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Abstract An algebraic system X is constructed by using the known loop Ã1. Then a new

isospectral problem is established by taking advantage of X, which is devoted to working out the

well-known Volterra lattice hierarchy. And an extended algebraic system X̃ of X is presented,

from which the integrable coupling systems of the Volterra lattice is obtained.
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1. Introduction

By making use of Tu scheme[1,2], one has obtained some continuous interesting integrable

Hamiltonian hierarchies of soliton equation such as AKNS hierarchy, BPT hierarchy, KN hier-

archy etc. In recent years, the nonlinear integrable lattice equations have also been extensively

studied. The mathematical structures and physical applications of the discrete lattice systems,

such as the bi-Hamiltonian structure, integrable symplectic maps, Bäcklund transformations and

nonlinear superposition formulae as well as soliton solutions, master symmetries and so on were

investigated in Refs. [3–8]. Searching for the new Lax integrable lattice equations is an important

subject in the theory of nonlinear integrable lattice equations. The following loop algebra Ã1 is

frequently used to construct the isospectral problems by Tu scheme:

h1(n) =

(
λn 0

0 0

)
, h2(n) =

(
0 0

0 λn

)
, e(n) =

(
0 λn

0 0

)
, f(n) =

(
0 0

λn 0

)
,

[h1(m), e(n)] = e(m+ n), [h1(m), f(n)] = −f(m+ n),

[h2(m), e(n)] = −e(m+ n), [h2(m), f(n)] = f(m+ n),

[e(m), f(n)] = h1(m+ n) − h2(m+ n),

deg(hi(n)) = deg(e(n)) = deg(f(n)) = n, i = 1, 2. (1)

In this paper, in terms of the loop algebra (1) and the different operators, we construct an

algebraic system X and its extended system X, the discrete integrable coupling systems of

Volterra lattice is worked out. Therefore, the method can be used generally.
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2. The algebraic system and the Volterra lattice hierarchy

Above all, we construct an algebraic system based on the loop algebra (1). Let X denote a

linear space expanded by the linear independent vectors h1(n), h2(n), e(n) and f(n),

X = span{h1(n), h2(n), e(n), f(n)}. (2)

Define their product operation in X as follows[9]:

h1(m) ∗ e(n) = e(m+ n), e(m) ∗ h2(n) = e(m+ n),

f(m) ∗ h1(n) = f(m+ n), h2(m) ∗ f(n) = f(m+ n),

e(m) ∗ f(n) = h1(m+ n), f(m) ∗ e(n) = h2(m+ n),

h1(m) ∗ h2(n) =

{
−h2(m+ n), when h1(m), h2(n) ∈ ΓU,

−h1(m+ n),when h1(m), h2(n) ∈ UΓ,

h2(m) ∗ h1(n) =

{
−h1(m+ n),when h1(m), h2(n) ∈ ΓU,

−h2(m+ n),when h1(m), h2(n) ∈ UΓ.
(3)

We define the product operation of h1(n) and h2(n) as follows if we need modified matrices ∆n:

h1(m) ∗ h1(n) = h1(m+ n), h2(m) ∗ h2(n) = h2(m+ n),

h1(m) ∗ h2(n) = h2(m) ∗ h1(n) = 0,

e(m) ∗ h1(n) = h2(m) ∗ e(n) = h1(m) ∗ f(n) = f(m) ∗ h2(n) = 0, h1(n), h2(n) ∈ ∆n, (4)

h1(n) = h1(0)λn, h2(n) = h2(0)λn, e(n) = e(0)λn, f(n) = f(0)λn. (5)

According to the algebraic system (2) along with (3)–(5), we consider the following isospectral

problem:

Eψn = Unψn, λt = 0, Un = h2(1) + u1e(0) + u2f(0) − u3h2(0). (6)

Set

Γ =
∑

m≥0

[am(h1(−m) − h2(−m)) + bme(−m) + cmf(−m)]

= a(h1(0) − h2(0)) + be(0) + cf(0),

where a =
∑

m≥0 amλ
−m, b =

∑
m≥0 bmλ

−m, c =
∑

m≥0 cmλ
−m. The discrete stationary zero

curvature equation

(EΓ)Un − UnΓ = 0 (7)

is equivalent to

(u2b
(1) − u1c)h1(0) + (−λa(1) + u3a

(1) + u1c
(1) + λa− u2b− u3a)h2(0)+

(u1a
(1) + λb(1) + u1a− u3b

(1))e(0) + (−u2a
(1) − λc− u2a+ u3c)f(0) = 0. (8)

Since hi(0) (i = 1, 2), e(0), f(0) are linear independent, from Eq.(8) we have




u2b
(1) − u1c = 0,

−λa(1) + u3a
(1) + u1c

(1) + λa− u2b− u3a = 0,

u1a
(1) + λb(1) + u1a− u3b

(1) = 0,

−u2a
(1) − λc− u2a+ u3c = 0.

(9)
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Inserting the expanding expressions a =
∑

m≥0 amλ
−m, b =

∑
m≥0 bmλ

−m, c =
∑

m≥0 cmλ
−m

into (9) gives the recurrence relations as follows





u2b
(1)
m − u1cm = 0,

am+1 − a
(1)
m+1 − u3am + u3a

(1)
m + u1c

(1)
m − u2bm = 0,

u1am + u1a
(1)
m + b

(1)
m+1 − u3b

(1)
m = 0,

u2am + u2a
(1)
m + cm+1 − u3cm = 0.

(10)

Taking a0 = 1
2 , b0 = −u

(1)
1 , c0 = −u2, we have

a1 = −u
(−1)
1 u2, b1 = −u

(−1)
1 u

(−1)
3 − u

(−1)
1 , c1 = −u2u3 − u2, . . . .

Denote

(λnΓ)+ =

n∑

m=0

[am(h1(n−m) − h2(n−m)) + bme(n−m) + cmf(n−m)],

(λnΓ)− = λnΓ − (λnΓ)+.

Then Eq. (7) can be written as

−Un(λnΓ)+ + (E(λnΓ)+)Un = Un(λnΓ)− − (E(λnΓ)−)Un. (11)

It is easy to find that the terms on the left-hand side in (11) contain powers λk, k > 0, while the

terms on the right-hand side in (11) contain powers λk, k 6 0. Therefore, we obtain

(E(λnΓ)+)Un − Un(λnΓ)+ = (a
(1)
n+1 − an+1)h2(0) − b

(1)
n+1e(0) + cn+1f(0).

Taking V (n) = (λnΓ)+, we have

(EV (n))Un − UnV
(n) = (a

(1)
n+1 − an+1)h2(0) − b

(1)
n+1e(0) + cn+1f(0). (12)

From Eq.(12), we obtain the following lattice equation hierarchy





u1tn = −b
(1)
n+1,

u2tn = cn+1,

u3tn = an+1 − a
(1)
n+1.

(13)

When u1 = u2 = u3, and n = 0, (13) becomes u1t0 = u1(u
(1)
1 − u

(−1)
1 ), which is the Volterra

lattice equation. Therefore, we call (13) the generalized Volterra lattice hierarchy.

3. Integrable coupling system of the Volterra lattice hierarchy

In terms of the theory on continuous integrable couplings[10,11], some integrable hierarchies,

such as KN hierarchy, TC hierarchy etc, have been obtained in Refs. [12–14]. In this paper we

firstly extend the algebra system (3) into the following:

X̃ = span{h1(n), h2(n), e(n), f(n), ẽ(n), f̃(n)} (14)

with

h1(m) ∗ ẽ(n) = ẽ(m+ n), h2(m) ∗ f̃(n) = f̃(m+ n),
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e(m) ∗ f̃(n) = ẽ(m+ n), f(m) ∗ ẽ(n) = f̃(m+ n),

ẽ(m) ∗ h1(n) = f̃(m) ∗ h2(n) = f̃(m) ∗ e(n) = ẽ(m) ∗ f(n)

= h1(m) ∗ f̃(n) = f̃(m) ∗ h1(n) = h2(m) ∗ ẽ(n)

= ẽ(m) ∗ h2(n) = e(m) ∗ ẽ(n) = ẽ(m) ∗ e(n)

= f(m) ∗ f̃(n) = f̃(m) ∗ f(n) = ẽ(m) ∗ f̃(n)

= f̃(m) ∗ ẽ(n) = 0,

ẽ(n) = ẽ(0)λn, f̃(n) = f̃(0)λn,

where the operation relations among h1(n), h2(n), e(n), f(n) are the same as those in (3)–(4).

Denoting X̃1 = span{h1(n), h2(n), e(n), f(n)}, X̃2 = span{ẽ(n), f̃(n)}, we find

(i) X̃ = X̃1 ⊕ X̃2, (ii) X̃1 ∗ X̃2 ⊂ X̃2, (15)

where the symbol ⊕ stands for a direct summation and

X̃1 ∗ X̃2 = {x1(m) ∗ x2(n)|x1(m) ∈ X̃1, x2(n) ∈ X̃2}.

Then from Eq.(14), we consider an isospectral problem

Eψn = Unψn, λt = 0,

Un = h2(1) + u1e(0) + u2f(0) − u3h2(0) + u4ẽ(0) + u5f̃(0). (16)

Set

Γ =
∑

m≥0

[am(h1(−m) − h2(−m)) + bme(−m) + cmf(−m) + dmẽ(−m) + hmf̃(−m)]

= a(h1(0) − h2(0)) + be(0) + cf(0) + dẽ(0) + hf̃(0),

where

a =
∑

m≥0

amλ
−m, b =

∑

m≥0

bmλ
−m, c =

∑

m≥0

cmλ
−m,

d =
∑

m≥0

dmλ
−m, h =

∑

m≥0

hmλ
−m.

A direct calculation gives

(EΓ)Un − UnΓ =(u2b
(1) − u1c)h1(0) + (−λa(1) + u3a

(1) + u1c
(1) + λa− u2b− u3a)h2(0)+

u1a
(1) + λb(1) + u1a− u3b

(1))e(0) + (−u2a
(1) − λc− u2a+ u3c)f(0)+

(u4a
(1) + u5b

(1) − u1h)ẽ(0) + (−u5a
(1) + u4c

(1) − λh+ u3h− u2d)f̃(0).

The discrete stationary zero curvature equation (EΓ)Un − UnΓ = 0 admits the recurrence
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relations: 



u2b
(1)
m − u1cm = 0,

am+1 − a
(1)
m+1 − u3am + u3a

(1)
m + u1c

(1)
m − u2bm = 0,

u1am + u1a
(1)
m + b

(1)
m+1 − u3b

(1)
m = 0,

u2am + u2a
(1)
m + cm+1 − u3cm = 0,

u4a
(1)
m + u5b

(1)
m − u1hm = 0,

u5a
(1)
m − u4c

(1)
m + hm+1 − u3hm + u2dm = 0,

(17)

where d is an arbitrary constant or function. Note that

(λnΓ)+ =

n∑

m=0

[am(h1(n−m) − h2(n−m)) + bme(n−m) + cmf(n−m)+

dmẽ(n−m) + hmf̃(n−m)],

(λnΓ)− =λnΓ − (λnΓ)+,

then a direct calculation gives rise to

(E(λnΓ)+)Un − Un(λnΓ)+ = (a
(1)
n+1 − an+1)h2(0) − b

(1)
n+1e(0) + cn+1f(0) + hn+1f̃(0).

Taking △n = h1(0) + h2(0), V
(n)

= (λnΓ)+ + △n, we obtain

(EV
(n)

)Un − UnV
(n)

=(a
(1)
n+1 − an+1)h2(0) − b

(1)
n+1e(0)+

cn+1f(0) + u4ẽ(0) + (hn+1 + u5)f̃(0).

Hence, the discrete zero curvature equation

U tn = (EV
(n)

)Un − UnV
(n)

(18)

leads to 



u1tn = −b
(1)
n+1,

u2tn = cn+1,

u3tn = an+1 − a
(1)
n+1,

u4tn = u4,

u5tn = u5 + hn+1.

(19)

In terms of the definition of integrable couplings[10,11], we conclude that the integrable discrete

system (19) is the discrete integrable coupling of the Volterra lattice hierarchy.
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