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Abstract In this paper, we get a kinematic density formula for pairs of intersecting lines which

has not yet been gotten in integral geometry by using the moving orthogonal frames method.

And we obtain a kinematic formula of the intersection of the pairs of intersecting lines belonging

to convex body K by using it.
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1. Introduction

The kinematic density for pairs of intersecting lines in R
2 is the same as the kinematic density

for pairs of lines in R
2. Let G and L be two lines which intersect at the point P , θ be the angle

between G and L, and α be the angle G with the x-axis. We can get the formula[1,2]

dGdL = sin θdPdθdα. (1)

The kinematic density for pairs of intersecting lines in R
3 is different from the kinematic

density for pairs of lines in R
3. The kinematic density for pairs of lines in R

3 is[3]

dGdL = sin2 θdPNdQNdGNdLNdN. (2)

Where N is the common perpendicular of lines G and L, P=N ∩G, Q=N ∩L, θ denotes the

angle between G and L, dPN and dQN are the densities of P and Q on the common perpendicular

N , respectively, and dGN and dLN are the densities of G and L for the rotations around N ,

respectively.

The kinematic density for pairs in R
n is[4,5]

dGdL = tn−3 sin2 θdPNdQNdGNdLNdN, (3)

where t denotes the length of PQ, θ denotes the angle between G and L, dPN and dQN are the

densities of P and Q on the common perpendicular N , respectively, and dGN and dLN are the

densities of G and L for the rotations around N , respectively.
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Let K be a convex body in R
n, and σ the chord intersected by a random line G with K.

Consider integrals[1]

I(n)
m (K) =

∫
G∩K

σmdG,

where m is a nonnegative integer and dG is the density of lines. The integral I
(n)
m (K) is called

the mth chord-power integral of K.

In particular,

I
(n)
1 (K) =

1

2
On−1V, (4)

where On−1 is the surface area of (n − 1)-dimensional unit sphere and V is the volume of K.

When we study geometric probability[5], we may meet these problems which need using the

related formulas, say, caculating the kinematic measure of the intersection of the lines G and L

belonging to convex body K in R
n. Meanwhile, we notice that these are conditional probability

problems.

2. Main results

Lemma The kinematic density for pairs of intersecting lines G and L in R
n is

dGdL = sinn−1 θdθω1ω2 · · ·ωnω12 · · ·ω1nω23 · · ·ω2n, (5)

where θ is the angle between the lines G and L, and ωi, ωij are 1-forms in R
n,

i = 1, 2, . . . , n; j = 1, 2, . . . , n.

Proof Let g1 be the unit vector parallel to the line G and l1 be the unit vector parallel to the

line L. Let {P, g1, g2, g3, . . . , gn} be the moving orthogonal frames, such that the plane π which

is spanned by the lines G and L will be perpendicular to span(P ; g3, g4, . . . , gn). And the lines

l1 and l2 are also in the plane π. Denote gi = li, i = 3, 4, . . . , n. Then

l1 = cos θg1 + sin θg2, l2 = − sin θg1 + cos θg2,

dl1 = cos θdg1 + sin θdg2 + (cos θg2 − sin θg1)dθ,

dl2 = − sin θdg1 + cos θdg2 − (cos θg1 + sin θg2)dθ.

Because the arbitary line G always intersects the line L, we have

dL = dPl2 ∧ dl1l2 ∧ dl1g3 ∧ · · · ∧ dl1gn

= dP (− sin θg1 + cos θg2)

∧ (cos θdg1 + sin θdg2 + (cos θg2 − sin θg1)dθ)(− sin θg1 + cos θg2)

∧ (cos θdg1 + sin θdg2 + (cos θg2 − sin θg1)dθ)g3

∧ · · ·

∧ (cos θdg1 + sin θdg2 + (cos θg2 − sin θg1)dθ)gn

= (− sin θdPg1 + cos θdPg2) ∧ (dθ + dg1g2) ∧ (cos θdg1g3 + sin θdg2g3)

∧ · · ·
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∧ (cos θdg1gn + sin θdg2gn).

Since[2] dG = dPg2 ∧ · · · ∧ dPgn ∧ dg1g2 ∧ · · · ∧ dg1gn, we have

dGdL = dPg2 ∧ · · · ∧ dPgn ∧ dg1g2 ∧ · · · ∧ dg1gn

∧ (− sin θdPg1 + cos θdPg2) ∧ (dθ + dg1g2) ∧ (cos θdg1g3 + sin θdg2g3)

∧ · · ·

∧ (cos θdg1gn + sin θdg2gn)

= sinn−1 θdθdPg1 ∧ dPg2 · · · ∧ dPgn ∧ dg1g2 ∧ · · · ∧ dg1gn ∧ dg2g3

∧ · · · ∧ dg2gn

= sinn−1 θdθω1ω2 · · ·ωnω12 · · ·ω1nω23 · · ·ω2n.

Theorem 1 The kinematic density for pairs of intersecting lines G and L in R
n is

dGdL = sinn−1 θdθdPdun−1dun−2, (6)

where P is the intersection of the lines G and L, dun−1 denotes (n − 1)-dimensional volume

element of unit sphere Un−1, and dun−2 denotes (n − 2)-dimensional volume element of unit

sphere Un−2 in R
n.

Remark 1 The formula (6) of kinematic density for pairs of intersecting lines is different from

the formula (3) about kinematic density for pairs of intersecting lines.

Remark 2 For n = 3, we have[4]

dGdL = sin2 θdθdPdu1du2,

which is different from the formula (2).

Remark 3 But, for n = 2, we have

dGdL = sin θdθdPdu1,

which is the same as the formula (1).

Proof Since[2]

dP = ω1ω2 · · ·ωn, dun−1 = ω12 · · ·ω1n, dun−2 = ω23 · · ·ω2n,

by formula (5), we get

dGdL = sinn−1 θdθω1ω2 · · ·ωnω12 · · ·ω1nω23 · · ·ω2n

= sinn−1 θdθdPdun−1dun−2.

Theorem 2 The kinematic density for pairs of intersecting lines G and L in R
n is

dGdL = sinn−1 θdθdΣGdPGdG, (7)

where Σ is the plane spanned by the lines G and L, dΣG is the kinematic density of Σ for the

rotations around G, and dPG is the kinematic density of P on G.
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Proof Since[2]

dPG = ω1, dG = ω2 · · ·ωnω12 · · ·ω1n, dΣG = ω23 · · ·ω2n,

it follows from formula (5) that

dGdL = sinn−1 θdθω1 · · ·ωnω12 · · ·ω1nω23 · · ·ω2n

= sinn−1 θdθdΣGdPGdG. 2

Theorem 3 The kinematic formula of the intersection of the lines G and L belonging to convex

body K in R
n is ∫

G∩L∈K

dGdL = JnOn−1On−2V, (8)

where Jn =
∫ π

2

0
sinn−1 θdθ, On−1 is the surface area of the (n−1)-dimensional unit sphere, On−2

is the surface area of the (n − 2)-dimensional unit sphere, and V is the volume of K.

Proof By formula (6), we obtain∫
G∩L∈K

dGdL =

∫
P∈K

sinn−1 θdθdPdun−1dun−2

= On−1On−2

∫ π

2

0

sinn−1 θdθ

∫
P∈K

dP

= JnOn−1On−2V.

Also by formule (4) and (7), we obtain∫
G∩L∈K

dGdL =

∫
G∩L∈K

sinn−1 θdθdPGdGdΣG

=

∫ π

2

0

sinn−1 θdθ

∫
G∩L∈K

dPG

∫
G∩K 6=∅

dG

∫
dΣG

=

∫ π

2

0

sinn−1 θdθ

∫
G∩K 6=∅

vol(G ∩ K)dG

= 2JnOn−2

∫
G∩K 6=∅

σdG

= 2JnOn−2I
(n)
1 (K) = JnOn−1On−2V . 2
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