Journal of Mathematical Research & Exposition Feb., 2008, Vol. 28, No. 1, pp. 81–93 DOI:10.3770/j.issn:1000-341X.2008.01.012 Http://jmre.dlut.edu.cn

Refined Semilattice Structure of Left C-Wrpp Semigroups

CHEN Yi-zhi¹, LI Yong-hua²

 Department of Mathematics, Huizhou University, Guangdong 516015, China;
 School of Mathematics, South China Normal University, Guangdong 516031, China) (E-mail: liyh@scnu.edu.cn)

Abstract In this paper, we explore the refined semilattice of left C-wrpp semigroups, and show that a left C-wrpp semigroup S is a refined semilattice of left- \mathcal{R} cancellative stripes if and only if it is a spined product of a C-wrpp component and a left regular band. It is a generalization of the refined semilattice decomposition of left C-rpp semigroups.

Keywords left *C*-wrpp semigroup; refined semilattice; left- \mathcal{R} cancellative stripe; spined product.

Document code A MR(2000) Subject Classification 20M10 Chinese Library Classification 0152.7

1. Introduction

In the last decades, generalizations of the class of Clifford semigroups have been extensively investigated by many authors and some interesting results have been $obtained^{[1-18]}$. Fountain^[2] introduced rpp monoids with central idempotents, briefly called C-rpp semigroups, which are one of significant generalizations of Clifford semigroups. He showed that a semigroup is C-rpp if and only if it is a strong semilattice of left cancellative monoids. The class of C-rpp semigroups includes the class of Clifford semigroups but is out of the range of regular semigroups. In Ref. [18], Zhu, Guo and Shum generalized the class of Clifford semigroups to the class of left C-semigroups which is also in the range of regular semigroups. They showed that a semigroup is a left Csemigroup if and only if it is a semilattice of left groups. Guo, Zhu and Shum in Ref. [7] had defined and investigated the structure of left C-rpp semigroups, where they showed that a rpp semigroup is a left C-rpp semigroup if and only if it is a semilattice of left stripes. By a left stripe, it means that it is a direct product of a left cancellative monoid and a left zero band. On the other hand, in 1997, $\operatorname{Tang}^{[13]}$ generalized Fountain's work on C-rpp semigroups to the class of semigroups called C-wrpp semigroups, and he showed that a semigroup is a C-wrpp semigroup if and only if it is a strong semilattice of left- \mathcal{R} cancellative monoids. Du and Shum^[1] introduced the concept of left C-wrpp semigroups. The class of left C-wrpp semigroups includes the class of C-wrpp semigroups and the class of left C-rpp semigroups. The authors established the semi-spined product structure for left C-wrpp semigroups.

Received date: 2005-12-05; Accepted date: 2006-07-02

Foundation item: the Natural Science Foundation of Huizhou University (No. C₂07.0202).

Refined semilattice of semigroups was firstly studied by Zhang, Shum and Zhang in Ref. [16]. It is a natural generalization of the notation of strong semilattice of semigroups. Thus, a number of results in the literature concerning strong semilattice decomposition can be further developed^[8,14,15,17]. Recently, Zhang^[17] has investigated the refined semilattice structure of left C-rpp semigroup, and he showed that a left C-rpp semigroup S is a refined semilattice of left stripes if and only if it is a spined product of C-rpp component and a left regular band.

In this paper, we study the structure of refined semilattice for left C-wrpp semigroups. We shall prove that a left C-wrpp semigroup S is a refined semilattice of left- \mathcal{R} cancellative stripes if and only if it is a spined product of a C-wrpp component and a left regular band. It shows that our main result is a generalization of the refined semilattice decomposition of left C-rpp semigroups. Some methods in Ref. [17] are adopted.

For notation and terminologies not mentioned in this paper, readers are referred to [1], [16], [19] or [20].

2. Preliminaries

It will be convenient to make use of the following notations and lemmas in the remainder of this paper.

Definition 2.1^[13] Let S be a semigroup. We define the \mathcal{L}^{**} -relation by $a\mathcal{L}^{**}b$ for $a, b \in S$ if and only if $(ax, ay) \in \mathcal{R} \Leftrightarrow (bx, by) \in \mathcal{R}$ for $x, y \in S^1$, where \mathcal{R} is the usual Green's \mathcal{R} -relation on S.

For $a \in S$, the equivalence relation \mathcal{L}^{**} -class containing the element a is denoted by L_a^{**} .

Definition 2.2^[1] A semigroup S is called wrpp semigroup if the following conditions are satisfied:

- (1) Each \mathcal{L}^{**} -class of S contains at least one idempotent of S;
- (2) For all $e \in E(L_a^{**})$, a = ae.

Definition 2.3^[13] A semigroup S is said to be a C-wrpp semigroup if each \mathcal{L}^{**} -class of S contains an idempotent and all idempotents of S are central in S.

Definition 2.4^[14] A wrpp semigroup S is called an adequate wrpp semigroup if for each $a \in S$, there exists a unique idempotent e satisfying $a\mathcal{L}^{**}e$ and a = ea.

Hereafter, we denote the unique idempotent e in Definition 2.4 by e_a .

Definition 2.5^[1] An adequate wrpp semigroup S is said to be a left C-wrpp semigroup if it satisfies $aS \subseteq L^{**}(a)$ for all $a \in S$, where $L^{**}(a)$ represents the smallest left **-ideal of S generated by $a \in S$. By a left **-ideal L of S, we mean that it is a left ideal of S and satisfies that $L_x^{**} \subseteq L$ for all $x \in L$.

Definition 2.6^[13] A semigroup S is said to be left- \mathcal{R} cancellative if for all $a, b, c \in S$, $(ca, cb) \in \mathcal{R}$ implies $(a, b) \in \mathcal{R}$.

Lemma 2.7^[1] Let S be an adequate wrpp semigroup. Then the following conditions are equivalent:

- (1) S is a left C-wrpp semigroup;
- (2) \mathcal{L}^{**} is a semilattice congruence on S;
- (3) E(S) is a left regular band and \mathcal{L}^{**} is a congruence on S;
- (4) S is a semilattice of left- \mathcal{R} cancellative stripes.

It is easy to verify the following corollary.

Corollary 2.8 If an adequate wrpp semigroup S is a semilattice of left- \mathcal{R} cancellative stripes, then every left- \mathcal{R} cancellative stripe is a \mathcal{L}^{**} -class.

Next, we introduce the concept of refined semilattice of semigroups.

Definition 2.9^[16,17] Let Y be a semilattice and $\{S_{\alpha} : \alpha \in Y\}$ a family of disjoint of semigroups of type T, indexed by Y. For each pair $\alpha, \beta \in Y$ with $\alpha \geq \beta$, let $D(\alpha, \beta)$ be a set of index and

$$\{S_{d(\alpha,\beta)}: d(\alpha,\beta) \in D(\alpha,\beta)\}$$

a congruence partition of S_{β} (i.e., the relation σ on S_{β} defined by $(b_{\beta}, b'_{\beta}) \in \sigma$ if and only if $b_{\beta}, b'_{\beta} \in S_{d(\alpha,\beta)}$ for some $d(\alpha,\beta) \in D(\alpha,\beta)$ is a congruence on S_{β}), and for $\alpha \geq \beta \geq \gamma$, the partition

$$\{S_{d(\alpha,\gamma)}: d(\alpha,\gamma) \in D(\alpha,\gamma)\}$$

is dense in the partition

$$\{S_{d(\beta,\gamma)}: d(\beta,\gamma) \in D(\beta,\gamma)\},\$$

i.e., for any $d(\beta, \gamma) \in D(\beta, \gamma)$, there exists $D'(\alpha, \gamma) \subseteq D(\alpha, \gamma)$ such that

$$S_{d(\beta,\gamma)} = \cup_{d(\alpha,\gamma) \in D'(\alpha,\gamma)} S_{d(\alpha,\gamma)}$$

Moreover, let

$$\{\Phi_{d(\alpha,\beta)}: S_{\alpha} \to S_{d(\alpha,\beta)}: d(\alpha,\beta) \in D(\alpha,\beta)\}$$

be a family of homomorphisms. Suppose the following conditions are satisfied:

(a) $D(\alpha, \alpha)$ is singleton and $\Phi_{d(\alpha,\alpha)}$ is the identical automorphism of S_{α} for each $\alpha \in Y$, where $d(\alpha, \alpha)$ is the unique element of $D(\alpha, \alpha)$.

(b) (i) For any $\alpha, \beta, \gamma \in Y$ with $\alpha \ge \beta \ge \gamma$,

$$\{\Phi_{d(\alpha,\beta)}\Phi_{d(\beta,\gamma)}: d(\alpha,\beta) \in D(\alpha,\beta), d(\beta,\gamma) \in D(\beta,\gamma)\} \\ \subseteq \{\Phi_{d(\alpha,\gamma)}: d(\alpha,\gamma) \in D(\alpha,\gamma)\}.$$

(ii) For any $d(\alpha, \alpha\beta) \in D(\alpha, \alpha\beta)$ and $d(\alpha\beta, \alpha\beta\gamma) \in D(\alpha\beta, \alpha\beta\gamma)$,

 $S_{d(\alpha,\alpha\beta)}\Phi_{d(\alpha\beta,\alpha\beta\gamma)}\subseteq S_{d(\alpha,\alpha\beta\gamma)},$

where $d(\alpha, \alpha\beta\gamma)$ satisfies

$$\Phi_{d(\alpha,\alpha\beta\gamma)} = \Phi_{d(\alpha,\alpha\beta)} \Phi_{d(\alpha\beta,\alpha\beta\gamma)}.$$

(c) For $\alpha, \beta, \gamma \in Y$ with $\gamma \leq \alpha\beta$ and for any fixed $a_{\alpha} \in S_{\alpha}$, $d(\alpha\beta, \gamma) \in D(\alpha\beta, \gamma)$, there exists $\overline{d}(\beta, \gamma) \in D(\beta, \gamma)$ such that

$$\{a_{\alpha}\Phi_{d(\alpha,\gamma)}: d(\alpha,\gamma) \in D(\alpha,\gamma)\} \cap S_{d(\alpha\beta,\gamma)} \subseteq S_{\bar{d}(\beta,\gamma)}.$$

(d) For $\alpha, \beta \in Y$ with $\alpha \geq \beta$ and $a_{\alpha} \in S_{\alpha}, b_{\beta} \in S_{\beta}, d(\alpha, \beta) \in D(\alpha, \beta), d'(\alpha, \beta) \in D(\alpha, \beta),$

$$b_{\beta}(a_{\alpha}\Phi_{d'(\alpha,\beta)}) \in S_{d(\alpha,\beta)} \Rightarrow b_{\beta}(a_{\alpha}\Phi_{d'(\alpha,\beta)}) = b_{\beta}(a_{\alpha}\Phi_{d(\alpha,\beta)}),$$

and

$$(a_{\alpha}\Phi_{d'(\alpha,\beta)})b_{\beta} \in S_{d(\alpha,\beta)} \Rightarrow (a_{\alpha}\Phi_{d'(\alpha,\beta)})b_{\beta} = (a_{\alpha}\Phi_{d(\alpha,\beta)})b_{\beta}$$

We now form the set $S = \bigcup \{S_{\alpha} : \alpha \in Y\}$ and define a multiplication \circ on S by the following statements.

For any $a_{\alpha} \in S_{\alpha}$, $b_{\beta} \in S_{\beta}$, define

$$a_{\alpha} \circ b_{\beta} = (a_{\alpha} \Phi_{\bar{d}(\alpha,\alpha\beta)})(b_{\beta} \Phi_{\bar{d}(\beta,\alpha\beta)}),$$

where $\bar{d}(\alpha, \alpha\beta) \in D(\alpha, \alpha\beta)$, $\bar{d}(\beta, \alpha\beta) \in D(\beta, \alpha\beta)$ which satisfy the following conditions:

 $\{a_{\alpha}\Phi_{d(\alpha,\alpha\beta)}: d(\alpha,\alpha\beta) \in D(\alpha,\alpha\beta)\} \subseteq S_{\bar{d}(\beta,\alpha\beta)}$

and

$$\{b_{\beta}\Phi_{d(\beta,\alpha\beta)}: d(\beta,\alpha\beta) \in D(\beta,\alpha\beta)\} \subseteq S_{\bar{d}(\alpha,\alpha\beta)}.$$

Then $(S = \bigcup_{\alpha \in Y} S_{\alpha}, \circ)$ is a semigroup as it has been shown in Ref. [16]. Hence, the semigroup (S, \circ) is called the refined semilattice of type T semigroups and is denoted by

$$\{Y; S_{d(\alpha,\beta)}, \Phi_{d(\alpha,\beta)}, D(\alpha,\beta); S_{\alpha}\}$$

In the following, we give a lemma of the semi-spined product structure for left C-wrpp semigroups.

Recall that if $T = \bigcup_{\alpha \in Y} T_{\alpha}$ and $I = \bigcup_{\alpha \in Y} I_{\alpha}$ are semilattice compositions of the semigroups T_{α} and I_{α} , respectively, then we can form the set union $S = \bigcup_{\alpha \in Y} S_{\alpha}$, where $S_{\alpha} = T_{\alpha} \times I_{\alpha}$ is the Cartesian product of T_{α} and I_{α} . Let $\mathcal{T}_{l}(I)$ be the left transformation semigroup acting on I and define a mapping $\eta : S \to \mathcal{T}_{1}(\mathcal{I})$ by $(a, i) \to \eta(a, i)$ such that $\eta(a, i)j = (a, i)^{\sharp}j$ for every $j \in I$. Suppose that the mapping η satisfies the following conditions:

(S₁) If $(a, i) \in S_{\alpha}, j \in I_{\beta}$, then $(a, i)^{\sharp} j \in I_{\alpha\beta}$;

(S₂) If $(a, i) \in S_{\alpha}$, $j \in I_{\beta}$ with $\alpha \leq \beta$, then $(a, i)^{\sharp} j = ij$, where ij is the semigroup product in the semigroup $I = \bigcup_{\alpha \in Y} I_{\alpha}$;

(S₃) If $(a,i) \in S_{\alpha}$, $(b,j) \in S_{\alpha}$, then $\eta(a,i)\eta(b,j) = \eta(ab,(a,i)^{\sharp}j)$, where ab is the semigroup product in the semigroup $T = \bigcup_{\alpha \in Y} T_{\alpha}$.

Then we define a multiplication \circ on $S = \bigcup_{\alpha \in Y} S_{\alpha}$ by $(a, i) \circ (b, j) = (ab, (a, i)^{\sharp}j)$. It can be easily verified that \circ is a binary associative operation on S, so that S becomes a semigroup under the multiplication \circ . We denote the semigroup (S, \circ) by $S = T \times_{\eta} I$ and call $S = T \times_{\eta} I$ the semi-spined product of the semigroups T and I with respect to $\eta^{[1,5]}$.

Definition 2.10^[20] Let M and T be semigroups and also H their common morphic image.

Let $S = \{(a,b) \in M \times T | a\varphi = b\psi\}$, where $\varphi : M \to H$ and $\psi : T \to H$ are the semigroup homomorphisms which map from M and T onto H respectively. Then we call S the spined product of the semigroups M and T with respect to H, φ and ψ , denoted by $S = M \otimes_{H,\varphi,\psi} T$.

Definition 2.11^[1] Let $T = \bigcup_{\alpha \in Y} T_{\alpha}$ be a *C*-wrpp semigroup (that is, *T* is a strong semilattice of left- \mathcal{R} cancellative monoids $[Y; T_{\alpha}; \varphi_{\alpha,\beta}]$ by the theorem of Tang in Ref. [13]) and let *I* be a left regular band which is expressed as a semilattice of left zero bands I_{α} (that is, $I = \bigcup_{\alpha \in Y} I_{\alpha}$). Then we call the semi-spined product $T \times_{\eta} I = \bigcup_{\alpha \in Y} S_{\alpha}$, where $S_{\alpha} = T_{\alpha} \times_{\eta} I_{\alpha}$, the curler formed by *T* and *I* under the structure mapping η defined by conditions (S_1) – (S_3) if the following condition (Q) is satisfied:

$$(Q)$$
: ker $\eta(a,i)$ = ker $\eta(b,j)$ for all $(a,i), (b,j) \in S_{\alpha}$.

Lemma 2.12^[1] Let I be a left regular band and M a C-wrpp semigroup. Then the curler constructed by $S = M \times_{\eta} I$ is a left C-wrpp semigroup. Conversely, every left C-wrpp semigroup S can be expressed by a curler $S = M \times_{\eta} I$, where I is a left regular band and M a C-wrpp semigroup.

Lemma 2.13^[1] Let I be a left regular band and M a C-wrpp semigroup. If the curler constructed by $S = M \times_{\eta} I$ is a left C-wrpp semigroup, then the following statements hold:

(1) S is a spined product of M and I if and only if $\rho = \{((a,i), (b,j)) \in S \times S : i = j\}$ is a congruence on S;

(2) S is a left C-rpp semigroup if and only if S is an rpp semigroup.

Lemma 2.14^[16] A band is regular band if and only if it is a refined semilattice of rectangular bands.

By Lemma 2.14, we can get the following corollary.

Corollary 2.15 A band is left regular band if and only if it is a refined semilattice of left zero bands.

3. Refined semilattice of left C-wrpp semigroups

Before proving our main theorem, we also need the following important properties.

Lemma 3.1^[13] Each left- \mathcal{R} cancellative monoid contains a unique idempotent.

By Lemma 3.1, we can immediately get the following result.

Corollary 3.2 Let $S_{\alpha} = M_{\alpha} \times I_{\alpha}$ be a left- \mathcal{R} cancellative stripe. Then we have that $E(S_{\alpha}) = \{e_{\alpha}\} \times I_{\alpha}$, where e_{α} is the unique idempotent of left- \mathcal{R} cancellative monoid M_{α} . And in the following, we always use $e_{\alpha} \times I_{\alpha}$ to denote $\{e_{\alpha}\} \times I_{\alpha}$.

Proposition 3.3 Let $S = \{Y; S_{d(\alpha,\beta)}, \Phi_{d(\alpha,\beta)}, D(\alpha,\beta); S_{\alpha} = M_{\alpha} \times I_{\alpha}\}$, where M_{α} is a left- \mathcal{R} cancellative monoid and I_{α} a left zero band for any $\alpha \in Y$. For any $d(\alpha,\beta), d'(\alpha,\beta) \in \mathcal{R}$
$$\begin{split} D(\alpha,\beta)(\alpha \geq \beta), & \text{if } (a_{\alpha},i_{\alpha})\Phi_{d(\alpha,\beta)} = (a_{\beta},i_{\beta}) \text{ and } (a_{\alpha},i_{\alpha})\Phi_{d'(\alpha,\beta)} = (b_{\beta},j_{\beta}), \text{ then} \\ & (i) \ (e_{\alpha},i_{\alpha})\Phi_{d(\alpha,\beta)} = (e_{\beta},i_{\beta}); \\ & (ii) \ (e_{\beta},i_{\beta}) \in S_{d(\alpha,\beta)}; \\ & (iii) \ a_{\beta} = b_{\beta}; \\ & (iv) \text{ For any } \alpha \geq \beta \text{ and } d_{1}(\alpha,\beta) \in D(\alpha,\beta), \text{ if } (b_{\beta},j_{\beta}) \in S_{d_{1}(\alpha,\beta)}, \text{ then } (e_{\beta},j_{\beta}) \in S_{d_{1}(\alpha,\beta)}. \end{split}$$

Proof Firstly, we prove (i) and (ii). To see (i) holds, we observe that

 $(a_{\beta}, i_{\beta}) = (a_{\alpha}, i_{\alpha})\Phi_{d(\alpha,\beta)} = (e_{\alpha}, i_{\alpha})\Phi_{d(\alpha,\beta)}(a_{\alpha}, i_{\alpha})\Phi_{d(\alpha,\beta)} = (e_{\alpha}, i_{\alpha})\Phi_{d(\alpha,\beta)}(a_{\beta}, i_{\beta}).$

If put $(e_{\alpha}, i_{\alpha})\Phi_{d(\alpha,\beta)} = (b_{\beta}, j_{\beta})$, then by the above argument we immediately have $j_{\beta} = i_{\beta}$. Also, since

$$(b_{\beta}, j_{\beta}) = (e_{\alpha}, i_{\alpha})\Phi_{d(\alpha,\beta)} = [(e_{\alpha}, i_{\alpha})(e_{\alpha}, i_{\alpha})]\Phi_{d(\alpha,\beta)} = (e_{\alpha}, i_{\alpha})\Phi_{d(\alpha,\beta)}(e_{\alpha}, i_{\alpha})\Phi_{d(\alpha,\beta)} = (b_{\beta}, j_{\beta})^{2},$$

i.e., (b_{β}, j_{β}) is an idempotent, by Corollary 3.2, we have $b_{\beta} = e_{\beta}$. Hence, we have proved that $(e_{\alpha}, i_{\alpha})\Phi_{d(\alpha,\beta)} = (e_{\beta}, i_{\beta})$, and then (i) holds. At this time, by the definition of refined semilattice, we immediately have $(e_{\beta}, i_{\beta}) \in S_{d(\alpha,\beta)}$, and it means that (ii) holds.

Secondly, we prove (iii). Since

$$(e_{\beta}, i_{\beta})(a_{\alpha}, i_{\alpha}) = (e_{\beta}, i_{\beta})[(a_{\alpha}, i_{\alpha})\Phi_{d(\alpha, \beta)}] = (a_{\beta}, i_{\beta})$$

and

$$(b_{\beta}, j_{\beta}) = (e_{\beta}, j_{\beta})(b_{\beta}, j_{\beta}) = (e_{\beta}, j_{\beta})[(a_{\alpha}, i_{\alpha})\Phi_{d'(\alpha, \beta)}] = (e_{\beta}, j_{\beta})(a_{\alpha}, i_{\alpha})$$
$$= (e_{\beta}, j_{\beta})(e_{\beta}, i_{\beta})(a_{\alpha}, i_{\alpha}) = (e_{\beta}, j_{\beta})(a_{\beta}, i_{\beta}) = (a_{\beta}, j_{\beta}),$$

we have $a_{\beta} = b_{\beta}$. Hence, (iii) holds.

Finally, we prove (iv). If $(b_{\beta}, j_{\beta}) \in S_{d_1(\alpha,\beta)}$, then by Definition 2.9, we have $d''(\alpha,\beta) \in D(\alpha,\beta)$ such that $(e_{\beta}, j_{\beta}) \in S_{d''(\alpha,\beta)}$. However, since $(b_{\beta}, j_{\beta})(e_{\beta}, j_{\beta}) = (e_{\beta}, j_{\beta})(b_{\beta}, j_{\beta}) = (b_{\beta}, j_{\beta})$, we will obtain that

$$S_{d_1(\alpha,\beta)}S_{d''(\alpha,\beta)}\cap S_{d_1(\alpha,\beta)}\neq\varphi$$

and

$$S_{d''(\alpha,\beta)}S_{d_1(\alpha,\beta)}\cap S_{d_1(\alpha,\beta)}\neq\varphi$$

Also, since $\{S_{d(\alpha,\beta)}: d(\alpha,\beta) \in D(\alpha,\beta)\}$ is a congruence partition of S_{β} , we have

$$S_{d_1(\alpha,\beta)}S_{d''(\alpha,\beta)} \subseteq S_{d_1(\alpha,\beta)} \tag{1}$$

and

$$S_{d''(\alpha,\beta)}S_{d_1(\alpha,\beta)} \subseteq S_{d_1(\alpha,\beta)}.$$
(2)

Clearly, by (ii), for any $d(\alpha, \beta) \in D(\alpha, \beta)$, $E(S_{d(\alpha,\beta)}) \neq \varphi$ and now we denote the element in $E(S_{d_1(\alpha,\beta)})$ as (e_β, i'_β) . Let $(e_\beta, i'_\beta) \in E(S_{d_1(\alpha,\beta)})$. Then by (1) and (2), we have $(e_\beta, j_\beta) = (e_\beta, j_\beta)(e_\beta, i'_\beta) \in S_{d_1(\alpha,\beta)}$. Hence, (iv) holds.

Proposition 3.4 Let $S = \{Y; S_{d(\alpha,\beta)}, \Phi_{d(\alpha,\beta)}, D(\alpha,\beta); S_{\alpha} = M_{\alpha} \times I_{\alpha}\}$, where M_{α} is a left- \mathcal{R} cancellative monoid and I_{α} a left zero band for any $\alpha \in Y$. If $(a, i)\mathcal{R}(b, j)$ for any $(a, i) \in M_{\alpha} \times I_{\alpha}$

and $(b, j) \in M_{\beta} \times I_{\beta}$, then we have $\alpha = \beta$, i = j and $a\mathcal{R}b$.

Proof Let $x = (a, i) \in M_{\alpha} \times I_{\alpha} = S_{\alpha}$, $y = (b, j) \in M_{\beta} \times I_{\beta} = S_{\beta}$. Since $(a, i)\mathcal{R}(b, j)$, there exists $u \in S_{\gamma}$, $v \in S_{\delta}$ such that xu = y, yv = x. By the multiplication of refined semilattice of semigroups, we know that $xu \in S_{\alpha\gamma}$, but $xu = y \in S_{\beta}$, thus, $\beta = \alpha\gamma$, and $\beta \leq \alpha$. Similarly, we can obtain $\alpha = \beta\delta$, and then $\alpha \leq \beta$. Hence, $\alpha = \beta$.

On the other hand, by xu = y, yv = x and $\alpha = \beta$, we have $\alpha\gamma = \alpha, \alpha\delta = \alpha$, and then $\alpha \leq \gamma, \alpha \leq \delta$. By the above equalities, we also have $x\Phi_{\bar{d}(\alpha,\alpha\gamma)}u\Phi_{\bar{d}(\gamma,\alpha\gamma)} = y$, i.e., $x\Phi_{\bar{d}(\alpha,\alpha)}u\Phi_{\bar{d}(\gamma,\alpha)} = x(u\Phi_{\bar{d}(\gamma,\alpha)}) = y$. Now, if we let $u\Phi_{\bar{d}(\gamma,\alpha)} = (u_{\alpha}, k_{\alpha})$, then we immediately have that $(a,i)(u_{\alpha}, k_{\alpha}) = (b, j)$, i.e., $au_{\alpha} = b, i = ik_{\alpha} = j$. Similarly, we can show that there exists $v_{\alpha} \in M_{\alpha}$ such that $bv_{\alpha} = a$. Thus, $a\mathcal{R}b$.

Now, we start to give our main theorem.

Theorem 3.5 A left C-wrpp semigroup S is a refined semilattice of left- \mathcal{R} cancellative stripes if and only if it is a spined product of a C-wrpp component and a left regular band.

Proof To prove our theorem, by Lemmas 2.12 and 2.13 (1), we only need to show the equivalent statement: a semigroup S can be expressed as a refined semilattice of left- \mathcal{R} cancellative stripes $M_{\alpha} \times I_{\alpha}$ if and only if it is a left C-wrpp semigroup such that the semi-spined product decomposition $S = M_S \times_{\eta} I_S$ of S is the spined product decomposition. Next, we set about to show this equivalent statement.

 $\Rightarrow) Let S = \{Y; S_{d(\alpha,\beta)}, \Phi_{d(\alpha,\beta)}, D(\alpha,\beta); S_{\alpha} = M_{\alpha} \times I_{\alpha}\}, where M_{\alpha} \text{ is a left-}\mathcal{R} \text{ cancellative} monoid and I_{\alpha} is a left zero band for any } \alpha \in Y. Clearly, S is a semilattice of <math>\{M_{\alpha} \times I_{\alpha} : \alpha \in Y\}$. In order to show the necessity, we will set about it by the following steps:

(1) S is a wrpp semigroup.

Let $(a_{\alpha}, i_{\alpha}) \in M_{\alpha} \times I_{\alpha}$. Clearly, $(e_{\alpha}, i_{\alpha}) \in M_{\alpha} \times I_{\alpha}$ such that

$$(e_{\alpha}, i_{\alpha})(a_{\alpha}, i_{\alpha}) = (a_{\alpha}, i_{\alpha})(e_{\alpha}, i_{\alpha}) = (a_{\alpha}, i_{\alpha}).$$

Now if $(a_{\alpha}, i_{\alpha})x_{\beta}\mathcal{R}$ $(a_{\alpha}, i_{\alpha})x_{\gamma}$ for $x_{\beta} \in M_{\beta} \times I_{\beta}$ and $x_{\gamma} \in M_{\gamma} \times I_{\gamma}$, then we have

$$(a_{\alpha}, i_{\alpha})(e_{\alpha}, i_{\alpha})x_{\beta}\mathcal{R}(a_{\alpha}, i_{\alpha})(e_{\alpha}, i_{\alpha})x_{\gamma}$$

and so,

$$(a_{\alpha}, i_{\alpha})\Phi_{\bar{d}(\alpha,\alpha\beta)}[(e_{\alpha}, i_{\alpha})x_{\beta}]\Phi_{\bar{d}(\alpha\beta,\alpha\beta)}\mathcal{R}(a_{\alpha}, i_{\alpha})\Phi_{\bar{d}_{1}(\alpha,\alpha\gamma)}[(e_{\alpha}, i_{\alpha})x_{\gamma}]\Phi_{\bar{d}_{1}(\alpha\gamma,\alpha\gamma)}$$
(3)

where $\bar{d}(\alpha, \alpha\beta)$ and $\bar{d}_1(\alpha, \alpha\gamma)$ satisfy:

$$(e_{\alpha}, i_{\alpha})x_{\beta} \in S_{\bar{d}(\alpha, \alpha\beta)}, (e_{\alpha}, i_{\alpha})x_{\gamma} \in S_{\bar{d}_{1}(\alpha, \alpha\gamma)}.$$

By Proposition 3.4, we have $\alpha\beta = \alpha\gamma$. Also, if we let $(a_{\alpha}, i_{\alpha})\Phi_{\bar{d}(\alpha,\alpha\beta)} = (a_{\alpha\beta}, i_{\alpha\beta})$ and $(a_{\alpha}, i_{\alpha})\Phi_{\bar{d}_1(\alpha,\alpha\gamma)} = (a_{\alpha}, i_{\alpha})\Phi_{\bar{d}_1(\alpha,\alpha\beta)} = (b_{\alpha\beta}, j_{\alpha\beta})$, then by Proposition 3.3 (iii), we have $a_{\alpha\beta} = b_{\alpha\beta}$. Further, since $I_{\alpha\beta}$ is a left zero band and $\alpha\beta = \alpha\gamma$, we have that

$$(a_{\alpha}, i_{\alpha})\Phi_{\bar{d}(\alpha,\alpha\beta)}[(e_{\alpha}, i_{\alpha})x_{\beta}]\Phi_{\bar{d}(\alpha\beta,\alpha\beta)} = (-, i_{\alpha\beta})\mathcal{R}(a_{\alpha}, i_{\alpha})\Phi_{\bar{d}_{1}(\alpha,\alpha\gamma)}[(e_{\alpha}, i_{\alpha})x_{\gamma}]\Phi_{\bar{d}_{1}(\alpha\gamma,\alpha\gamma)} = (-, j_{\alpha\beta})\mathcal{R}(a_{\alpha}, i_{\alpha})\Phi_{\bar{d}_{1}(\alpha,\alpha\gamma)}[(e_{\alpha}, i_{\alpha})x_{\gamma}]\Phi_{\bar{d}_{1}(\alpha,\alpha\gamma)}[(e_{\alpha}, i_{\alpha})x_{\gamma}]\Phi_{\bar{d}_{1}(\alpha$$

By Proposition 3.4, we have $i_{\alpha\beta} = j_{\alpha\beta}$. Hence, we obtain $(a_{\alpha}, i_{\alpha})\Phi_{\bar{d}(\alpha,\alpha\beta)} = (a_{\alpha}, i_{\alpha})\Phi_{\bar{d}_1(\alpha,\alpha\gamma)}$, and consequently, $\bar{d}(\alpha, \alpha\beta) = \bar{d}_1(\alpha, \alpha\beta)$. Recall that $M_{\alpha\beta}$ is a left- \mathcal{R} cancellative monoid, by (3) and Proposition 3.4 we have

$$(e_{\alpha}, i_{\alpha}) x_{\beta} \mathcal{R}(]_{\alpha}, \rangle_{\alpha}) \S_{\gamma}.$$

On the other hand, if $(e_{\alpha}, i_{\alpha})x_{\beta}\mathcal{R}(e_{\alpha}, i_{\alpha})x_{\gamma}$, then since \mathcal{R} is a left congruence, we can easily obtain that

$$(a_{\alpha}, i_{\alpha})(e_{\alpha}, i_{\alpha})x_{\beta}\mathcal{R}(a_{\alpha}, i_{\alpha})(e_{\alpha}, i_{\alpha})x_{\gamma},$$

i.e.,

$$(a_{\alpha}, i_{\alpha}) x_{\beta} \mathcal{R}(a_{\alpha}, i_{\alpha}) x_{\gamma}.$$

Hence, we have $(a_{\alpha}, i_{\alpha})\mathcal{L}^{**}(e_{\alpha}, i_{\alpha})$.

Let $x = (a, i) \in M_{\alpha} \times I_{\alpha}$. For all $e = (e_{\alpha}, j) \in E(L_x^{**})$, where $E(L_x^{**})$ is the set of idempotents in L_x^{**} , we have

$$xe = (a, i)(e_{\alpha}, j) = (ae_{\alpha}, ij) = (a, i) = x.$$

We have proved that S is a wrpp semigroup.

(2) S is an adequate wrpp semigroup.

For all $a \in S$, there exists $\alpha \in Y$ such that $a \in M_{\alpha} \times I_{\alpha}$. Put $a = (m_{\alpha}, i_{\alpha})$. By the argument of (1) above, there exists $e = (e_{\alpha}, i_{\alpha}) \in M_{\alpha} \times I_{\alpha}$ such that $a = (m_{\alpha}, i_{\alpha})\mathcal{L}^{**}(e_{\alpha}, i_{\alpha}) = e$ and $ea = (e_{\alpha}, i_{\alpha})(m_{\alpha}, i_{\alpha}) = (m_{\alpha}, i_{\alpha}) = a$. If there is another idempotent $a^* = (f_{\alpha}, j_{\alpha})$ satisfying $a\mathcal{L}^{**}a^*$ and $a = a^*a$, then $(f_{\alpha}, j_{\alpha})(m_{\alpha}, i_{\alpha}) = (m_{\alpha}, i_{\alpha})$ and $(f_{\alpha}, j_{\alpha})^2 = (f_{\alpha}, j_{\alpha})$. Hence, $f_{\alpha}m_{\alpha} = m_{\alpha}, i_{\alpha} = j_{\alpha}i_{\alpha} = j_{\alpha}$ and $f_{\alpha}^2 = f_{\alpha}$. By Lemma 3.1, we have $e_{\alpha} = f_{\alpha}$. Hence, $a^* = (e_{\alpha}, i_{\alpha}) = e$.

Thus, by (1) and (2), S is an adequate wrpp semigroup. Moreover, by Lemma 2.7, we have proved that S is a left C-wrpp semigroup.

(3) Finally, we show that the relation ρ in Lemma 2.13 is a congruence.

First, we show that $e_x e_y = e_{xy}$ for all $x, y \in S$. In fact, if we let $x = (a_\alpha, i_\alpha)$ and $y = (a_\beta, i_\beta)$, then we have $e_x = (e_\alpha, i_\alpha)$, $e_y = (e_\beta, i_\beta)$ and $e_{xy} = (e_{\alpha\beta}, i_{\alpha\beta})$, and also

$$xy = (a_{\alpha}, i_{\alpha})(a_{\beta}, i_{\beta}) = (a_{\alpha}, i_{\alpha})\Phi_{\bar{d}(\alpha, \alpha\beta)}(a_{\beta}, i_{\beta})\Phi_{\bar{d}(\beta, \alpha\beta)},$$

where $\bar{d}(\alpha, \alpha\beta)$ and $\bar{d}(\beta, \alpha\beta)$ satisfy that

$$\{(a_{\beta}, i_{\beta})\Phi_{d(\beta, \alpha\beta)} : d(\beta, \alpha\beta) \in D(\beta, \alpha\beta)\} \subseteq S_{\bar{d}(\alpha, \alpha\beta)}$$

and

$$\{(a_{\alpha}, i_{\alpha})\Phi_{d(\alpha,\alpha\beta)} : d(\alpha, \alpha\beta) \in D(\alpha, \alpha\beta)\} \subseteq S_{\bar{d}(\beta,\alpha\beta)}.$$

By Proposition 3.3 (i) and (iv), we have $(e_{\beta}, i_{\beta})\Phi_{d(\beta,\alpha\beta)}, (e_{\alpha}, i_{\alpha})\Phi_{\bar{d}(\alpha,\alpha\beta)} \in E(S_{\bar{d}(\alpha,\alpha\beta)})$. Since $E(S_{\alpha\beta})$ is a rectangular band, we have

$$\begin{aligned} xy &= (a_{\alpha}, i_{\alpha}) \Phi_{\bar{d}(\alpha, \alpha\beta)}(a_{\beta}, i_{\beta}) \Phi_{\bar{d}(\beta, \alpha\beta)} \\ &= (e_{\alpha}, i_{\alpha}) \Phi_{\bar{d}(\alpha, \alpha\beta)}(a_{\alpha}, i_{\alpha}) \Phi_{\bar{d}(\alpha, \alpha\beta)}(a_{\beta}, i_{\beta}) \Phi_{\bar{d}(\beta, \alpha\beta)} \\ &= (e_{\alpha}, i_{\alpha}) \Phi_{\bar{d}(\alpha, \alpha\beta)}(e_{\alpha}, i_{\alpha}) \Phi_{\bar{d}(\alpha, \alpha\beta)}(a_{\alpha}, i_{\alpha}) \Phi_{\bar{d}(\alpha, \alpha\beta)}(a_{\beta}, i_{\beta}) \Phi_{\bar{d}(\beta, \alpha\beta)} \end{aligned}$$

Refined semilattice structure of left C-wrpp semigroups

$$= (e_{\alpha}, i_{\alpha}) \Phi_{\bar{d}(\alpha, \alpha\beta)}(e_{\beta}, i_{\beta}) \Phi_{\bar{d}(\beta, \alpha\beta)}(e_{\alpha}, i_{\alpha}) \Phi_{\bar{d}(\alpha, \alpha\beta)}(a_{\alpha}, i_{\alpha}) \Phi_{\bar{d}(\alpha, \alpha\beta)}(a_{\beta}, i_{\beta}) \Phi_{\bar{d}(\beta, \alpha\beta)}$$

$$= (e_{\alpha}, i_{\alpha}) \Phi_{\bar{d}(\alpha, \alpha\beta)}(e_{\beta}, i_{\beta}) \Phi_{\bar{d}(\beta, \alpha\beta)}(a_{\alpha}, i_{\alpha}) \Phi_{\bar{d}(\alpha, \alpha\beta)}(a_{\beta}, i_{\beta}) \Phi_{\bar{d}(\beta, \alpha\beta)}$$

$$= (e_{\alpha}, i_{\alpha})(e_{\beta}, i_{\beta})(a_{\alpha}, i_{\alpha})(a_{\beta}, i_{\beta}) = e_{x}e_{y}xy.$$

$$(4)$$

Similarly, we can prove that

$$xy = xye_x e_y. (5)$$

On the other hand, since S is a left C-wrpp semigroup, by Corollary 2.8 for any $\alpha \in Y$, S_{α} is a \mathcal{L}^{**} -class of S. Also, since $e_x e_y \in S_{\alpha\beta}$, $xy \in S_{\alpha\beta}$, we have $e_x e_y \mathcal{L}^{**} xy$. By the definition of left C-wrpp semigroup and (4) and (5), we have $e_x e_y = e_{xy}$.

Now, we define a relation on S by

$$(a,i)\rho(b,j) \Leftrightarrow (\exists \alpha \in Y)a, b \in M_{\alpha} \text{ and } i = j \in I_{\alpha}.$$

Then for any $x, y \in S$, $x \rho y$ if and only if $e_x = e_y$. By the above argument, we know $e_x e_y = e_{xy}$, and then we can immediately obtain that ρ is a congruence.

Hence, summing up the above arguments and according to Lemma 2.13(1), we have shown that the semi-spined product decomposition $S = M_S \times_{\eta} I_S$ is a spined product decomposition.

 \Leftarrow) The proof is analogous to the proof of sufficiency of Theorem 1.6 in Ref. [17].

Let S be a left C-wrpp semigroup such that the semi-spined product decomposition $S = M_S \times_{\eta} I_S$ of S is the spined product decomposition. Then by Lemma 2.13(1), $\rho = \{((a, i), (b, j)) \in S \times S : i = j\}$ is a congruence. Also by Lemma 2.7, we have $S = \bigcup_{\alpha \in Y} (M_\alpha \times I_\alpha)$, where M_α is a left- \mathcal{R} cancellative monoid, I_α is a left zero band and Y is a semilattice. Let e_α be the identity of M_α . Then $E(S) = \bigcup_{\alpha \in Y} (e_\alpha \times I_\alpha)$. By Lemma 2.7, we know it is a left regular band, and also by Corollary 2.15, it is a refined semilattice of left zero bands $e_\alpha \times I_\alpha$ for all $\alpha \in Y$.

Define the multiplication \circ on $I = \bigcup_{\alpha \in Y} I_{\alpha}$ by

$$i_{\alpha} \circ i_{\beta} = k$$
 if and only if $(e_{\alpha}, i_{\alpha})(e_{\beta}, i_{\beta}) = (e_{\alpha\beta}, k)$.

Then (I, \circ) forms a band which is clearly isomorphic to E(S).

In fact, if we define a mapping

$$\varphi: E(S) \to I, \ (e_{\alpha}, i_{\alpha}) \to i_{\alpha}$$

it is easy to verify that φ is an isomorphism from E(S) to I. Firstly, it is clear to see that φ is surjective. Secondly, if $(e_{\alpha}, i_{\alpha})\varphi = i_{\alpha}, (e_{\beta}, i_{\beta})\varphi = i_{\beta}$ and $i_{\alpha} = i_{\beta} \in I$, then we have $\alpha = \beta$, and so $e_{\alpha} = e_{\beta}$ by Lemma 3.1, thus $(e_{\alpha}, i_{\alpha}) = (e_{\beta}, i_{\beta})$, i.e., φ is injective. Finally, for any $(e_{\alpha}, i_{\alpha}), (e_{\beta}, i_{\beta}) \in E(S)$, if we denote $(e_{\alpha}, i_{\alpha})(e_{\beta}, i_{\beta}) = (e_{\alpha\beta}, k)$, then $[(e_{\alpha}, i_{\alpha})(e_{\beta}, i_{\beta})]\varphi = (e_{\alpha\beta}, k)\varphi = k = i_{\alpha} \circ i_{\beta} = (e_{\alpha}, i_{\alpha})\varphi \circ (e_{\beta}, i_{\beta})\varphi$. Hence, φ is an isomorphism.

Therefore, I is a left regular band which is a refined semilattice of I_{α} .

Further, by the proof of Theorem 4.3 in [1], $E(S) \cong I_S$, hence, we have $I \cong I_S$. And then I_S is a left regular band which can also be regarded as a refined semilattice of I_{α} under isomorphism.

Let $I_S = \{Y; I_{d(\alpha,\beta)}, \Phi_{d(\alpha,\beta)}, D(\alpha,\beta); I_{\alpha}\}$. Also, by the proof of Theorem 4.3 in Ref. [1], we know $M_S = \bigcup_{\alpha \in Y} M_{\alpha}$. Now, for any $\alpha, \beta \in Y$ with $\alpha \geq \beta$, we can define a mapping $\Phi_{\alpha,\beta}$ from

 M_{α} to M_{β} as follows:

for any
$$a \in M_{\alpha}, a\Phi_{\alpha,\beta} = a'$$
 if and only if $(e_{\beta}, j)(a, i) = (a', j)$.

Analogously to the proof of step (b) of Theorem 3.4 in Ref. [7], we can see that $M_S = \{Y; M_\alpha, \Phi_{\alpha,\beta}\}$ is a strong semilattice of the left $-\mathcal{R}$ cancellative monoids M_α .

Let $S_{d(\alpha,\beta)} = M_{\beta} \times I_{d(\alpha,\beta)}$. We define a mapping $\Psi_{\alpha,\beta}$ from $M_{\alpha} \times I_{\alpha}$ to $M_{\beta} \times I_{\beta}$ for any $\alpha, \beta \in Y$ with $\alpha \geq \beta$ as follows:

for any
$$(a_{\alpha}, i_{\alpha}) \in M_{\alpha} \times I_{\alpha}, (a_{\alpha}, i_{\alpha})\Psi_{\alpha,\beta} = (a_{\alpha}\Phi_{\alpha,\beta}, i_{\alpha}\Phi_{d(\alpha,\beta)}).$$

We now show that $S = \{Y; S_{d(\alpha,\beta)}, \Psi_{d(\alpha,\beta)}, D(\alpha,\beta); S_{\alpha} = M_{\alpha} \times I_{\alpha}\}$, and the verification will be done by the following steps.

Firstly, it is easy to check that $\Psi_{d(\alpha,\beta)}$ is a homomorphism. Also, we can check that $\{S_{d(\alpha,\beta)}: d(\alpha,\beta) \in D(\alpha,\beta)\}$ is a congruence partition of $S_{\beta} = M_{\beta} \times I_{\beta}$, and for $\alpha \geq \beta \geq \gamma$, the partition $\{S_{d(\alpha,\gamma)}: d(\alpha,\gamma) \in D(\alpha,\gamma)\}$ is clearly dense in the partition $\{S_{d(\beta,\gamma)}: d(\beta,\gamma) \in D(\beta,\gamma)\}$.

Secondly, we show that Conditions (a), (b), (c) and (d) hold.

(i) Condition (a) holds.

For any $\alpha \in Y$, $D(\alpha, \alpha)$ is clearly singleton, also since $\Phi_{\alpha,\alpha}$ and $\Phi_{d(\alpha,\alpha)}$ are the identical automorphisms, where $d(\alpha, \alpha)$ is the unique element of $D(\alpha, \alpha)$, we immediately obtain that $\Psi_{d(\alpha,\alpha)}$ is the identical automorphism, and so (a) holds.

(ii) Condition (b) holds.

First, for any $\alpha, \beta, \gamma \in Y$ with $\alpha \geq \beta \geq \gamma$, and any $(a_{\alpha}, i_{\alpha}) \in M_{\alpha} \times I_{\alpha}, d(\alpha, \beta) \in D(\alpha, \beta), d(\beta, \gamma) \in D(\beta, \gamma)$, since $M_S = \{Y; M_{\alpha}, \Phi_{\alpha,\beta}\}$ is a strong semilattice of M_{α} and

$$I_S = \{Y; I_{d(\alpha,\beta)}, \Phi_{d(\alpha,\beta)}, D(\alpha,\beta); I_\alpha\}$$

is a refined semilattice of I_{α} , we can obtain that

 $(a_{\alpha}, i_{\alpha})\Psi_{\alpha,\beta}\Psi_{\beta,\gamma} = (a_{\alpha}\Phi_{\alpha,\beta}\Phi_{\beta,\gamma}, i_{\alpha}\Phi_{d(\alpha,\beta)}\Phi_{d(\beta,\gamma)}) = (a_{\alpha}\Phi_{\alpha,\gamma}, i_{\alpha}^{'}\Phi_{d(\alpha,\gamma)}) = (a_{\alpha}, i_{\alpha}^{'})\Psi_{\alpha,\gamma}.$

Hence, we have

$$\{\Psi_{d(\alpha,\beta)}\Psi_{d(\beta,\gamma)}: d(\alpha,\beta) \in D(\alpha,\beta), d(\beta,\gamma) \in D(\beta,\gamma)\}$$
$$\subseteq \{\Psi_{d(\alpha,\gamma)}: d(\alpha,\gamma) \in D(\alpha,\gamma)\}.$$

Also, for any $d(\alpha, \alpha\beta) \in D(\alpha, \alpha\beta)$ and $d(\alpha\beta, \alpha\beta\gamma) \in D(\alpha\beta, \alpha\beta\gamma)$, and any $(a_{\alpha\beta}, i_{\alpha\beta}) \in S_{d(\alpha, \alpha\beta)} = M_{\alpha\beta} \times I_{d(\alpha, \alpha\beta)}$, we have

$$(a_{\alpha\beta}, i_{\alpha\beta})\Psi_{d(\alpha\beta,\alpha\beta\gamma)} = (a_{\alpha\beta}\Phi_{\alpha\beta,\alpha\beta\gamma}, i_{\alpha\beta}\Phi_{d(\alpha\beta,\alpha\beta\gamma)}).$$

Notice that $a_{\alpha\beta}\Phi_{\alpha\beta,\alpha\beta\gamma} \in M_{\alpha\beta\gamma}, i_{\alpha\beta}\Phi_{d(\alpha\beta,\alpha\beta\gamma)} \in I_{d(\alpha,\alpha\beta\gamma)}$ since $I_{d(\alpha,\alpha\beta)}\Phi_{d(\alpha\beta,\alpha\beta\gamma)} \subseteq I_{d(\alpha,\alpha\beta\gamma)}$. we have $(a_{\alpha\beta}, i_{\alpha\beta})\Psi_{d(\alpha\beta,\alpha\beta\gamma)} \in S_{d(\alpha,\alpha\beta\gamma)}$, i.e.,

 $S_{d(\alpha,\alpha\beta)}\Psi_{d(\alpha\beta,\alpha\beta\gamma)} \subseteq S_{d(\alpha,\alpha\beta\gamma)}.$

On the other hand, we can check that $d(\alpha, \alpha\beta\gamma)$ satisfies $\Psi_{d(\alpha,\alpha\beta\gamma)} = \Psi_{d(\alpha,\alpha\beta)}\Psi_{d(\alpha\beta,\alpha\beta\gamma)}$ since $\Phi_{\alpha,\alpha\beta\gamma} = \Phi_{\alpha,\alpha\beta}\Phi_{\alpha\beta,\alpha\beta\gamma}$ and $\Phi_{d(\alpha,\alpha\beta\gamma)} = \Phi_{d(\alpha,\alpha\beta)}\Phi_{d(\alpha\beta,\alpha\beta\gamma)}$. Hence, (b) holds.

(iii) Condition (c) holds.

For $\alpha, \beta, \gamma \in Y$ with $\gamma \leq \alpha\beta$, and for any fixed $(a_{\alpha}, i_{\alpha}) \in S_{\alpha}$ and $d(\alpha\beta, \gamma) \in D(\alpha\beta, \gamma)$, there exists $\overline{d}(\beta, \gamma) \in D(\beta, \gamma)$ such that

$$\{i_{\alpha}\Phi_{d(\alpha,\gamma)}: d(\alpha,\gamma) \in D(\alpha,\gamma)\} \cap I_{d(\alpha\beta,\gamma)} \subseteq I_{\bar{d}(\beta,\gamma)}$$

And then, we have

$$\begin{aligned} \{(a_{\alpha}, i_{\alpha})\Psi_{d(\alpha,\gamma)} : d(\alpha,\gamma) \in D(\alpha,\gamma)\} \cap S_{d(\alpha\beta,\gamma)} \\ &= \{(a_{\alpha}\Phi_{\alpha,\gamma}, i_{\alpha}\Phi_{d(\alpha,\gamma)}) : d(\alpha,\gamma) \in D(\alpha,\gamma)\} \cap (M_{\gamma} \times I_{d(\alpha\beta,\gamma)}) \\ &= \{a_{\alpha}\Phi_{\alpha,\gamma}\} \times (\{i_{\alpha}\Phi_{d(\alpha,\gamma)} : d(\alpha,\gamma) \in D(\alpha,\gamma)\} \cap I_{d(\alpha\beta,\gamma)}) \\ &\subseteq M_{\gamma} \times I_{\bar{d}}(\beta,\gamma) = S_{\bar{d}}(\beta,\gamma). \end{aligned}$$

Hence, Condition (c) holds.

(iv) Condition (d) holds.

For $\alpha, \beta \in Y$ with $\alpha \geq \beta$ and $(a_{\alpha}, i_{\alpha}) \in S_{\alpha}$, $(b_{\beta}, i_{\beta}) \in S_{\beta}$, $d(\alpha, \beta) \in D(\alpha, \beta)$, $d'(\alpha, \beta) \in D(\alpha, \beta)$, we have

$$i_{\beta}(i_{\alpha}\Phi_{d'(\alpha,\beta)}) \in I_{d(\alpha,\beta)} \Rightarrow i_{\beta}(i_{\alpha}\Phi_{d'(\alpha,\beta)}) = i_{\beta}(i_{\alpha}\Phi_{d(\alpha,\beta)}),$$

and

$$(i_{\alpha}\Phi_{d'(\alpha,\beta)})i_{\beta} \in I_{d(\alpha,\beta)} \Rightarrow (i_{\alpha}\Phi_{d'(\alpha,\beta)})i_{\beta} = (i_{\alpha}\Phi_{d(\alpha,\beta)})i_{\beta}$$

Let $(b_{\beta}, i_{\beta})[(a_{\alpha}, i_{\alpha})\Psi_{d'(\alpha,\beta)}] \in S_{d(\alpha,\beta)}$, that is,

$$(b_{\beta}, i_{\beta})(a_{\alpha}\Phi_{\alpha,\beta}, i_{\alpha}\Phi_{d'(\alpha,\beta)}) = (b_{\beta}(a_{\alpha}\Phi_{\alpha,\beta}), i_{\beta}(i_{\alpha}\Phi_{d'(\alpha,\beta)})) \in S_{d(\alpha,\beta)}$$

Then we have

$$\begin{split} (b_{\beta}, i_{\beta})(a_{\alpha}\Phi_{\alpha,\beta}, i_{\alpha}\Phi_{d'(\alpha,\beta)}) &= (b_{\beta}(a_{\alpha}\Phi_{\alpha,\beta}), i_{\beta}(i_{\alpha}\Phi_{d'(\alpha,\beta)})) \\ &= (b_{\beta}(a_{\alpha}\Phi_{\alpha,\beta}), i_{\beta}(i_{\alpha}\Phi_{d_{(\alpha,\beta)}})) = (b_{\beta}, i_{\beta})(a_{\alpha}\Phi_{\alpha,\beta}, i_{\alpha}\Phi_{d(\alpha,\beta)}) \\ &= (b_{\beta}, i_{\beta})(a_{\alpha}, i_{\alpha})\Psi_{d(\alpha,\beta)}. \end{split}$$

Moreover, we can dually deduce that, $((a_{\alpha}, i_{\alpha})\Psi_{d'(\alpha,\beta)})(b_{\beta}, i_{\beta}) \in S_{d(\alpha,\beta)}$ implies

$$((a_{\alpha}, i_{\alpha})\Psi_{d'(\alpha,\beta)})(b_{\beta}, i_{\beta}) = ((a_{\alpha}, i_{\alpha})\Psi_{d(\alpha,\beta)})(b_{\beta}, i_{\beta}).$$

Hence, condition (d) holds.

To finish our proof, we remain to show the following step:

(v) For $\alpha, \beta \in Y$ and $x = (a_{\alpha}, i_{\alpha}) \in S_{\alpha}, y = (b_{\beta}, i_{\beta}) \in S_{\beta}$, we have $e_x = (e_{\alpha}, i_{\alpha}), e_y = (e_{\beta}, i_{\beta})$ and $e_{xy} = (e_{\alpha\beta}, i_{\alpha\beta})$. Notice that ρ in Lemma 2.13 is a congruence, we can get $e_{xy} = e_x e_y$ and then

$$\begin{aligned} xy &= (a_{\alpha}, i_{\alpha})(b_{\beta}, i_{\beta}) = e_{xy}xy = e_{x}e_{y}xy \\ &= (e_{\alpha}, i_{\alpha})(e_{\beta}, i_{\beta})(a_{\alpha}, i_{\alpha})(b_{\beta}, i_{\beta}) \\ &= (e_{\alpha}, i_{\alpha})(e_{\beta}, i_{\beta})(a_{\alpha}\Phi_{\alpha,\alpha\beta}, -)(b_{\beta}\Phi_{\beta,\alpha\beta}, -) \\ &= (e_{\alpha\beta}, i_{\alpha}i_{\beta})(a_{\alpha}\Phi_{\alpha,\alpha\beta}, -)(b_{\beta}\Phi_{\beta,\alpha\beta}, -) \end{aligned}$$

$$= (e_{\alpha\beta}, i_{\alpha}\Phi_{\bar{d}(\alpha,\alpha\beta)}i_{\beta}\Phi_{\bar{d}(\beta,\alpha\beta)})(a_{\alpha}\Phi_{\alpha,\alpha\beta}, -)(b_{\beta}\Phi_{\beta,\alpha\beta}, -)$$

$$= (e_{\alpha\beta}, i_{\alpha}\Phi_{\bar{d}(\alpha,\alpha\beta)})(e_{\alpha\beta}, i_{\beta}\Phi_{\bar{d}(\beta,\alpha\beta)})(a_{\alpha}\Phi_{\alpha,\alpha\beta}, -)(b_{\beta}\Phi_{\beta,\alpha\beta}, -)$$

$$= (a_{\alpha}\Phi_{\alpha,\alpha\beta}, i_{\alpha}\Phi_{\bar{d}(\alpha,\alpha\beta)})(b_{\beta}\Phi_{\beta,\alpha\beta}, i_{\beta}\Phi_{\bar{d}(\beta,\alpha\beta)})$$

$$= (a_{\alpha}, i_{\alpha})\Psi_{\bar{d}(\alpha,\alpha\beta)}(b_{\beta}, i_{\beta})\Psi_{\bar{d}(\beta,\alpha\beta)},$$

where $\bar{d}(\alpha, \alpha\beta)$ and $\bar{d}(\beta, \alpha\beta)$ satisfy that

$$\{i_{\alpha}\Phi_{d(\alpha,\alpha\beta)}: d(\alpha,\alpha\beta) \in D(\alpha,\alpha\beta)\} \subseteq I_{\bar{d}(\beta,\alpha\beta)}$$

and

$$\{i_{\beta}\Phi_{d(\beta,\alpha\beta)}: d(\beta,\alpha\beta) \in D(\beta,\alpha\beta)\} \subseteq I_{\bar{d}(\alpha,\alpha\beta)}$$

Consequently, we have

$$\begin{aligned} \{(a_{\alpha}, i_{\alpha})\Psi_{d(\alpha,\alpha\beta)} &: d(\alpha,\alpha\beta) \in D(\alpha,\alpha\beta)\} \\ &= \{(a_{\alpha}\Phi_{\alpha,\alpha\beta}, i_{\alpha}\Phi_{d(\alpha,\alpha\beta)}) : d(\alpha,\alpha\beta) \in D(\alpha,\alpha\beta)\} \subseteq S_{\bar{d}(\beta,\alpha\beta)} \end{aligned}$$

and

$$\begin{aligned} \{(b_{\beta}, i_{\beta})\Psi_{d(\beta,\alpha\beta)} : d(\beta,\alpha\beta) \in D(\beta,\alpha\beta)\} \\ &= \{(b_{\beta}\Phi_{\beta,\alpha\beta}, i_{\beta}\Phi_{d(\beta,\alpha\beta)}) : d(\beta,\alpha\beta) \in D(\beta,\alpha\beta)\} \subseteq S_{\bar{d}(\alpha,\alpha\beta)}.\end{aligned}$$

Hence, summing up the above steps, we have shown that S is a refined semilattice of left- \mathcal{R} cancellative stripes $M_{\alpha} \times I_{\alpha}$.

Now, if we let the semigroup S in Theorem 3.5 be a rpp semigroup, then by Lemma 2.13(2), we immediately have the following corollary which is an equivalent description of Theorem 1.6 in Ref. [17]:

Corollary 3.6 A left C-rpp semigroup S is a refined semilattice of left cancellative stripes if and only if it is a spined product of a C-rpp component and a left regular band.

Remark From the above arguments, we immediately obtain that our results actually generalize the ones of Zhang in Ref. [17].

Acknowledgement The authors would like to thank Professor ZHANG Rong-hua for his valuable suggestions.

References

- [1] DU Lan, SHUM K P. On left C-wrpp semigroups [J]. Semigroup Forum, 2003, 67(3): 373–387.
- [2] FOUNTAIN J. Right PP monoids with central idempotents [J]. Semigroup Forum, 1977, 13(3): 229–237.
- [3] FOUNTAIN J. Abundant semigroups [J]. Proc. London Math. Soc., 1982, 44(1): 103-129.
- [4] GUO Xiao-jiang, SHUM K P, GUO Yu-qi. Perfect rpp semigroups [J]. Comm. Algebra, 2001, 29(6): 2447–2459.
- [5] GUO Xiao-jiang, GUO Yu-qi, SHUM K P. Semi-spined product structure of left C-a semigroups [C]. Semigroups (Kunming, 1995), Springer, Singapore, 1998, 157–166.
- [6] GUO Yu-qi. Structure of the weakly left C-semigroups [J]. Chinese Sci. Bull., 1996, 41(6): 462-467.
- [7] GUO Yu-qi, SHUM K P. The structure of left C-rpp semigroups [J]. Semigroup Forum, 1995, 50: 9–23.

- [8] KONG Xiang-zhi, SHUM K P. On the structure of regular crypto semigroups [J]. Comm. Algebra, 2001, 29(6): 2461–2479.
- [9] REN Xue-ming, SHUM K P. Structure theorems for right pp-semi-groups with left central idempotents [J]. Discuss. Math. Gen. Algebra Appl., 2000, 20(1): 63–75.
- [10] REN Xue-ming, SHUM K P. Abundant semigroups with left central idempotents [J]. Pure Math. Appl., 1999, 10(1): 109–113.
- [11] REN Xue-ming, SHUM K P, GUO Yu-qi. On spined products of quasi-rectangular groups [J]. Algebra Colloq, 1997, 4(2): 187–194.
- [12] SHUM K P, GUO Yu-qi. On regular semigroups and their generalizations [C]. Lecture Notes In Pure And Applied Mathematics, Marcle Dekker, 1996(1987), 181–226.
- [13] TANG Xiang-dong. On a theorem of C-WRPP semigroups [J]. Comm. Algebra, 1997, 25(5): 1499–1504.
- [14] WANG Zheng-pan, ZHANG Rong-hua, SHUM K P. Refined semilattice structure of C^{*}-quasiregular semigroups [J]. Int. Math. J., 2003, 3(6): 627–640.
- [15] WANG Zheng-pan, ZHANG Rong-hua, XIE Mu. Regular orthocryptou semigroups [J]. Semigroup Forum, 2004, 69(2): 281–302.
- [16] ZHANG Liang, SHUM K P, ZHANG Rong-hua. Refined semilattices of semigroups [J]. Algebra Colloq., 2001, 8(1): 93–108.
- [17] ZHANG Rong-hua. On the refined decomposition structure of left C-rpp semigroups [J]. Southeast Asian Bull. Math., 2000, 24(1): 137–145.
- [18] ZHU Pin-yu, GUO Yu-qi, SHUM K P. Structure and characteristics of left Clifford semigroups [J]. Sci. China Ser. A, 1992, 35(7): 791–805.
- [19] HOWIE J M. An Introduction to Semigroup Theory [M]. Academic Press, London, 1976.
- [20] HOWIE J M. Fundamentals of Semigroup Theory [M]. Clarendon Press, Oxford, 1995.