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Abstract In this paper we construct a new operator Hff,\;’B) (f; 2) by means of the partial sums
SN-B) (f; z) of Neumann-Bessel series. The operator converges uniformly to any fixed continuous
function f(z) on the unit circle | z |= 1 and has the best approximation order for f(z) on | z |= 1.
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1. Introduction

Let J,,(z) be Bessel functions and let Q,,(z) be Neumann polynomials:

_niﬂ(f)zk h—0 1.9 0
k:ok'(n+k)' 2 ’ — Y4
Qolz) = 1,
(3] o
Qn(Z):i(%)n-i—l n(n ]j 1) (2)1@7 . N
k=0 '

where [a] is the integer part of number a.
Let T be the unit circle | z |= 1 and let f(z) be L-integrabel on T, write

n = E_n n d ’ B, = d )
= 10Quc = § 1010 3)
€0 %, en=1 n=12 =v—1.

The series Y o o (ArJi(2)+BrQr(2)), z € T, is called the Neumann-Bessel series. Let S,(IN’B)(f; z)

denote the n-th partial sums of Neumann-Bessel series, i.e.,

SNVE(f52) =D (AkJu(z) + BrQu(z 27”7{]0 ENP)(z,0d¢, z€T, (4)
k=0
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where
KEMP(z,0) = Qo(¢)Jo(2) + Qo(2)Jo(¢) + Z(Qk@) k(2) + Qi(2)J1(Q)) (5)
k=0
are called the kernel functions.

Since S,(IN’B)( f; 2z) cannot converge uniformly to each continuous function f(z) on the unit

circle | z |= 1. Mul®! considered Fejér sums of Sr(LN’B)(f; z) as follows:
=
N B) : (N B)
f’ - n Z f7
k=0
and obtained an asymptotic formula as follows

Theorem Let f(z) be a function of bounded variation on I' and let Zy be a point in T'. If the

two one-side derivatives f, (z0) and f’ (z0) of f(z) at Zy exist, then we have

2izglnn

AP (f;20) ~ F(z0) = 22 (11 20) — f (z0)) + O(R), m— oo, (6)
where
fi(z) = Jim %ﬁg%) (clockwise),
fl(20) = lim Jz) = (=) (count clockwise).

z—z0,z€T zZ— 20

Fomula (6) shows that the convergence order of ol B)( f; z) does not reach the order of the
best approximation for any fixed continuous function f(z) on I'. In the paper we use S (N, B)( f;2)
to construct a new operator H,(,],X’B)( f; z) which converges to any fixed continuous function f(z)

on I' uniformly and has the best approximation order for f(z) on T'. H,(L{\,{’B)( f; 2) is determined

as follows. Let r be an arbitrary odd natural number and let h = -Z5. Then H,(l{\;’B)( f;2) is
defined by
1 r+1 1
(15 = 500 (2) = (-5 S0 (T ) st
k=0

We have the following result concerning H,(,],X’B)( f;2).

Theorem 1 Let f(z) be a continuous function on I'. Then
1 1
| HOYP(F:2) — () |= O +w(f, 1), =€l
where “O” is independent of n and w(f,d) is the modulus of continuity of f(z) on I.
For any fixed continuous function f(z) on I', Theorem 1 shows that the convergence order of
H,S{X’B)( f; ) reaches the order of the best approximation for the function f(z). In addition, by

Theorem 1, the following convergence theorem holds.

Theorem 2 Let f(z) be a continuous function on I'. Then lim Hﬁi’B)(f; z)=f(2), z€ T, is

n—oo

valid uniformly on I'.
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2. Some formulas

Since Jo(2) +23°72, Joj(2) = 1, Ju(z) = O(5%), we have

SV (1Li2)=1-2 Y Ja(2) =1+ 0(
J=[%]+1

)-

2"n'

Therefore,
1

(N B)
HY0P)(1; z)—1+0(2nn|

)- (8)
Let z = €¥ and ¢ = e’*. We have
iCe40) sin(n + 1)(s — 6)

sin(252)

cos(n+1)(s —0) n 1

KWNB) (4. ) — o~
YA (z0) = e e

+ (eis + ew)

where “O” is independent of n. Denote ¢t = s — 6. Then it follows from (9) that

KNP (ze™, Q) + 2K P (2,0) + KNP (ze 77, ()
ﬂ'(sgewl) 7ew sin(n + 1)( h)

= sin(L5 2h)
—is+0) sin(n + 1)(t — h) sin(n 4+ 1)t sin(n+ 1)(t + h)
em T ( t—h 2—— h )+
sin(5*) sin(3) sin(45%)

Zitsto—h) —itsxo) sin(n + 1)(t + h) io+n)  ioycos(n+1)(t —h)
(e ¢ 51n(t+h) e e”) 2n *
(e + ew)cos(n +1)(t+h)+2 cos(2nn+ 1)t + cos(n+ 1)(t — h) n

Gil0—h) _ g\ cos(n+1)(t+h) 1

- 27:,4]-. (10)

Since h = 7, we have A5 = 0. In view of the trigonometric equations, one can obtain

sin(n+ 1)(t — h) sin(n 4+ 1)t n sin(n 4+ 1)(¢t + h)

+2 -
sin(452) sin(%) sin(5h)
h costsm 2 —|— sin 3h
= —2sin(n + 1)tsin — =) t+h (11)
4 sin 0 5 sin 5 2 sin

Let f(z) be a continuous function on the unit circle | z |= 1. The modulus of continuity of f(2)

is given by
w(f,0)= sup | f(e")—f(e”)]. (12)
ls—6]<6
Note that it is obvious that
w(f,a8) = (a+ Dw(f,8), a>0 (13)

and

B (f:2) = LUSOP(f26®) + 250D (1:2) + SV (7207} = BV (7;2).
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For r = 3,5, ..., the following equatlon holds:
N (f12) = RVP(f;2) - {Hffi BN ze™) = 2HE) (f;2) + HOVE) (267 ™)) (%)

In fact, For r =1 and r = 3, respectlvely, formula (*) holds obviously. Now assume formula

(%) is valid for r = v > 3. Then, for r = v + 2, we have

1 v+3 ; +3
SéN’B>(f;Z)—(—Z) Z(—l)k( : )SéN’B’(f;ze“’“ )

k=0
2 v+1
S(N.B) S(_Z ”*1 1) v+l GIN.B)(f. ,pilkti—"32)h
(f:2) Z XY (D) SIS ze )
=0 7=0 J
— S(N’B)(f'z)-i-li(—l)k 2 % S(N,B)(f.zei(k—l)h _li
" ’ 4k:0 k " ’ 4
vtl v41
(BB (f 20 — (- 2) T 3 (-1 ( : 1)855“B><f; A )
" J
7=0

1 } .
= RNB)(f;2) — Z{Hflﬁ’B)(f; ze™) —2HB) (f12) + HIN P (f; 267}

Which implies that formula (*) holds for r = v + 2. Therefore, by the mathematical inductive
method, formula (x) holds for all r =1, 3,5,....

3. Proof of Theorem 1

By (5) and (9), we have

HP2) = g O D63 + 2P (250)+ KPP e 50},

Let z=¢" ¢ =¢"t=5—0,and h = 77+ Then, in view of Egs.(8) and (10), we have
HYP (f32) = £(2)
= = LA — FEUELD P e 0) + 2KV (2:.0) + KNP (2o g+
r
1
0(2"71!)
1 7 O0+7

=—Zl/0 (F(e) — F(€))e™ Ayds + O(s—)

_ 2”n'
j= s

Z‘/_ﬂ' zs _ z)) WA d8+0(2nn')

871'
7
Z Olz) (14)

Now, since A; = 0, B; = 0. By Euler formula, we have

—i(s+6+ —i(s .
|€ (4;9 h) e (2+9) |: O(h), |€l(0ih)

— €

®1=0(h). (15)
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From (12) and (13), it follows that | f(e’ — f(e")) |< (n |t | +1)w(f, ). Obviously,

sin(n + 1)v
SO EL < 9041,
Sln§
2 . ™
—<sinv<wv, 0<v<—. (16)
T 2

Thus,

B =06 D) [ ]+ A ar

—T

— Ow(f, ) /W L=+ 1)t

—n | sin L

Similarly, we can prove that
1 1 .
| Bs |= 0@(f, ) | Bil=0w(f, 1) j=467

Now we estimate Bs. By Eqs.(14) we have

B2 | = Olr, ) [ (nt+ 1)1 2t

2h T
:ow(f,%)){/o (nt+1) | 4s | dt+/2h(nt+1) | Ay | dt}.

Moreover, from Egs.(15) we have

/Qh(m‘—H) | A | dt = O(1).
0

And from Egs.(16) and (11) we have
/W(m +1) [ As | dt = 0(/W gy —om =) —oq).
o on (t=h)(t+h) t+h
Therefore, | B |= O(w(f, %)) Combining the above expressions of B;,j =1,2,...,7, we have

(N.B) . _ot ety .
| Hp ' (f32) = f(2) [= O~ +w(f, ) 2€l

Therefore, the estimation in Theorem 1 is valid for » = 1. It is obviously also valid for an
arbitrary odd natural number r by (%) and the mathematical inductive method. This completes
the proof of Theorem 1. O
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