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Abstract Let X be a nonempty subset of a group G. A subgroup H of G is said to be X-s-

permutable in G if, for every Sylow subgroup T of G, there exists an element x ∈ X such that
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H . In this paper, we obtain some results about the X-s-permutable subgroups and

use them to determine the structure of some finite groups.
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1. Introduction

All groups considered in this paper are finite.

It is well known that two subgroups H and T of a group G are said to be permutable if

HT = TH . A subgroup H of a group G is said to be permutable (or quasinormal) in G if H is

permutable with all subgroups of G. A subgroup H of a group G is said to be s-permutable or

s-quasinormal in G if HP = PH for all Sylow subgroups P of G.

The permutable subgroups have many interesting properties. For example, Ore[14] proved

that every permutable subgroup H of a group G is subnormal in G. Ito and Szěp[10] proved

that if H is a permutable subgroup of a group G, then H/HG is nilpotent. In 1962, Kegel[12]

proved that if H is an s-quasinormal subgroup of a soluble group G, then H is subnormal in

G. In 1963, Deskins[2] further proved that every s-quasinormal subgroup H of any group G is

subnormal. However, for two subgroups H and T of a group G, maybe they are not permutable

but there exists an element x ∈ G such that HT x = T xH . Recently, Guo, Shum and Skiba

introduce the concept of X-permutable subgroup. Let H and T be subgroups of a group G and

X a nonempty subset of group G. H is called X-permutable with T if there exists some x ∈ X

such that HT x = T xH . With this new concept, some new elegant results have been obtained

on the structure of groups[3−7]. Later on, J. Huang and W. Guo call a subgroup H of a group
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G s-conditionally permutable in G if for every Sylow subgroup T of G, there exists an element

x ∈ G such that HT x = T xH [9].

As a continuation, in this paper, we introduce the following new concept:

Definition 1.1 Let G be a group and X a nonempty subset of G. A subgroup H of G is said

to be X-s-permutable in G if, for every Sylow subgroup T of G, there exists an element x ∈ X

such that HT x = T xH .

In this paper, we determine the structures of some groups by using the X-s-permutability of

some primary subgroups.

Recall that a normal factor H/K of a group G is said to be a Frattini factor if H/K ⊆

Φ(G/K). A factor H/K is said to be a pd-factor if p | |H/K|.

We use F̃ (G) to denote the subgroup of G such that F̃ (G)/Φ(G) = Soc(G/Φ(G)). M < ·G

denotes that M is a maximal subgroup of G.

All unexplained notations and terminologies are standard. The reader is referred to Refs. [8]

and [15].

2. Preliminaries

Lemma 2.1 Let G be a group and X a nonempty subset of G. Suppose that K E G and

H ≤ G. Then:

(1) If H is X-s-permutable in G, then HK/K is XK/K-s-permutable in G/K.

(2) If HK/K is XK/K-s-permutable in G/K and K ⊆ H , then H is X-s-permutable in G.

(3) Assume that K ⊆ X , HK/K is X/K-s-permutable in G/K and (|H |, |K|) = 1. If G is

soluble or K is nilpotent, then H is X-s-permutable in G.

(4) If H is X-s-permutable in G, then H ∩ K is X-s-permutable in G.

Proof (1), (2) are clear.

(3) Let p ∈ π(G) and P be a Sylow p-subgroup of G. Then by the hypothesis and (2), HK

is X-s-permutable in G. Thus, there exists x ∈ X such that HKP x = P xHK. Assume that K

is nilpotent and let π = π(K) \ {p} and K1 a Hall π-subgroup of K. Then K1 is a normal Hall

π-subgroup of P xHK since (|H |, |K|) = 1. It follows from Shur-Zassenhass Theorem that there

is a Hall π′-subgroup T of P xHK such that H ≤ T and P xy ≤ T for some y ∈ K. But, since

|HP xy| = |T |, HP xy = T = P xyH . Because y ∈ K ⊆ X , xy ∈ X . Hence H is X-s-permutable

in G. Now assume that G is soluble. Then P xHK is soluble. We can analogously prove that H

is X-s-permutable in G.

(4) Let p ∈ π(G) and P be a Sylow p-subgroup of G. Since H is X-s-permutable, there

exists x ∈ X such that HP x = P xH . Obviously, (H ∩ K)P x ⊆ HP x ∩ KP x = (H ∩ KP x)P x,

|H∩KP x| = |H ||KP x|/|HKP x| = |H ||K||P x||HK∩P x|/(|K∩P x||HK||P x|) = |HK∩P x||H∩

K|/|K ∩ P x|. Hence |H ∩ KP x|/|H ∩ K| = |HK ∩ P x|/|K ∩ P x| is a p-number. It follows that

|HP x ∩ KP x|/|(H ∩ K)P x| is a p-number. However, since P is a Sylow p-subgroup of G,

|HP x ∩KP x|/|(H ∩K)P x| is a p′-number. This implies that |HP x ∩KP x| = |(H ∩K)P x|, and
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consequently (H ∩K)P x = HP x∩KP x is a subgroup of G. Therefore (H ∩K)P x = P x(H ∩K).

For the sake of convenience, we cite here some known results which will be useful in the

sequel.

Lemma 2.2[15, IV, Theorem 3.4] Let G be a group, N � G and H ≤ G. If N ≤ Φ(H), then

N ≤ Φ(G).

Lemma 2.3[13, Theorem 3] Let A and B be subgroups of G such that G 6= AB and ABx = BxA

for all x ∈ G. Then G has a proper normal subgroup N such that either A ≤ N or B ≤ N .

Lemma 2.4[11, Lemma 2.8] Let p be the minimal divisor of the order of a group G. Assume

that G is A4-free and L is a normal subgroup of G. If G/L is p-nilpotent and p3 ∤ |L|, then G is

nilpotent.

Lemma 2.5[1, Theorem 1] A group G is π-separable if and only if G has a Hall π-subgroup and

a Hall π′-subgroup, and for any p ∈ π, q ∈ π′, G has a Hall {p, q}-subgroup.

3. Main results

Theorem 3.1 Let F be saturated formation containing all supersoluble groups and let G be a

group and X a soluble normal subgroup of G. Then G ∈ F if and only if there exists a normal

subgroup H of G such that G/H ∈ F and every maximal subgroup of every Sylow subgroup of

H is X-s-permutable in G.

Proof The necessity part is clear and we only need to prove the sufficiency part. Suppose that it

is false and let G be a counterexample of minimal order. Obviously, we can assume that H 6= 1.

We carry out the proof via the following steps.

(1) If N is a minimal normal subgroup of G, then G/N ∈ F.

By Lemma 2.1 and the hypothesis, every maximal subgroup of every Sylow p-subgroup of

HN/N is XN/N -s-permutable in G/N . Since (G/N)/(HN/N) ∼= G/HN ∼= (G/H)/(HN/H) ∈

F, we see that G/N satisfies the hypothesis. Hence G/N ∈ F by the choice of G.

(2) G has a unique minimal normal subgroup N = CG(N) = Op(G) = F (G) for some prime

p ∈ π(G), and Φ(G) = 1.

Since F is a saturated formation, by (1), we know that Φ(G) = 1 and G has a unique minimal

normal subgroup, N say. We first prove that N is soluble. If N ∩ X 6= 1, then N ⊆ X and so

N is soluble. Hence we may assume that X = 1. Then, by the hypothesis we have that every

maximal subgroup of every Sylow subgroup of H is s-quasinormal in G. Let H1 be a maximal

subgroup of some Sylow p-subgroup of H . Then by Deskins’s result[2], H1 is subnormal in G. If

H1 6= 1, then H1 ⊆ Op(G) and so Op(G) 6= 1. Since N is the unique minimal normal subgroup

of G, N ⊆ Op(G) and hence N is soluble. If every maximal subgroup of every Sylow subgroup

of H is equal to 1, then |H | = p1p2 · · · pn and clearly H is soluble. It follows that N ⊆ H is also

soluble. Now, obviously, N ⊆ Op(G) ⊆ F (G) ⊆ CG(N). Since Φ(G) = 1, there exists a maximal

subgroup M of G such that G = NM . Let C = CG(N). Then C = C ∩NM = N(C ∩M). It is
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easy to see that C ∩M ⊳ G and so C ∩M = 1. This induces that N = CG(N). Thus (2) holds.

(3) |N | = p.

By (2), |N | = pα for some prime p and a positive integer α. Let P be a Sylow p-subgroup of G.

Then N ⊆ P and N * Φ(P ) by Lemma 2.2. Hence there exists a maximal subgroup P1 of P such

that N * P1. Since N ⊆ H , it is easy to see that P1 ∩ H is a maximal subgroup of some Sylow

p-subgroup of H . By the hypothesis, for any q ∈ π(G) and every Sylow q-subgroup of G, there

exists x ∈ X such that (P1 ∩ H)Gx
q = Gx

q (P1 ∩ H). If q 6= p, then P1 ∩ H is a Sylow p-subgroup

of (P1 ∩H)Gx
q . By [8, Lemma 3.8.2], N ∩ P1 = N ∩ (P1 ∩H) = N ∩ (P1 ∩H)Gx

q E (P1 ∩H)Gx
q .

It follows that Gx
q ⊆ NG(N ∩ P1). On the other hand, clearly N ∩ P1 � P . This shows that

N ∩ P1 � G and so |N | = p.

(4) The final contradiction:

Since F is a saturated formation containing all supersoluble groups, F has a formation func-

tion f such that A(p − 1) ⊆ f(p) for any p ∈ π(F). Hence G/N = G/CG(N) ∈ A(p − 1) ⊆ f(p)

by |N | = p. Then by (1), we obtain that G ∈ F. The proof is completed with the contradiction.

Corollary 3.1.1 Let G be a group and X a soluble normal subgroup of G. Then G is super-

soluble if and only if there exists a normal subgroup H of G such that G/H is supersoluble and

every maximal subgroup of any Sylow subgroup of H is X-s-permutable in G.

Theorem 3.2 Let F be a saturated formation containing all supersoluble groups and G a group.

Suppose that H � G and X is a soluble normal subgroup of G. If G/H ∈ F and every maximal

subgroup of every Sylow subgroup of F̃ (H) is X-s-permutable in G, then G ∈ F.

Proof Suppose that the theorem is false and let G be a counterexample of minimal order. Then

we proceed with the proof by proving the following claims.

(1) Every minimal normal subgroup of G is contained in F̃ (H).

Let N be a minimal normal subgroup of G. If N * F̃ (H), then N ∩ H = 1. Obvi-

ously, (G/N)/(HN/N) ∼= G/HN ∼= (G/H)/(HN/H) ∈ F. Since HN/N ∼= H/H ∩ N = H ,

F̃ (HN/N) ∼= F̃ (H) ∼= F̃ (H)N/N . Because F̃ (H)N/N ⊆ F̃ (HN/N), F̃ (H)N/N = F̃ (HN/N).

By Lemma 2.1, every maximal subgroup of any Sylow p-subgroup of F̃ (HN/N) is XN/N -s-

permutable in G/N . Hence by induction, G/N ∈ F. It follows that G ∼= G/(H ∩ N) ∈ F. This

contradiction shows that (1) holds.

(2) If N is a minimal normal subgroup of G, then N is soluble.

Assume that N is not soluble. Then N * X and N ∩ X = 1. It follows that X ⊆ CG(N).

Let P1 be a maximal subgroup of some Sylow 2-subgroup of F̃ (H) and Q be a Sylow q-subgroup

of N , where q 6= 2 is a prime divisor of |N |. If P1 ∩ N = 1, then 4 ∤ |N | and hence N is

soluble, a contradiction. Suppose P1 ∩ N 6= 1. Then we claim that P1 ∩ N permutes with

Qx, where Qx is a conjugate subgroup of Q in N . In fact, let Gq be a Sylow q-subgroup of

G containing Qx. Then by the hypothesis, there exists y ∈ X such that P1G
y
q ≤ G. Now

P1G
y
q ∩ NGy

q = (P1 ∩ NGy
q)Gy

q = (P1 ∩ N)Gy
q is a subgroup of G and so (P1 ∩ N)Gy

q ∩ N =

(P1 ∩ N)(Gy
q ∩ N) = (P1 ∩ N)Qxy = (P1 ∩ N)Qx since X ⊆ CG(N) is a subgroup of G. Thus,



X-s-permutable subgroups 261

P1 ∩N permutes with Qx. If (P1 ∩N)Qx = N , then by Burnside paqb-Theorem, N is soluble. If

(P1∩N)Qx 6= N , then by Lemma 2.3, N has a proper normal subgroup M such that P1∩N ≤ M

or Qx ≤ M . If P1 ∩ N ≤ M , then 4 ∤ |N/M | and hence N/M is soluble, which is impossible

since N is a non-soluble minimal normal subgroup of G. If Qx ≤ M , then M contains a Sylow

q-subgroup of N . This is also impossible since N is a direct product of some isomorphic simple

groups. The contradiction shows that N is soluble.

(3) Φ(H) = 1.

If Φ(H) 6= 1, then there exists a minimal normal subgroup L of G, such that L ⊆ Φ(H).

Obviously, F̃ (H)/L = F̃ (H/L). It is easy to see that G/L satisfies the hypothesis. Thus G/L ∈ F

by the choice of G. Then, since F is a saturated formation, G ∈ F, a contradiction.

(4) H is soluble and F (H) = Soc(H) = F̃ (H) = ×iNi, where Ni is any minimal normal

subgroup of H and |Ni| = p.

Let R be a minimal normal subgroup of H . For any x ∈ G, Rx is still a minimal normal

subgroup of H . Hence R = Rx or R ∩ Rx = 1. It follows that RG = Rx1 × Rx2 × · · · × Rxn . If

R is non-soluble, then every minimal normal subgroup of G contained in RG is also non-soluble

by Ref. [15, p46, Example 7.9]. This is contrary to that all minimal normal subgroups of G

is soluble. Thus, all minimal subgroups of H is soluble and hence F̃ (H) = Soc(H) = F (H)

since Φ(H) = 1[8,Theorem 1.8.17]. Let F (H) = N1 × N2 · · · ×Nn, where Ni is a minimal normal

subgroup of H , i = 1, 2, . . . , n. We claim that |Ni| is a prime. Assume that |Ni| = pα for

some prime p and a positive integer α. Let P be a Sylow p-subgroup of H . Then by Lemma

2.2, Ni * Φ(P ), hence there exists a maximal subgroup P1 of P such that Ni * P1. Since

Ni ⊆ F̃ (H), P1 ∩ F̃ (H) is a maximal subgroup of the Sylow p-subgroup of F̃ (H). By the

hypothesis, P1 ∩ F̃ (H) is X-s-permutable in G, that is, for any q ∈ π(G) and Gq ∈ Sylq(G),

there exists x ∈ X such that (P1 ∩ F̃ (H))Gx
q = Gx

q (F̃ (H) ∩ P1). If q 6= p, then (P1 ∩ F̃ (H))

is a Sylow p-subgroup of (P1 ∩ F̃ (H))(Gx
q ∩ H). Hence Ni ∩ P1 = Ni ∩ (P1 ∩ F̃ (H)) = Ni ∩

(P1 ∩ F̃ (H))Hx
q � (P1 ∩ F̃ (H))Hx

q . It follows that Hx
q ∈ NG(Ni ∩ P1) for any q ∈ π(H). Clearly

Ni ∩ P1 � P . This shows that Ni ∩ P1 � H and consequently Ni ∩ P1 = 1. Thus |Ni| = p

is a prime. It follows that H/CH(F (H)) = H/
⋂

i CH(Ni) is abelian. Since Φ(H) = 1, by [8,

Lemma 1.8.16 ], F (H) has a complement M in H . Let C = CH(F (H)). Since F (H) is abelian,

F (H) ≤ C. Hence C = C ∩ [F (H)]M = F (H)(C ∩ M). Since C ∩ M � M and [F (H), C] = 1,

C ∩M � H = F (H)M . Since F (H) = Soc(H), C ∩M = 1 and so C = F (H). This induces that

H/F (H) = H/CH(F (H)) is abelian. Therefore H is soluble and by Ref. [8, Theorem 1.8.17],

F (H) = Soc(H) = F̃ (H).

(5) Φ(G) = 1.

Assume Φ(G) 6= 1 and let N ⊆ Φ(G) be a minimal normal subgroup of G. Since H is soluble,

by [8, Theorem 1.8.1 and Theorem 1.8.17], F̃ (H)/N = F (H)/N = F (H/N) = F̃ (H/N). By

Lemma 2.1, it is easy to see that the hypothesis still holds for the factor group G/N . Hence

G/N ∈ F by the choice of G. Then, since F is a saturated formation, G ∈ F, a contradiction.

(6) Final contradiction:

Let N be a minimal normal subgroup of G. Then by (1), (2), (3) and (4), we see that
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N ⊆ F̃ (H) = F (H) and |N | = pα for some prime p and some positive integer α. Let P be a

Sylow p-subgroup of G. Then by Lemma 2.2, N * Φ(P ). Hence there exists a maximal sub-

group P1 of P such that N * P1. Analogously to the above, we can see that N ∩ P1 � G. This

implies that N ∩ P1 = 1 and so |N | = p. Hence Soc(G) ⊆ Soc(H) = F (H) ⊆ F (G) = Soc(G).

It follows that F (G) = Soc(G) = Soc(H) = F (H) = ×iNi = CG(F (H)) =
⋂

i CG(Ni), where

Ni is any minimal normal subgroup of G. Since F is a saturated formation containing all su-

persoluble groups, F has a formation function f such that A(p − 1) ⊆ f(p) ⊆ F for every p.

Because |Ni| = p, G/CG(Ni) ∈ A(p − 1). Thus, G/CG(Ni) ∈ f(p) ⊆ F. It follows that

G/F (G) = G/
⋂

i CG(Ni) ∈ F. Now applying Theorem 3.1 leads to G ∈ F. With the final

contradiction the proof is completed. 2

Corollary 3.2.1 Let F be a saturated formation containing all supersoluble groups, let G be a

soluble group and X a normal subgroup of G. Then G ∈ F if and only if there exists a normal

subgroup N of G such that G/N ∈ F and every maximal subgroup of any Sylow subgroup of

F (N) is X-s-permutable in G.

Theorem 3.3 Let G be a group and p a prime divisor of |G| with (|G|, p − 1) = 1. Then

G is p-nilpotent if and only if there exists a p-soluble normal subgroup X of G such that for

any non-Frattini pd-chief factor H/K of G, there exists a maximal subgroup P1 of some Sylow

p-subgroup of G not covering H/K such that P1 is X-s-permutable in G.

Proof The necessity part: If G is p-nilpotent and H/K is an arbitrary non-Frattini pd-chief

factor of G, then |H/K| = p and there exists a maximal subgroup M of G such that H * M ,

but K ⊆ M . Obviously |G : M | = p. Let P1 be a Sylow p-subgroup of M . Then P1 is a maximal

subgroup of some Sylow p-subgroup of G and H * P1K. Since G is p-nilpotent and certainly is

p-soluble, we may choose X = G. In order to prove that P1 is X-s-permutable in G, by Sylow

theorem we need only to prove that there exists a Sylow q-subgroup Q of G such that P1Q is a

subgroup of G for any prime divisor q of |G|. If q = p, then P1 ⊆ Q for some Slow q-subgroup

Q and so P1Q = Q is a subgroup of G. Now assume q 6= p. Then M has a Hall {p, q}-subgroup

P1Q = QP1 by Lemma 2.5, where Q is a Sylow q-subgroup of M . Clearly, Q is also a Sylow

q-subgroup of G. Thus we also have P1Q is a subgroup of G.

The sufficiency part: Suppose that it is false and let G be a counterexample of mini-

mal order. Let N be a minimal normal subgroup of G and (H/N)/(K/N) be a non-Frattini

pd-chief factor of G/N . Then H/K is a pd-chief factor of G/K. If H/K ⊆ Φ(G/K) =
⋂

K⊆M<·G M/K, then H ⊆
⋂

K⊆M<·G M . It follows that H/N ⊆
⋂

K⊆M<·G M/N and hence

(H/N)/(K/N) ⊆
⋂

K⊆M<·G(M/N)/(K/N) = Φ((G/N)/(K/N)), a contradiction. This shows

that H/K is also a non-Frattini chief pd-factor of G. Then, by the hypothesis, there exists

a maximal subgroup P1 of some Sylow p-subgroup of G such that P1 is X-s-permutable in

G and H/K * P1K/K. By Lemma 2.1, P1N/N is XN/N -s-permutable in G/N and clearly

(H/N)/(K/N) * (P1K/N)/(K/N). This shows that the hypothesis holds on G/N . Hence, by

the choice of G, G/N is p-nilpotent. Since the class of all p-nilpotent groups is a saturated
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formation, N is the unique minimal normal subgroup of G and Φ(G) = 1. We claim that N is

p-soluble. Otherwise, we may suppose X = 1. Then, by the hypothesis, there exists a maximal

subgroup P1 of some Sylow p-subgroup of G such that P1 is 1-s-permutable in G, that is, P1 is s-

quasinormal in G. Thus, P1 is subnormal in G. If P1 = 1, then p2 ∤ |G|. Since (|G|, p−1) = 1, G

is p-nilpotent, which contradicts the choice of G. If P1 6= 1, then P1 ⊆ Op(G) and so Op(G) 6= 1.

Since N is the unique minimal normal subgroup of G, N ⊆ Op(G) and so N is soluble. Hence

our claim holds. This implies that Op(N) 6= 1 or Op′(N) 6= 1. Hence N is a p-group or a

p′-group. If N is a p′-group, then obviously G is p-nilpotent since G/N is p-nilpotent. Hence we

may assume that N is a p-group. Since Φ(G) = 1, N is a non-Frattini p-chief factor of G. By

the hypothesis, there exists a maximal subgroup P1 of some Sylow p-subgroup of G such that

N * P1 and P1 is X-s-permutable in G. Let q ∈ π(G) and Q be a Sylow q-subgroup of G. If

q = p, then there exists x ∈ G such that P1 < ·Qx. Hence P1 � Qx and so N ∩ P1 � Qx. On the

other hand, if q 6= p, then by the hypothesis, there exists x ∈ X such that P1Q
x = QxP1. This

means that N ∩P1Q
x = N ∩P1 E P1Q

x. Thus N ∩P1 �G. Since N * P1, N ∩P1 = 1. But since

NP1 is a Sylow p-subgroup of G, we obtain that |N | = p. It is easy to see that N = CG(N).

Hence G/N = G/CG(N) is isomorphic to some subgroup of Aut(N). Since |Aut(N)| | p− 1 and

(|G|, p − 1)=1, G/N = 1. It follows that G = N is abelian. This final contradiction completes

the proof. 2

Theorem 3.4 Let G be a group, p the smallest prime divisor of |G| and X a p-soluble normal

subgroup of G. If G/H is p-nilpotent, G is A4-free and every 2-maximal subgroup of any Sylow

p-subgroup of H is X-s-permutable in G, then G is p-nilpotent.

Proof Assume that the assertion is false and let G be a counterexample of minimal order. Then

we prove the theorem by following steps:

(1) Op
′ (G) = 1.

Suppose Op′(G) 6= 1. Then by Lemma 2.1, the hypothesis still holds on G/Op′(G). Thus,

G/Op′(G) is p-nilpotent by the choice of G. It follows that G is p-nilpotent, a contradiction.

(2) G has a unique minimal normal subgroup L and G/L is p-nilpotent.

Let L be any minimal normal subgroup of G. Clearly, G/L satisfies the hypothesis of the

theorem. Hence G/L is p-nilpotent by the choice of G. Since the class of all p-nilpotent groups

is closed under subdirect product, clearly, G has a unique minimal normal subgroup, say, L.

(3) G is p-soluble.

Let Hp be a Sylow p-subgroup of H and P1 a 2-maximal subgroup of Hp. If L is p-soluble,

then by (2) G is p-soluble. We may, therefore, assume that L is not p-soluble. Then clearly

X = 1. By the hypothesis, P1 is permutable with every Sylow subgroup of G, and consequently

P1 is subnormal subgroup of G. This implies that P1 ⊆ Op(G). If P1 = 1, then |Hp| = p2. It

follows from Lemma 2.4 that G is p-nilpotent. If P1 6= 1, then Op(G) 6= 1 and so L ≤ Op(G), a

contradiction.

(4) L = Op(G) = F (G) = CG(L) and Φ(G) = 1.

Since the class of all p-nilpotent groups is a saturated formation and G/L is p-nilpotent,
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Φ(G) = 1. Since G is p-soluble, L is p-soluble. Then by (1), we know that Op(G) 6= 1. Thus

L ⊆ Op(G) and consequently we have L = Op(G) = F (G) = CG(L).

(5) G = [L]M , where p3 | |L| and M is p-nilpotent.

By (4), L has a complement M in G. Then G = [L]M and M ∼= G/L is p-nilpotent. If

p3 ∤ |L|, then G is p-nilpotent by Lemma 2.4 which contradicts the choice of G.

(6) Final contradiction.

Let Mp be a Sylow p-subgroup of M and Gp a Sylow p-subgroup of G containing Mp. Clearly

|Gp : Mp| = |L| ≥ p3. So there exists a 2-maximal subgroup P1 of Gp such that Mp ≤ P1. Put

P = P1 ∩ H . Since Hp = Gp ∩ H is a Sylow p-subgroup of H , H ∩ P1 = Hp ∩ P1. Obviously

Gp = LMp = LP1 = HpP1. Hence |Hp : P | = |Hp : H ∩ P1| = |Hp : Hp ∩ P1| = |HpP1 :

P1| = |Gp : P1| = p2. This means that P = P1 ∩ H is a 2-maximal subgroup of Hp. By the

hypothesis, P is X-s-permutable in G. Thus, for arbitrary q ∈ π(G) and q 6= p, there exists a

Sylow q-subgroup Gq of G such that PGx
q = Gx

qP for some x ∈ X . Since L∩P = L∩ (P1 ∩H) =

L∩(P1∩H)Gx
q �(P1∩H)Gx

q , Gq ⊆ NG(L∩P ). On the other hand, since L∩P = L∩(P1∩H) E P1

and L∩P E L, L∩P E LP1 = Gp. This shows that L∩P �G. If L∩P = 1, then |LP | > p3|P |

which is impossible since |Hp| > |LP | and |Hp : P | = p2. If L ∩ P = L, then L ⊆ P and so

|Gp| = |LP1| = |P1| which is also impossible. Thus 1 6= L∩P 6= L. The contradiction completes

the proof. 2

Theorem 3.5 Suppose that F is a saturated formation containing all supersoluble groups. Let

G be a group and X a soluble normal subgroup of G. Then G ∈ F if and only if there exists a

normal subgroup H of G such that G/H ∈ F and every primary cyclic subgroup of H is X-s-

permutable in G.

Proof We need only to prove the sufficiency part since the necessity part is clear.

Assume that the assertion is false and let G be a counterexample of minimal order. Then

obviously H 6= 1. We proceed with the proof by the following steps.

(1) For any non-trivial normal subgroup N of G, we have that G/N ∈ F.

By isomorphic theorems, (G/N)/(HN/N) ∼= G/HN ∼= (G/H)/(HN/H) ∈ F. Let T/N

be any primary cyclic subgroup of HN/N . Then there exists a cyclic subgroup 〈x〉 of T such

that T/N = 〈x〉N/N . Suppose that T/N is a p-subgroup of HN/N , then there exists a Sylow

p-subgroup Hp of H such that 〈x〉N/N ≤ HpN/N . Put x = hn, where h ∈ Hp, n ∈ N . Then

〈x〉N = 〈hn〉N = 〈h〉N . Hence by the hypothesis and Lemma 2.1, T/N is X-s-permutable in

G/N . This shows that G/N satisfies the condition of the theorem and so G/N ∈ F by the choice

of G.

(2) Φ(G) = 1 and G has a unique minimal normal subgroup L such that L = Op(G) = CG(L).

Since F is a saturated formation, Φ(G) = 1 and G has a unique minimal normal subgroup.

We need only to prove that L is soluble. If L ⊆ X , then L is soluble. If L * X , then L∩ X = 1

and hence X ⊆ CG(L). Let M be a minimal subnormal subgroup of G contained in L. If M is

abelian. Then L is soluble. Assume M is a non-abelian simple group. Then |π(M)| > 2. Let

p, q be two different prime divisors of |M | and 〈m〉 6= 1 be a cyclic p-subgroup of M . We claim
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that 〈m〉 permutes with any Sylow q-subgroup Q of M . Assume that Gq is a Sylow q-subgroup

of G containing Q. Since H 6= 1, 〈m〉 ⊆ L ⊆ H . By the hypothesis, there exists x ∈ X such that

〈m〉Gx
q = Gx

q 〈m〉. Hence 〈m〉Gx
q ∩ M = 〈m〉(Gx

q ∩ M) = 〈m〉Qx is a subgroup of G. But since

X ⊆ CG(L), Qx = Q. It follows that 〈m〉Q = Q〈m〉. Hence our claim holds. If 〈m〉Q = M , then

by Burnside paqb-Theorem, M is soluble, a contradiction. If 〈m〉Q 6= M , then by Lemma 2.3,

M is not simple. The contraction shows that L is soluble.

(3) |L| = p.

Let P be a Sylow p-subgroup of G. Then L ∩ Z(P ) 6= 1. Let L1 be a subgroup of L ∩ Z(P )

with order p. Since L ≤ H , by the hypothesis, L1 is X-s-permutable in G. Let q ∈ π(G) and Gq

be a Sylow q-subgroup of G. Then there exists x ∈ X such that L1G
x
q = Gx

qL1. Assume that

p 6= q. Since L1 � L � G, L1 is a subnormal Hall subgroup of L1G
x
q . Hence L1 � L1G

x
q for any

q ∈ π(G) and q 6= p. This means that Gx
q ≤ NG(L1). On the other hand, P ≤ NG(L1) since

L1 ⊆ L ∩ Z(P ). This induces that L1 � G and consequently L = L1 with order p.

(4) Final contradiction:

By (2) and (3), G/L = G/CG(L) . Aut(L) is a cyclic subgroup of order p − 1. Then, since

G/L ∈ F, we obtain that G ∈ F. The proof is completed due to the final contradiction. 2

Corollary 3.5.1 Let G be a soluble group, H � G and X be a normal subgroup of G. If

G/H is supersoluble and every primary cyclic subgroup of H is X-s-permutable in G, then G is

supersoluble.
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