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Abstract This paper proposes some regularity conditions. On the basis of the proposed regular-

ity conditions, we show the strong consistency of maximum quasi-likelihood estimation (MQLE)

in quasi-likelihood nonlinear models (QLNM). Our results may be regarded as a further gener-

alization of the relevant results in Ref. [4].
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1. Introduction

Since the generalized linear models (GLM) were proposed in the early 1970s[1], the researchers

have tried to extend its scope of applications. At first, the distribution of the response variable

is limited to belong to an exponential family. In 1974, Wedderburn[2] advanced the concept

of quasi-likelihood, which requires only the correct specification of the expectation and variance

function of the response variable. On the basis of this idea, we propose quasi-likelihood nonlinear

models.

Suppose that the components of the response vector Y = (y1, . . . , yn)T are independent

with mean vector µ = (µ1, . . . , µn)T and covariance matrix σ2V (µ), where µi = h(xi, β), xi =

(xi1, xi2, . . . , xiq)
T (q < n) is a vector of explanatory variables for the ith observation, β =

(β1, β2, . . . , βp) (p < n) is an unknown parameter vector to be estimated, xi and β are defined in

a subset X of Rq and a subset B of Rp, respectively, σ2 may be unknown but does not depend on

β, V (µ) = diag{V1(µ1), . . . , Vn(µn)} is a positive definite matrix of known functions and h(·, ·)

is a known function. Then the log quasi-likelihood is defined as

Q(β, Y ) =

n
∑

i=1

∫ µi

yi

yi − t

σ2Vi(t)
dt, µi = h(xi, β)

△
= µi(β). (1.1)
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Model (1.1) is called quasi-likelihood nonlinear model (QLNM).

It is easy to see from (1.1) that log quasi-likelihood equation is

Un(β) =

n
∑

i=1

∂µi

∂β
(Vi(µi))

−1(yi − µi(β)) = 0, µi(β) = h(xi, β). (1.2)

When µi(β) = h(xT
i β), and yi are drawn independently from a one-parameter exponential

family of distributions, with density

exp{θT
i yi − b(θi)}dγ(yi), i = 1, . . . , n,

(1.2) can be rewritten as

n
∑

i=1

xi
∂h(t)

∂t
|t=xT

i
β(b̈(θi))

−1(yi − µi(β)), µi(β) = h(xT
i β). (1.3)

Equation (1.3) is just the well-known log-likelihood equation of exponential-distribution GLM

(in the case when yi is one dimensional random variable), see Ref. [3, p.882] and Ref. [4, p.1009).

Hence, quasi-likelihood nonlinear models include generalized linear models[3,4] as a special case.

In recent years, a number of authors have been concerned about the strong consistency

of maximum quasi-likelihood estimator (MQLE) of these models[3,4]. For example, for q × 1

responses, general link function and bounded regressors, Yue Li & Chen Xi-ru[3] have showed

that, if λmin(
∑n

i=1 xix
T
i ) ≥ cnα for some α ∈ (3/4, 1], supi≥1 E||yi||

7/3 < ∞, and some regular

conditions are satisfied, then with probability one for large n, the quasi-likelihood equation

Un(β) = 0 has a solution β̂n with β̂n − β0 = O(n−(α−1/2(loglogn)1/2). Yin Chang-ming &

Zhao Lin-cheng[4] further weaken the condition of eigenvalue and obtain the strong consistency

of MQLE of β, if λmin(
∑n

i=1 xix
T
i ) ≥ cnα for some α ∈ (0, 1], supi≥1 E||yi||

r < ∞ for some

r > 1/α and some other regular conditions are met. However, little work has been done on the

strong consistency of the maximum quasi-likelihood estimator in QLNM until recently.

In this paper, we generalize the results of the strong consistency of Yin Chang-ming & Zhao

Lin-cheng[4] to quasi-likelihood nonlinear models.

This paper is organized as follows. Section 2 introduces some regularity conditions and

lemmas. In Section 3, we show the strong consistency of MQLE in QLNM under the mild

regularity conditions given in Section 2.

2. Conditions and lemmas

Before formulating the assumptions, we introduce some notations. Let β̂n denote the max-

imum quasi-likelihood estimator of β, which is the solution of the log quasi likelihood equation

Un(β) = 0; Use c to denote an absolute positive constant which may take different values in each

of its appearances, even in the same expression; Denote by β0 the true value of β. For a matrix

B = (bij) ∈ Rp×q, set ||B|| = (
∑p

i=1

∑q
j=1 |bij |

2)1/2 = (tr(BTB))1/2. For notational simplicity,

we shall mostly drop the argument β0 in Eβ0
, Pβ0

etc. and simply write E, P etc.

To make inference for β we make the following
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Assumptions

(i) X is a compact subset in Rq, and B is an open subset in Rp;

(ii) h(x, β), as a function of β, is differentiable up to the third order. The function h(x, β)

and all its derivatives are continuous in X × B;

(iii) D(β) = ∂µ(β)/∂βT = (D1, . . . , Dn)T is of full rank , where µ(β) = (µ1, . . . , µn)T;

(iv) supi≥1 ||
∂µi
∂β

|| < ∞, det
∂µi
∂β

∂µi

∂βT 6= 0, and for n sufficiently large and some γ ∈ (0, 1],

λmin(
∑n

i=1
∂µi
∂β

∂µi

∂βT ) ≥ cnγ ;

(v) µi = Eyi = h(xi, β) (i = 1, 2, . . .), and for some α ≥ 1/γ, supi≥1 E|yi|
α < ∞;

(vi) 0 < infi≥1 Vi(µi) ≤ supi≥1 Vi(µi) < ∞.

Lemma 1 (Bernstein inequality[5]) Suppose that X1, . . . , Xn are independent random variables

with zero expectation, and there exists a finite constant b such that |Xi| ≤ b, 1 ≤ i ≤ n. Then

for any ε > 0,

P (

n
∑

i=1

Xi ≥ ε) ≤ exp{−ε2/(2v +
2bε

3
)}, v =

n
∑

i=1

EX2
i .

Lemma 2 Suppose that C is an open and bounded set in Rn, C and ∂C denote the closure

and boundary of C, respectively. Suppose that F : C → Rn is continuous, and satisfies (x −

x0)TF (x) ≤ 0 for some x0 ∈ C and for all x ∈ ∂C. Then the equation F (x) = 0 has a solution

in C.

For this lemma we refer to Ortega and Rheinboldt[6], p.162–163, Corallary 6.3.4.

3. Main results

Theorem 1 Suppose that Assumptions (i)–(vi) are satisfied. Then there exists a sequence {β̂n}

of estimates of β0 such that with probability one for n sufficiently large,

Un(β̂n) = 0 and β̂n → β0 a.s. (n → ∞). (3.1)

Proof Take ε such that

0 < 2εγ < 1, t =
1

γ
+ 2ε < α, δ = γ − εγ2 −

1

t
> 0, ρn = n−δ → 0. (3.2)

Let Sρn
= {β ∈ Rp : ||β − β0|| ≤ ρn}, and ∂Sρn

= {β ∈ Rp : ||β − β0|| = ρn}. To prove (3.1), it

suffices to show that with probability one for n sufficiently large

sup
β∈∂Sρn

{(β − β0)
TUn(β)} < 0. (3.3)

Let η = β−β0 and ei = yi−h(xi, β0). From the mean value theorem and the Schwarz inequality,

it follows that for β ∈ ∂Sρn
,

(β − β0)
TUn(β)

= ηT
n

∑

i=1

∂µi

∂β
(Vi(µi))

−1ei − ηT
n

∑

i=1

∂µi

∂β
(Vi(µi))

−1(
∂µi

∂βT
|β=βi∗)η
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= ηT
n

∑

i=1

∂µi

∂β
(Vi(µi))

−1ei − ηT
n

∑

i=1

∂µi

∂β
(Vi(µi))

−1 ∂µi

∂βT
η+

ηT
n

∑

i=1

∂µi

∂β
(Vi(µi))

−1[
∂µi

∂βT
−

∂µi

∂βT
|β=βi∗ ]η

≤ Fn(β) − Gn(β) + [Gn(β)]1/2[ηT
n

∑

i=1

(
∂µi

∂β
−

∂µi

∂β
|β=βi∗)(Vi(µi))

−1(
∂µi

∂βT
−

∂µi

∂βT
|β=βi∗)η]1/2,

where βi∗ is on the line segment between β and β0, and

Fn(β) = ηT
n

∑

i=1

∂µi

∂β
(Vi(µi))

−1ei,

Gn(β) = ηT
n

∑

i=1

∂µi

∂β
(Vi(µi))

−1 ∂µi

∂βT
η ≥ cηT

n
∑

i=1

∂µi

∂β

∂µi

∂βT
η, (3.4)

From Assumptions (i)–(iv), (vi) and (3.2), it follows that for all β ∈ ∂Sρn
and i ≥ 1

λmin{
∂µi

∂β
(Vi(µi))

−1 ∂µi

∂βT
} ≥ c > 0,

and that ||(Vi(µi))
−1/2(

∂µi
∂β −

∂µi
∂β |β=βi∗)|| → 0, as n → ∞ uniformly for all β ∈ ∂Sρn

and all i ≤

n. And therefore for any λ with λTλ = 1 and n sufficiently large, we have

λT[
∂µi

∂β
(Vi(µi))

−1 ∂µi

∂βT
− (

∂µi

∂β
−

∂µi

∂β
|β=βi∗)(Vi(µi))

−1(
∂µi

∂βT
−

∂µi

∂βT
|β=βi∗)]λ

≥ λmin(
∂µi

∂β
(Vi(µi))

−1 ∂µi

∂βT
) − ||(Vi(µi))

−1/2(
∂µi

∂β
−

∂µi

∂β
|β=βi∗)|| > c/2 > 0,

which implies for n sufficiently large,

(β − β0)
TUn(β) ≤ Fn(β) − Hn(β), (3.5)

where Hn(β) = cηT
n
∑

i=1

∂µi
∂β

∂µi

∂βT η (for some c > 0) . By (3.5), it suffices to prove for n sufficiently

large,

sup
β∈∂Sρn

{Fn(β) − Hn(β)} < 0. (3.6)

Let ēi = eiI(|ei| ≤ i1/t) and e∗i = ēi − Eēi, where I(·) is the indicator function of the relevant

event. By the Markov inequality, Assumptions (iv), (v) and (3.2), we have

|Eēi| = |E(eiI(|ei| ≤ i1/t))| ≤ i−(α−1)/tE|ei|
α, (3.7)

∞
∑

i=1

P (ēi 6= ei) ≤ sup
i≥1

E|ei|
α

∞
∑

i=1

i−α/t < ∞.

And by the Borel-Cantelli Lemma, for n sufficiently large,

ēn = en. (3.8)

By (3.2) and Assumption (iv), as n → ∞,

inf
β∈∂Sρn

Hn(β) ≥ cnγ−2δ ≥ cnγ/(1+2εγ) → ∞. (3.9)
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Let

F ∗
n(β) =

n
∑

i=1

ηT ∂µi

∂β
(Vi(µi))

−1e∗i , Fn(β) =
n

∑

i=1

ηT ∂µi

∂β
(Vi(µi))

−1ēi. (3.10)

By (3.8) and (3.9), to prove (3.6), we need to show that with probability one for n sufficiently

large,

sup
β∈∂Sρn

{F ∗
n(β) −

Hn(β)

3
} < 0, (3.11)

and

sup
β∈∂Sρn

{EFn(β) −
Hn(β)

3
} < 0. (3.12)

At first, we prove that (3.11) holds. By (3.2), we can divide ∂Sρn
into M parts, U1, U2, . . . , UM ,

such that the diameter of each part is less than n−2, and M ≤ [(2n2 + 1)p]. Take any fixed

βj ∈ Uj for j = 1, 2, . . . , M and let ηj = βj − β0, j = 1, . . . , M . From Assumptions (iv)–(vi),

|e∗i | ≤ 2i1/t and from (3.2), it follows that for j = 1, 2, . . . , M, i = 1, 2, . . . , n,

|ηT ∂µi

∂β
(Vi(µi))

−1e∗i | ≤ ||ηT||||
∂µi

∂β
|||(Vi(µi))

−1||e∗i | ≤ c||ηT||i1/t ≤ cn1/t−δ, (3.13)

E(e∗i )
2 ≤

{

c, α ≥ 2,

ci(2−α)/t, 1 < α < 2,

Var(ηT ∂µi

∂β
(Vi(µi))

−1e∗i ) ≤ cηT ∂µi

∂β

∂µi

∂βT
η(i(2−α)/t + c) < cηT ∂µi

∂β

∂µi

∂βT
ηn1/t−δ. (3.14)

From Lemma 1, (3.5), (3.10), (3.13), (3.14), and Assumption (iv) and (3.2), it follows that

P{F ∗
n(βj) ≥ Hn(βj)/4} ≤ exp{−c

n
∑

i=1

ηT
j

∂µi

∂β

∂µi

∂βT
ηj/n1/t−δ}

≤ exp{−cnγ−δ−1/t} = exp{−cnεγ2

}, (3.15)

and therefore
∞
∑

i=1

P (
⋃

1≤j≤M

{F ∗
n(βj) ≥ Hn(βj)/4}) ≤

∞
∑

i=1

(2n2 + 1)pexp{−nεγ2

} < ∞. (3.16)

By the Borel-Cantelli lemma, for n sufficiently large, we have

F ∗
n(βj) ≤ Hn(βj)/4, a.s. j = 1, 2, . . . , M. (3.17)

For any given β ∈ ∂Sρn
, we can find βj ∈ Uj such that ||β − βj || ≤ n−2. Note that η = β − β0,

by Assumption (iv), ||η|| = ρn and ||η − ηj || ≤ n−2. So we have

|Hn(β) − Hn(βj)|

= c|(η − ηj)
T

n
∑

i=1

∂µi

∂β

∂µi

∂βT
η + ηT

j

n
∑

i=1

∂µi

∂β

∂µi

∂βT
(η − ηj)+

ηT
j (

n
∑

i=1

∂µi

∂β

∂µi

∂βT
−

∂µi

∂β

∂µi

∂βT
|β=βj

)ηj |
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≤ c|(η − ηj)
T

n
∑

i=1

∂µi

∂β

∂µi

∂βT
η| + c|ηT

j

n
∑

i=1

∂µi

∂β

∂µi

∂βT
(η − ηj)|+

c|ηT
j

n
∑

i=1

(
∂µi

∂β

∂µi

∂βT
−

∂µi

∂β

∂µi

∂βT
|β=βj

)ηj |.

Choose arbitrarily an element of the matrix

∂µi

∂β

∂µi

∂βT
−

∂µi

∂β

∂µi

∂βT
|β=βj

,

which has the form

M = (gi(β) − gi(βj)),

for some function gi. Since βj ∈ Uj and ||β − βj || ≤ n−2, from Assumptions (i), (ii) and the

mean-value theorem, we have

|M | = |
∂gi(β)

∂β
|β=βi∗∗(β − βj)| ≤ ||

∂gi(β)

∂β
|β=βi∗∗ ||||β − βj || ≤ cn−2,

where βi∗∗ is on the line segment between β and βj . Therefore from η = β − β0, ||η|| = ρn,

||η − ηj || ≤ n−2 and Assumptions (i), (ii), we have

|Hn(β) − Hn(βj)| ≤ cn−2 · n · ρn + cρn · n · n−2 + cρn · n · n−2ρn ≤ c. (3.18)

Similarly,

|F ∗
n(β) − F ∗

n(βj)| = |
n

∑

i=1

ηT ∂µi

∂β
(Vi(µi))

−1e∗i −
n

∑

i=1

ηT
j (

∂µi

∂β
(Vi(µi))

−1)|β=βj
e∗i |

≤ |(η − ηj)
T

n
∑

i=1

∂µi

∂β
(Vi(µi))

−1e∗i | + |ηT
j

n
∑

i=1

[
∂µi

∂β
(Vi(µi))

−1 − (
∂µi

∂β
(Vi(µi))

−1)|β=βj
]e∗i |.

From ||βj − β0|| = ρn, ||β − βj || ≤ n−2, |e∗i | ≤ 2i1/t, and Assumption (iv), we have

|F ∗
n(β) − F ∗

n(βj)| ≤ c. (3.19)

By (3.9) and (3.17)–(3.19), for n sufficiently large we have

sup
β∈∂Sρn

{F ∗
n(β) −

Hn(β)

3
} < 0.

Therefore (3.11) holds.

Secondly, we prove that (3.12) holds. By Assumptions (i), (ii), (v) and (vi), (3.2) and (3.7),

for β ∈ ∂Sρn
, we have

|EF n(β)| = |ηT
n

∑

i=1

∂µi

∂β
(Vi(µi))

−1Eēi|

≤ c||η||

n
∑

i=1

i−(α−1)/t ≤ cn−δ(n1−(α−1)/t + logn) ≤ cn1/t−δ. (3.20)

From (3.2), it follows that 1/t − δ <
γ

1 + 2εγ . By (3.9) and (3.20), for n sufficiently large, we

have

sup
β∈∂Sρn

{EFn(β) −
Hn(β)

3
} < 0,
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and therefore (3.12) holds.

From (3.11) and (3.12), it follows that (3.6) holds, which implies that (3.3) holds. By Lemma

2, it follows that with probability one for n sufficiently large, the log-likelihood equation (3.5)

has a solution β̂n ∈ Sρn
. Since ρn → 0 (n → ∞), we have

β̂n → β0 a.s. (n → ∞),

which completes the proof of the theorem.
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