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Abstract Let N denote the set of positive integers. The sum graph G+(S) of a finite subset

S ⊂ N is the graph (S, E) with uv ∈ E if and only if u + v ∈ S. A graph G is said to be a sum

graph if it is isomorphic to the sum graph of some S ⊂ N . By using the set Z of all integers

instead of N , we obtain the definition of the integral sum graph. A graph G = (V, E) is a mod

sum graph if there exists a positive integer z and a labelling, λ, of the vertices of G with distinct

elements from {0, 1, 2, . . . , z − 1} so that uv ∈ E if and only if the sum, modulo z, of the labels

assigned to u and v is the label of a vertex of G. In this paper, we prove that flower tree is

integral sum graph. We prove that Dutch m-wind-mill (Dm) is integral sum graph and mod sum

graph, and give the sum number of Dm.
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1. Introduction

All graphs in this paper are finite and have no loops or multiple edges. We follow in general

the graph-theoretic notation and terminology of Ref. [1] unless otherwise specified.

Harary[2] introduced the idea of sum graphs and integral sum graphs. At first, let N denote

the set of positive integers. The sum graph G+(S) of a finite subset S ⊂ N is the graph (S,E)

with uv ∈ E if and only if u+v ∈ S. A graph G is said to be a sum graph if it is isomorphic to the

sum graph of some S ⊂ N . The sum number σ(G) of a connected graph is the least nonnegative

m of isolated vertices mK1, such that G ∪ mK1 is a sum graph. In the above definition, by

using the set Z of all integers instead of N , we obtain the definition of the integral sum graph.

Analogously, the integral sum number ζ(G) is the smallest nonnegative m such that G∪mK1 is

an integral sum graph. It is easy to see that the graph G is an integral sum graph if and only if

ζ(G) = 0. It is obvious that ζ(G) ≤ σ(G).

Mod sum graph was introduced by Bolland, Laskar, Yurner and Domke[11] as a generalization

of sum graph. A graph G = (V,E) is a mod sum graph if there exists a positive integer z and a

labelling, λ, of the vertices of G with distinct elements from {0, 1, 2, . . . , z − 1} so that uv ∈ E
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if and only if the sum, modulo z, of the labels assigned to u and v is the label of a vertex of G.

The mod sum number ρ(G) of a connected graph G is the least nonnegative number r of isolated

vertices rK1 so that G ∪ rK1 is a mod sum graph. Note that G is a mod sum graph if and only

if ρ(G) = 0. Any sum graph can be considered as a mod sum graph by choosing a sufficiently

large modulus z. However the converse is not true.

Although some results on sum graphs, integral sum graphs and mod sum graphs were

solved[3−10], a considerable number of problems still remain unsolved. One of them is the con-

jecture:“Every tree is an integral sum graph”, which was proposed by Zhibo Chen in Ref. [6]. In

Section 2, we prove that flower tree is integral sum graph. Although our result is not the final

solution on integral sum trees, it improves the previous result. In section 3, we prove that Dutch

m-wind-mill (Dm) is integral sum graph and mod sum graph, and give the sum number of Dm.

To simplify notations, throughout this paper, we assume that the vertices of G are already

identified by their labels.

2. Flower tree

On every vertex of a path Pn = y1y2 · · · yn called the main path (when n is odd, yn is

excluded), we identify a path, whose length identified on y2k−1 and y2k is k (k = [n
2 ]). And we

call the obtained graph the flower tree, denoted by FTn.

To prove that the flower tree is integral sum graph, we need the following arguments.

Let G1 and G2 be two graphs. Suppose r1 ∈ V (G1) is a fixed vertex of G1, called the root

of G1, and r2 ∈ V (G2) is the root of G2. Let (G, r) ≡ (G1, r1) ⊲⊳ (G2, r2) denote the graph G

with root r, which is obtained from G1 and G2 by identifying r1 and r2 as one vertex r. When

the vertex r is not considered as the root of the obtained graph, we simply denote the graph as

G = (G1, r1) ⊲⊳ (G2, r2). It is clear that V (G) = (V (G1) − {r1}) ∪ (V (G2) − {r2}) ∪ {r} and

E(G) = E(G1) ∪ E(G2). We may consider G1 and G2 as the subgraphs of G and consider r, r1

and r2 as the same vertex.

Assume that f is an integral sum labelling of V (G) with distinct integers. Then we have two

facts:

Fact 1 For any nonzero integer m, m∗(f(x)) is also an integral sum labelling of G (this labelling

is denoted as mf .)

Fact 2 Suppose that G is a nontrivial graph. Then f(x) 6= 0 for every vertex x of G if and only

if the maximum degree △(G) < |V (G)| − 1.

Lemma 2.1[6] Let (Gi, ri) be a graph with root ri and ϕi be its integral sum graph labelling,

i = 1, 2. Suppose that

(i) ∀ x 6= 0, x ∈ V (Gi) − {ri}, i = 1, 2;

(ii) x = y if and only if x = r1 and y = r2;

(iii) a± b 6= x for all distinct a, b ∈ V (G1) and ∀ x ∈ V (G2) − {r2}; and

(iv) x± y 6= a for all distinct x, y ∈ V (G2) and ∀ a ∈ V (G1) − {r1}.
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Then G ≡ (G1, r1) ⊲⊳ (G2, r2) is an integral sum graph.

Theorem 2.1 Let (G1, r1) = a0a1a2 · · · an be a path with length n ≥ 5 and root r1 = a1. Let

(G2, r2) be a connected graph with root r2, which satisfies the following conditions:

(1) The maximum degree △(G2) < |V (G2)| − 1, and

(2) There is an integral sum labelling ψ of G2 such that x 6= −r2, ∀ x ∈ V (G2) − {r2}.

Then G ≡ (G1, r1) ⊲⊳ (G2, r2) is an integral sum graph.

Proof We give an integer sum labelling ϕ of G1, such that a0 = t, a1 = 1, a2 = 1 + t,

a3 = 2 + t, a4 = −1− t, a5 = 3 + 2t, and ak = ak−2 − ak−1, for all k ≥ 5, where we assume that

t > 2 max{|x|
∣

∣∀ x ∈ V (G2)}.

The given condition (1) implies that G2 is nontrivial by Fact 2 and x 6= 0 for ∀ x ∈ V (G2).

By Fact 1, we define an integral sum labelling of G1 as ϕ1 = mϕ, where m = r2. We also use ϕ2

to denote ψ. To show G is an integral sum graph, we only need to show that ϕ1 and ϕ2 satisfy

the conditions (i)–(iv) in lemma 2.1. Clearly, (i) is satisfied. Note that r1 = ma1 = m = r2. So

(ii) is satisfied. From the labelling of G1, we can see that |x| ≥ t ≥ |y| for ∀ x ∈ V (G1)−{r1} and

∀ y ∈ V (G2). It is obvious that (iv) is satisfied, since |x± y| < t ≤ a for all distinct x, y ∈ V (G2)

and ∀ a ∈ V (G1) − {r1}. So we only need to consider (iii). We can see that a ± b = 0,±m, or

|a± b| ≥ |m|(t− 1) > |x|, for all distinct a, b ∈ V (G1) and ∀ x ∈ V (G2)−{r2}. By the condition

(2), we have x 6= 0,±m, for any x ∈ V (G2) − {r2}. Then (iii) is also satisfied.

So the conclusion is right.

Lemma 2.2[6] Let (G1, r1) = a0a1a2 · · · an be a path with length n ≥ 4 and root r1 = a0. Let

(G2, r2) be a connected graph with root r2, which satisfies the following conditions:

(1) The maximum degree △(G2) < |V (G2)| − 1, and

(2) There is an integral sum labelling ψ of G2 such that x 6= −r2, ∀ x ∈ V (G2) − {r2}.

Then G ≡ (G1, r1) ⊲⊳ (G2, r2) is an integral sum graph.

Theorem 2.2 Flower tree(FTn) is integral sum graph, for any integer n ≥ 2.

Proof When n ≤ 7, see Fig. 1, it is easy to confirm that.
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When n ≥ 8, there are two cases to consider:

Case 1. n is even. We give the path Pk = a0a1a2 . . . ak that identifies a labelling fto the vertices

yn−2 and yn−1 of the main path. Let

a0 = 1; a1 = t; a2 = 1 + t; a3 = 1 + 2t; a4 = −1 − t;

ak = ak−2 − ak−1, when 5 ≤ k ≤ [
n

2
] + 1.

Let (G2, r2) = (FT6, y6), where FT6 is a connected graph, the maximum degree △(FT6) <

|V (FT6) − 1|, and y6 6= −x for ∀ x ∈ V (FT6) − {y6}. Let (G1, r1) = (a0a1 · · · a5, a0). y6f is an

integral sum labelling of G1, where we assume that t > 2 max{|x|
∣

∣x ∈ V (FT6)}. They satisfy

the conditions of Lemma 2.2. We obtain that FT ′

7 is an integral sum graph with root y7 = a1

by Lemma 2.2, and y7 6= −x for ∀ x ∈ V (FT ′

7) − {y7}.

Next we let (G2, r2) = (FT ′

7, y7) and (G1, r1) = (a0a1 · · · a5, a0). y7f is an integral sum

labelling of G1, where we assume that t > 2 max{|x|
∣

∣x ∈ V (FT ′

7)}. By Lemma 2.2, we obtain

FT8 is an integral sum graph. By the same method we can obtain FT10, FT12, . . . are integral

sum graphs.

Case 2. n is odd. We give the path Pk = a0a1a2 · · · ak that identifies a labelling g to the vertices

yn−2 and yn−1 of the main path. Let

a0 = t; a1 = 1; a2 = 1 + t; a3 = 2 + t; a4 = −1 − t;

ak = ak−2 − ak−1, when 5 ≤ k ≤ [
n

2
] + 1.

Let (G2, r2) = (FT7, y7), where FT7 is a connected graph, the maximum degree △(FT7) <

|V (FT7) − 1|, and y7 6= −x for ∀ x ∈ V (FT7) − {y7}. Let (G1, r1) = (a0a1 . . . a5, a1). y7f is an

integral sum labelling of G1, where we assume that t > 2 max{|x|
∣

∣x ∈ V (FT7)}. They satisfy

the conditions of Lemma 2.2. We obtain that FT ′

8 is an integral sum graph with root y8 = a0

by Theorem 2.1, and y8 6= −x for ∀ x ∈ V (FT ′

8) − {y8}.

Next we let (G2, r2) = (FT ′

8, y8) and (G1, r1) = (a0a1 · · · a5, a1). y8f is an integral sum

labelling of G1, where we assume that t > 2 max{|x|
∣

∣x ∈ V (FT ′

8)}. By Theorem 2.1, we obtain

that FT9 is an integral sum graph. By the same method we can obtain FT11, FT13, . . . are

integral sum graph.

Thus, for n ≥ 2, FTn is integral sum graph.

3. Dutch m-wind-mill

For any integerm ≥ 2, a Dutchm-wind-mill (Dm) is the graph defined by a pair of sets (V,E),

where V = {c, v1, v2, v3, v4, . . . , v2m−1, v2m} and E = {(c, vi), (v2n−1, v2n) | i = 1, 2, . . . , 2m,n =

1, 2, . . . ,m}. The vertex c is called the center of the Dutch m-wind mill, each edge (c, vi), for

i = 1, 2, . . . , 2m, is called a spoke, and the edge (v2n−1, v2n), for n = 1, 2, . . . ,m, is called the

rim.

3.1 The result on σ(Dm)
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In this section, we shall determine the value of σ(Dm) for m ≥ 2. Throughout this section,

let t = σ(Dm) and S = V (Dm ∪ tK1). There exists a finite subset L of N such that L gives an

optimal sum labelling of Dm ∪ tK1.

Theorem 3.1 For any integer m ≥ 3, σ(Dm) = 2.

Proof First we confirm σ(Dm) ≥ 2. Without loss of generality, we may consider v1 greater than

other vertices in V −{c}. So the spoke c+v1 is isolated. Now we consider v1 +v2. If v1 +v2 /∈ V ,

however c+ v1 6= v1 + v2, so σ(Dm) ≥ 2. If v1 + v2 ∈ V , There are two cases to consider:

Case 1. v1 + v2 ∈ {v3, v4, . . . , v2m−1, v2m}, which contradicts the supposition that v1 is the

greatest in V − {c}.

Case 2. v1 + v2 = c. Without loss of generality, let v3 be greater than other vertices in

V − {c, v1, v2}. We can see that c+ v3 /∈ V − {c} and c+ v3 6= c+ v1, so σ(Dm) ≥ 2. Thus we

obtain that σ(Dm) ≥ 2.

Now we consider the following sum labelling of Dm ∪ 2K1:

c = 2; v2n−1 = 3 + 2(n− 1), n = 1, 2, . . . ,m;

v2(m−n) = 3 + 2(m+ n), n = 0, 1, 2, . . . ,m− 1.

Let S − V (Dm) = {b1, b2} and

b1 = 4m+ 4, b2 = 4m+ 3.

It is easy to verify that the labelling is the sum labelling of Dm ∪ 2K1.

Thus 2 ≤ σ(Dm) ≤ 2 and the result follows.

3.2 Dm is integral sum graph

Theorem 3.2 For any integer m ≥ 2, ζ(Dm) = 0.

Proof Let Dm = G(S) = ({0, 2,−2, 22,−22, . . . , 2m,−2m}). It is easy to verify that

0 + vi = vi, i = 1, 2, . . . , 2m;

v2n−1 + v2n = 0, i = 1, 2, . . . ,m;

v2i−1 + v2j /∈ S, i, j = 1, 2, . . . ,m, i 6= j.

So ζ(Dm) = 0.

3.3 Dm is mod sum graph

Theorem 3.3 For any integer m ≥ 2, ρ(Dm) = 0.

Proof Let Dm = Gm+(S) = ({25, 3, 22, 3+25, 22+(m−1)25, 3+2×25, 22+(m−2)25, . . . , 3+

(m− 1)25, 22 + 25}) with modulus z = 25m. Thus we can see that

v2i−1 + v2j(mod z) /∈ S, i, j = 1, 2, . . . ,m, i 6= j;
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v2n + c ≡ v2n−2(mod z), n = 2, 3, . . . ,m; v2 + c ≡ v2m(mod z);

v2n−1 + c ≡ v2n+1(mod z), n = 1, 2, . . . ,m− 1; v2m−1 + c ≡ v1(mod z).

So the labelling is a mod sum labelling of Dm. Thus ρ(Dm) = 0.
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