβ , jβ) ∈ Sd1(α,β), then by Definition 2.9, we have d
′′

(α, β) ∈

D(α, β) such that (eβ , jβ) ∈ Sd′′ (α,β). However, since (bβ, jβ)(eβ , jβ) = (eβ , jβ)(bβ , jβ) = (bβ, jβ),

we will obtain that

Sd1(α,β)Sd′′(α,β) ∩ Sd1(α,β) 6= ϕ

and

Sd′′(α,β)Sd1(α,β) ∩ Sd1(α,β) 6= ϕ.

Also, since {Sd(α,β) : d(α, β) ∈ D(α, β)} is a congruence partition of Sβ , we have

Sd1(α,β)Sd′′(α,β) ⊆ Sd1(α,β) (1)

and

Sd′′(α,β)Sd1(α,β) ⊆ Sd1(α,β). (2)

Clearly, by (ii), for any d(α, β) ∈ D(α, β), E(Sd(α,β)) 6= ϕ and now we denote the element in

E(Sd1(α,β)) as (eβ, i
′

β). Let (eβ, i
′

β) ∈ E(Sd1(α,β)). Then by (1) and (2), we have (eβ , jβ) =

(eβ , jβ)(eβ , i
′

β) ∈ Sd1(α,β). Hence, (iv) holds. 2

Proposition 3.4 Let S = {Y ;Sd(α,β),Φd(α,β), D(α, β);Sα = Mα × Iα}, where Mα is a left-R

cancellative monoid and Iα a left zero band for any α ∈ Y . If (a, i)R(b, j) for any (a, i) ∈Mα×Iα
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and (b, j) ∈Mβ × Iβ , then we have α = β, i = j and aRb.

Proof Let x = (a, i) ∈ Mα × Iα = Sα, y = (b, j) ∈ Mβ × Iβ = Sβ. Since (a, i)R(b, j), there

exists u ∈ Sγ , v ∈ Sδ such that xu = y, yv = x. By the multiplication of refined semilattice of

semigroups, we know that xu ∈ Sαγ , but xu = y ∈ Sβ , thus, β = αγ, and β ≤ α. Similarly, we

can obtain α = βδ, and then α ≤ β. Hence, α = β.

On the other hand, by xu = y, yv = x and α = β, we have αγ = α, αδ = α, and

then α ≤ γ, α ≤ δ. By the above equalities, we also have xΦd̄(α,αγ)uΦd̄(γ,αγ) = y, i.e.,

xΦd̄(α,α)uΦd̄(γ,α) = x(uΦd̄(γ,α)) = y. Now, if we let uΦd̄(γ,α) = (uα, kα), then we immedi-

ately have that (a, i)(uα, kα) = (b, j), i.e., auα = b, i = ikα = j. Similarly, we can show that

there exists vα ∈Mα such that bvα = a. Thus, aRb. 2

Now, we start to give our main theorem.

Theorem 3.5 A left C-wrpp semigroup S is a refined semilattice of left-R cancellative stripes

if and only if it is a spined product of a C-wrpp component and a left regular band.

Proof To prove our theorem, by Lemmas 2.12 and 2.13 (1), we only need to show the equiv-

alent statement: a semigroup S can be expressed as a refined semilattice of left-R cancellative

stripes Mα × Iα if and only if it is a left C-wrpp semigroup such that the semi-spined product

decomposition S = MS ×η IS of S is the spined product decomposition. Next, we set about to

show this equivalent statement.

⇒) Let S = {Y ;Sd(α,β),Φd(α,β), D(α, β);Sα = Mα × Iα}, where Mα is a left-R cancellative

monoid and Iα is a left zero band for any α ∈ Y . Clearly, S is a semilattice of {Mα×Iα : α ∈ Y }.

In order to show the necessity, we will set about it by the following steps:

(1) S is a wrpp semigroup.

Let (aα, iα) ∈Mα × Iα. Clearly, (eα, iα) ∈Mα × Iα such that

(eα, iα)(aα, iα) = (aα, iα)(eα, iα) = (aα, iα).

Now if (aα, iα)xβR (aα, iα)xγ for xβ ∈Mβ × Iβ and xγ ∈Mγ × Iγ , then we have

(aα, iα)(eα, iα)xβR(aα, iα)(eα, iα)xγ ,

and so,

(aα, iα)Φd̄(α,αβ)[(eα, iα)xβ ]Φd̄(αβ,αβ)R(aα, iα)Φd̄1(α,αγ)[(eα, iα)xγ ]Φd̄1(αγ,αγ) (3)

where d̄(α, αβ) and d̄1(α, αγ) satisfy:

(eα, iα)xβ ∈ Sd̄(α,αβ), (eα, iα)xγ ∈ Sd̄1(α,αγ).

By Proposition 3.4, we have αβ = αγ. Also, if we let (aα, iα)Φd̄(α,αβ) = (aαβ , iαβ) and

(aα, iα)Φd̄1(α,αγ) = (aα, iα)Φd̄1(α,αβ) = (bαβ , jαβ), then by Proposition 3.3 (iii), we have aαβ =

bαβ . Further, since Iαβ is a left zero band and αβ = αγ, we have that

(aα, iα)Φd̄(α,αβ)[(eα, iα)xβ ]Φd̄(αβ,αβ) = (−, iαβ)R(aα, iα)Φd̄1(α,αγ)[(eα, iα)xγ ]Φd̄1(αγ,αγ) = (−, jαβ).
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By Proposition 3.4, we have iαβ = jαβ . Hence, we obtain (aα, iα)Φd̄(α,αβ) = (aα, iα)Φd̄1(α,αγ),

and consequently, d̄(α, αβ) = d̄1(α, αβ). Recall that Mαβ is a left-R cancellative monoid, by (3)

and Proposition 3.4 we have

(eα, iα)xβR(⌉α, 〉α)§γ .

On the other hand, if (eα, iα)xβR(eα, iα)xγ , then since R is a left congruence, we can easily

obtain that

(aα, iα)(eα, iα)xβR(aα, iα)(eα, iα)xγ ,

i.e.,

(aα, iα)xβR(aα, iα)xγ .

Hence, we have (aα, iα)L∗∗(eα, iα).

Let x = (a, i) ∈Mα×Iα. For all e = (eα, j) ∈ E(L∗∗
x ), where E(L∗∗

x ) is the set of idempotents

in L∗∗
x , we have

xe = (a, i)(eα, j) = (aeα, ij) = (a, i) = x.

We have proved that S is a wrpp semigroup.

(2) S is an adequate wrpp semigroup.

For all a ∈ S, there exists α ∈ Y such that a ∈Mα× Iα. Put a = (mα, iα). By the argument

of (1) above, there exists e = (eα, iα) ∈ Mα × Iα such that a = (mα, iα)L∗∗(eα, iα) = e and

ea = (eα, iα)(mα, iα) = (mα, iα) = a. If there is another idempotent a∗ = (fα, jα) satisfying

aL∗∗a∗ and a = a∗a, then (fα, jα)(mα, iα) = (mα, iα) and (fα, jα)2 = (fα, jα). Hence, fαmα =

mα, iα = jαiα = jα and f2
α = fα. By Lemma 3.1, we have eα = fα. Hence, a∗ = (eα, iα) = e.

Thus, by (1) and (2), S is an adequate wrpp semigroup. Moreover, by Lemma 2.7, we have

proved that S is a left C-wrpp semigroup.

(3) Finally, we show that the relation ρ in Lemma 2.13 is a congruence.

First, we show that exey = exy for all x, y ∈ S. In fact, if we let x = (aα, iα) and y = (aβ , iβ),

then we have ex = (eα, iα), ey = (eβ , iβ) and exy = (eαβ, iαβ), and also

xy = (aα, iα)(aβ , iβ) = (aα, iα)Φd̄(α,αβ)(aβ , iβ)Φd̄(β,αβ),

where d̄(α, αβ) and d̄(β, αβ) satisfy that

{(aβ , iβ)Φd(β,αβ) : d(β, αβ) ∈ D(β, αβ)} ⊆ Sd̄(α,αβ)

and

{(aα, iα)Φd(α,αβ) : d(α, αβ) ∈ D(α, αβ)} ⊆ Sd̄(β,αβ).

By Proposition 3.3 (i) and (iv), we have (eβ, iβ)Φd(β,αβ), (eα, iα)Φd̄(α,αβ) ∈ E(Sd̄(α,αβ)). Since

E(Sαβ) is a rectangular band, we have

xy = (aα, iα)Φd̄(α,αβ)(aβ , iβ)Φd̄(β,αβ)

= (eα, iα)Φd̄(α,αβ)(aα, iα)Φd̄(α,αβ)(aβ , iβ)Φd̄(β,αβ)

= (eα, iα)Φd̄(α,αβ)(eα, iα)Φd̄(α,αβ)(aα, iα)Φd̄(α,αβ)(aβ , iβ)Φd̄(β,αβ)



Refined semilattice structure of left C-wrpp semigroups 89

= (eα, iα)Φd̄(α,αβ)(eβ, iβ)Φd̄(β,αβ)(eα, iα)Φd̄(α,αβ)(aα, iα)Φd̄(α,αβ)(aβ , iβ)Φd̄(β,αβ)

= (eα, iα)Φd̄(α,αβ)(eβ, iβ)Φd̄(β,αβ)(aα, iα)Φd̄(α,αβ)(aβ , iβ)Φd̄(β,αβ)

= (eα, iα)(eβ , iβ)(aα, iα)(aβ , iβ) = exeyxy. (4)

Similarly, we can prove that

xy = xyexey. (5)

On the other hand, since S is a left C-wrpp semigroup, by Corollary 2.8 for any α ∈ Y , Sα

is a L∗∗-class of S. Also, since exey ∈ Sαβ , xy ∈ Sαβ , we have exeyL
∗∗xy. By the definition of

left C-wrpp semigroup and (4) and (5), we have exey = exy.

Now, we define a relation on S by

(a, i)ρ(b, j) ⇔ (∃α ∈ Y )a, b ∈Mα and i = j ∈ Iα.

Then for any x, y ∈ S, xρy if and only if ex = ey. By the above argument, we know exey = exy,

and then we can immediately obtain that ρ is a congruence.

Hence, summing up the above arguments and according to Lemma 2.13(1), we have shown

that the semi-spined product decomposition S = MS ×η IS is a spined product decomposition.

⇐) The proof is analogous to the proof of sufficiency of Theorem 1.6 in Ref. [17].

Let S be a left C-wrpp semigroup such that the semi-spined product decomposition S =

MS×ηIS of S is the spined product decomposition. Then by Lemma 2.13(1), ρ = {((a, i), (b, j)) ∈

S×S : i = j} is a congruence. Also by Lemma 2.7, we have S = ∪α∈Y (Mα× Iα), where Mα is a

left-R cancellative monoid, Iα is a left zero band and Y is a semilattice. Let eα be the identity

of Mα. Then E(S) = ∪α∈Y (eα× Iα). By Lemma 2.7, we know it is a left regular band, and also

by Corollary 2.15, it is a refined semilattice of left zero bands eα × Iα for all α ∈ Y .

Define the multiplication ◦ on I = ∪α∈Y Iα by

iα ◦ iβ = k if and only if (eα, iα)(eβ , iβ) = (eαβ , k).

Then (I, ◦) forms a band which is clearly isomorphic to E(S).

In fact, if we define a mapping

ϕ : E(S) → I, (eα, iα) → iα,

it is easy to verify that ϕ is an isomorphism from E(S) to I. Firstly, it is clear to see that

ϕ is surjective. Secondly, if (eα, iα)ϕ = iα, (eβ , iβ)ϕ = iβ and iα = iβ ∈ I, then we have

α = β, and so eα = eβ by Lemma 3.1, thus (eα, iα) = (eβ , iβ), i.e., ϕ is injective. Finally, for

any (eα, iα), (eβ , iβ) ∈ E(S), if we denote (eα, iα)(eβ , iβ) = (eαβ , k),then [(eα, iα)(eβ , iβ)]ϕ =

(eαβ , k)ϕ = k = iα ◦ iβ = (eα, iα)ϕ ◦ (eβ , iβ)ϕ. Hence, ϕ is an isomorphism.

Therefore, I is a left regular band which is a refined semilattice of Iα.

Further, by the proof of Theorem 4.3 in [1], E(S) ∼= IS , hence, we have I ∼= IS . And then IS

is a left regular band which can also be regarded as a refined semilattice of Iα under isomorphism.

Let IS = {Y ; Id(α,β),Φd(α,β), D(α, β); Iα}. Also, by the proof of Theorem 4.3 in Ref. [1], we

know MS = ∪α∈YMα. Now, for any α, β ∈ Y with α ≥ β, we can define a mapping Φα,β from
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Mα to Mβ as follows:

for any a ∈Mα, aΦα,β = a
′

if and only if (eβ, j)(a, i) = (a
′

, j).

Analogously to the proof of step (b) of Theorem 3.4 in Ref. [7], we can see thatMS = {Y ;Mα,Φα,β}

is a strong semilattice of the left −R cancellative monoids Mα.

Let Sd(α,β) = Mβ × Id(α,β). We define a mapping Ψα,β from Mα × Iα to Mβ × Iβ for any

α, β ∈ Y with α ≥ β as follows:

for any (aα, iα) ∈Mα × Iα, (aα, iα)Ψα,β = (aαΦα,β, iαΦd(α,β)).

We now show that S = {Y ;Sd(α,β),Ψd(α,β), D(α, β);Sα = Mα× Iα}, and the verification will be

done by the following steps.

Firstly, it is easy to check that Ψd(α,β) is a homomorphism. Also, we can check that {Sd(α,β) :

d(α, β) ∈ D(α, β)} is a congruence partition of Sβ = Mβ × Iβ , and for α ≥ β ≥ γ, the partition

{Sd(α,γ) : d(α, γ) ∈ D(α, γ)} is clearly dense in the partition {Sd(β,γ) : d(β, γ) ∈ D(β, γ)}.

Secondly,we show that Conditions (a), (b), (c) and (d) hold.

(i) Condition (a) holds.

For any α ∈ Y , D(α, α) is clearly singleton, also since Φα,α and Φd(α,α) are the identical

automorphisms,where d(α, α) is the unique element of D(α, α), we immediately obtain that

Ψd(α,α) is the identical automorphism,and so (a) holds.

(ii) Condition (b) holds.

First, for any α, β, γ ∈ Y with α ≥ β ≥ γ, and any (aα, iα) ∈Mα×Iα,d(α, β) ∈ D(α, β), d(β, γ) ∈

D(β, γ), since MS = {Y ;Mα,Φα,β} is a strong semilattice of Mα and

IS = {Y ; Id(α,β),Φd(α,β), D(α, β); Iα}

is a refined semilattice of Iα, we can obtain that

(aα, iα)Ψα,βΨβ,γ = (aαΦα,βΦβ,γ , iαΦd(α,β)Φd(β,γ)) = (aαΦα,γ , i
′

αΦd(α,γ)) = (aα, i
′

α)Ψα,γ .

Hence,we have

{Ψd(α,β)Ψd(β,γ) : d(α, β) ∈ D(α, β), d(β, γ) ∈ D(β, γ)}

⊆ {Ψd(α,γ) : d(α, γ) ∈ D(α, γ)}.

Also, for any d(α, αβ) ∈ D(α, αβ) and d(αβ, αβγ) ∈ D(αβ, αβγ), and any (aαβ , iαβ) ∈

Sd(α,αβ) = Mαβ × Id(α,αβ), we have

(aαβ , iαβ)Ψd(αβ,αβγ) = (aαβΦαβ,αβγ, iαβΦd(αβ,αβγ)).

Notice that aαβΦαβ,αβγ ∈ Mαβγ , iαβΦd(αβ,αβγ) ∈ Id(α,αβγ) since Id(α,αβ)Φd(αβ,αβγ) ⊆ Id(α,αβγ).

we have (aαβ , iαβ)Ψd(αβ,αβγ) ∈ Sd(α,αβγ), i.e.,

Sd(α,αβ)Ψd(αβ,αβγ) ⊆ Sd(α,αβγ).

On the other hand, we can check that d(α, αβγ) satisfies Ψd(α,αβγ) = Ψd(α,αβ)Ψd(αβ,αβγ) since

Φα,αβγ = Φα,αβΦαβ,αβγ and Φd(α,αβγ) = Φd(α,αβ)Φd(αβ,αβγ). Hence, (b) holds.
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(iii) Condition (c) holds.

For α, β, γ ∈ Y with γ ≤ αβ, and for any fixed (aα, iα) ∈ Sα and d(αβ, γ) ∈ D(αβ, γ), there

exists d̄(β, γ) ∈ D(β, γ) such that

{iαΦd(α,γ) : d(α, γ) ∈ D(α, γ)} ∩ Id(αβ,γ) ⊆ Id̄(β,γ).

And then, we have

{(aα, iα)Ψd(α,γ) : d(α, γ) ∈ D(α, γ)} ∩ Sd(αβ,γ)

= {(aαΦα,γ , iαΦd(α,γ)) : d(α, γ) ∈ D(α, γ)} ∩ (Mγ × Id(αβ,γ))

= {aαΦα,γ} × ({iαΦd(α,γ) : d(α, γ) ∈ D(α, γ)} ∩ Id(αβ,γ))

⊆Mγ × Id̄(β,γ) = Sd̄(β,γ).

Hence, Condition (c) holds.

(iv) Condition (d) holds.

For α, β ∈ Y with α ≥ β and (aα, iα) ∈ Sα, (bβ , iβ) ∈ Sβ , d(α, β) ∈ D(α, β), d
′

(α, β) ∈

D(α, β), we have

iβ(iαΦd′(α,β)) ∈ Id(α,β) ⇒ iβ(iαΦd′(α,β)) = iβ(iαΦd(α,β)),

and

(iαΦd′ (α,β))iβ ∈ Id(α,β) ⇒ (iαΦd′(α,β))iβ = (iαΦd(α,β))iβ.

Let (bβ, iβ)[(aα, iα)Ψd
′(α,β)] ∈ Sd(α,β), that is,

(bβ , iβ)(aαΦα,β, iαΦd′(α,β)) = (bβ(aαΦα,β), iβ(iαΦd′(α,β))) ∈ Sd(α,β).

Then we have

(bβ, iβ)(aαΦα,β , iαΦd′(α,β)) = (bβ(aαΦα,β), iβ(iαΦd′(α,β)))

= (bβ(aαΦα,β), iβ(iαΦd(α,β)
)) = (bβ , iβ)(aαΦα,β , iαΦd(α,β))

= (bβ, iβ)(aα, iα)Ψd(α,β).

Moreover, we can dually deduce that, ((aα, iα)Ψd
′(α,β))(bβ , iβ) ∈ Sd(α,β) implies

((aα, iα)Ψd
′(α,β))(bβ , iβ) = ((aα, iα)Ψd(α,β))(bβ , iβ).

Hence, condition (d) holds.

To finish our proof, we remain to show the following step:

(v) For α, β ∈ Y and x = (aα, iα) ∈ Sα,y = (bβ , iβ) ∈ Sβ, we have ex = (eα, iα), ey = (eβ , iβ)

and exy = (eαβ , iαβ). Notice that ρ in Lemma 2.13 is a congruence, we can get exy = exey and

then

xy = (aα, iα)(bβ , iβ) = exyxy = exeyxy

= (eα, iα)(eβ , iβ)(aα, iα)(bβ , iβ)

= (eα, iα)(eβ , iβ)(aαΦα,αβ ,−)(bβΦβ,αβ ,−)

= (eαβ , iαiβ)(aαΦα,αβ ,−)(bβΦβ,αβ,−)
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= (eαβ , iαΦd̄(α,αβ)iβΦd̄(β,αβ))(aαΦα,αβ ,−)(bβΦβ,αβ,−)

= (eαβ , iαΦd̄(α,αβ))(eαβ , iβΦd̄(β,αβ))(aαΦα,αβ ,−)(bβΦβ,αβ,−)

= (aαΦα,αβ, iαΦd̄(α,αβ))(bβΦβ,αβ , iβΦd̄(β,αβ))

= (aα, iα)Ψd̄(α,αβ)(bβ, iβ)Ψd̄(β,αβ),

where d̄(α, αβ) and d̄(β, αβ) satisfy that

{iαΦd(α,αβ) : d(α, αβ) ∈ D(α, αβ)} ⊆ Id̄(β,αβ)

and

{iβΦd(β,αβ) : d(β, αβ) ∈ D(β, αβ)} ⊆ Id̄(α,αβ).

Consequently, we have

{(aα, iα)Ψd(α,αβ) : d(α, αβ) ∈ D(α, αβ)}

= {(aαΦα,αβ , iαΦd(α,αβ)) : d(α, αβ) ∈ D(α, αβ)} ⊆ Sd̄(β,αβ)

and

{(bβ, iβ)Ψd(β,αβ) : d(β, αβ) ∈ D(β, αβ)}

= {(bβΦβ,αβ, iβΦd(β,αβ)) : d(β, αβ) ∈ D(β, αβ)} ⊆ Sd̄(α,αβ).

Hence, summing up the above steps, we have shown that S is a refined semilattice of left-R

cancellative stripes Mα × Iα. 2

Now, if we let the semigroup S in Theorem 3.5 be a rpp semigroup, then by Lemma 2.13(2),

we immediately have the following corollary which is an equivalent description of Theorem 1.6

in Ref. [17]:

Corollary 3.6 A left C-rpp semigroup S is a refined semilattice of left cancellative stripes if

and only if it is a spined product of a C-rpp component and a left regular band.

Remark From the above arguments, we immediately obtain that our results actually generalize

the ones of Zhang in Ref. [17].
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