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Abstract Let X be a nonempty subset of a group G. A subgroup H of G is said to be X-s-
permutable in G if, for every Sylow subgroup T' of GG, there exists an element x € X such that
HT® = T”H. In this paper, we obtain some results about the X-s-permutable subgroups and
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1. Introduction

All groups considered in this paper are finite.

It is well known that two subgroups H and T of a group G are said to be permutable if
HT =TH. A subgroup H of a group G is said to be permutable (or quasinormal) in G if H is
permutable with all subgroups of G. A subgroup H of a group G is said to be s-permutable or
s-quasinormal in G if HP = PH for all Sylow subgroups P of G.

The permutable subgroups have many interesting properties. For example, Orel'¥ proved
that every permutable subgroup H of a group G is subnormal in G. Ito and Szép!'® proved
that if H is a permutable subgroup of a group G, then H/Hg is nilpotent. In 1962, Kegel('?
proved that if H is an s-quasinormal subgroup of a soluble group G, then H is subnormal in
G. In 1963, Deskins!? further proved that every s-quasinormal subgroup H of any group G is
subnormal. However, for two subgroups H and T of a group GG, maybe they are not permutable
but there exists an element € G such that HT* = T*H. Recently, Guo, Shum and Skiba
introduce the concept of X-permutable subgroup. Let H and T be subgroups of a group G and
X a nonempty subset of group G. H is called X-permutable with T if there exists some z € X
such that HT* = T®H. With this new concept, some new elegant results have been obtained
on the structure of groups!®~7. Later on, J. Huang and W. Guo call a subgroup H of a group
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G s-conditionally permutable in G if for every Sylow subgroup T' of G, there exists an element
z € G such that HT® = T*H).

As a continuation, in this paper, we introduce the following new concept:

Definition 1.1 Let G be a group and X a nonempty subset of G. A subgroup H of G is said
to be X-s-permutable in G if, for every Sylow subgroup T' of G, there exists an element x € X
such that HT* =T"H.

In this paper, we determine the structures of some groups by using the X-s-permutability of
some primary subgroups.

Recall that a normal factor H/K of a group G is said to be a Frattini factor if H/K C
®(G/K). A factor H/K is said to be a pd-factor if p | |H/K|.

We use F(G) to denote the subgroup of G such that F(G)/®(G) = Soc(G/®(G)). M < -G
denotes that M is a maximal subgroup of G.

All unexplained notations and terminologies are standard. The reader is referred to Refs. [8]
and [15].

2. Preliminaries

Lemma 2.1 Let G be a group and X a nonempty subset of G. Suppose that K < G and
H < . Then:

(1) If H is X -s-permutable in G, then HK /K is X K/K-s-permutable in G/K.

(2) If HK/K is X K/K-s-permutable in G/K and K C H, then H is X-s-permutable in G.

(3) Assume that K C X, HK/K is X/K-s-permutable in G/K and (|H|,|K|) =1. If G is
soluble or K is nilpotent, then H is X-s-permutable in G.

(4) If H is X-s-permutable in G, then H N K is X-s-permutable in G.

Proof (1), (2) are clear.

(3) Let p € 7(G) and P be a Sylow p-subgroup of G. Then by the hypothesis and (2), HK
is X-s-permutable in G. Thus, there exists € X such that HKP* = P*HK. Assume that K
is nilpotent and let 7 = 7(K) \ {p} and K; a Hall m-subgroup of K. Then K; is a normal Hall
m-subgroup of P*HK since (|H|,|K]|) = 1. It follows from Shur-Zassenhass Theorem that there
is a Hall 7’-subgroup T of P*HK such that H < T and P*¥ < T for some y € K. But, since
|HP*Y| = |T|, HP™ =T = P*YH. Because y € K C X, 2y € X. Hence H is X-s-permutable
in G. Now assume that G is soluble. Then P*H K is soluble. We can analogously prove that H
is X-s-permutable in G.

(4) Let p € w(G) and P be a Sylow p-subgroup of G. Since H is X-s-permutable, there
exists € X such that HP® = P*H. Obviously, (H N K)P® C HP* 1 KP* = (H N KP*)P,
[HAKP?| = |H|[KP*|/|HK P*| = |H||K||P*||HK O P®| /(K0P | HE||PP|) = [HK AP [HN
K|/|K N P*|. Hence |HNKP*|/|[HNK|=|HK N P*|/|K N P*| is a p-number. It follows that
|[HP® N KP*|/|(H N K)P®| is a p-number. However, since P is a Sylow p-subgroup of G,
|HP* N K P*|/|(HNK)P?| is a p/-number. This implies that |HP* 0 K P*| = |(H N K)P*|, and
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consequently (HNK)P* = HP*NKP* is a subgroup of G. Therefore (HNK)P* = P*(HNK).
For the sake of convenience, we cite here some known results which will be useful in the

sequel.

Lemma 2.2119, IV, Theorem 3.4] 1.1 & he 5 group, N QG and H < G. If N < ®(H), then
N < ®(Q).

Lemma 2,313, Theorem 31 1.0t 4 and B be subgroups of G such that G # AB and AB® = B A
for all x € G. Then G has a proper normal subgroup N such that either A < N or B < N.

Lemma 2.4111, Lemma 2.8] 104 e the minimal divisor of the order of a group G. Assume
that G is Ay4-free and L is a normal subgroup of G. If G/L is p-nilpotent and p> { |L|, then G is

nilpotent.

Lemma 2.5[1; Theorem 11 A 01645 G is mr-separable if and only if G has a Hall m-subgroup and
a Hall ©'-subgroup, and for any p € 7, q¢ € «’, G has a Hall {p, q}-subgroup.

3. Main results

Theorem 3.1 Let § be saturated formation containing all supersoluble groups and let G be a
group and X a soluble normal subgroup of G. Then G € § if and only if there exists a normal
subgroup H of G such that G/H € § and every maximal subgroup of every Sylow subgroup of
H is X-s-permutable in G.

Proof The necessity part is clear and we only need to prove the sufficiency part. Suppose that it
is false and let G be a counterexample of minimal order. Obviously, we can assume that H # 1.
We carry out the proof via the following steps.

(1) If N is a minimal normal subgroup of G, then G/N € F.

By Lemma 2.1 and the hypothesis, every maximal subgroup of every Sylow p-subgroup of
HN/N is X N/N-s-permutable in G/N. Since (G/N)/(HN/N) = G/HN = (G/H)/(HN/H) €
5, we see that G/N satisfies the hypothesis. Hence G/N € § by the choice of G.

(2) G has a unique minimal normal subgroup N = C¢(N) = O,(G) = F(G) for some prime
p € 7(G), and ®(G) = 1.

Since § is a saturated formation, by (1), we know that ®(G) = 1 and G has a unique minimal
normal subgroup, N say. We first prove that N is soluble. If NN X # 1, then N C X and so
N is soluble. Hence we may assume that X = 1. Then, by the hypothesis we have that every
maximal subgroup of every Sylow subgroup of H is s-quasinormal in G. Let H; be a maximal
subgroup of some Sylow p-subgroup of H. Then by Deskins’s result?, H; is subnormal in G. If
H, # 1, then H; C O,(G) and so O,(G) # 1. Since N is the unique minimal normal subgroup
of G, N C O,(G) and hence N is soluble. If every maximal subgroup of every Sylow subgroup
of H is equal to 1, then |H| = p1ps - - - p,, and clearly H is soluble. It follows that N C H is also
soluble. Now, obviously, N C O,(G) C F(G) C Cg(N). Since ®(G) = 1, there exists a maximal
subgroup M of G such that G = NM. Let C = Cg(N). Then C =CNNM = N(CNM). It is
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easy to see that C N M < G and so C N M = 1. This induces that N = Cg(N). Thus (2) holds.

3) [Nl =p.

By (2), |N| = p* for some prime p and a positive integer «. Let P be a Sylow p-subgroup of G.
Then N C P and N ¢ ®(P) by Lemma 2.2. Hence there exists a maximal subgroup P; of P such
that N ¢ P;. Since N C H, it is easy to see that P; N H is a maximal subgroup of some Sylow
p-subgroup of H. By the hypothesis, for any ¢ € 7(G) and every Sylow g-subgroup of G, there
exists € X such that (P N H)Gy = G5 (Pr N H). If ¢ # p, then P1 N H is a Sylow p-subgroup
of (LN H)GZ. By [8, Lemma 3.8.2], NN P, = NN (PLNH) = NN (PN H)GE < (PN H)GE.
It follows that Gy C Ng(N N Pp). On the other hand, clearly N N P; < P. This shows that
NNP, <G and so |N| =p.

(4) The final contradiction:

Since § is a saturated formation containing all supersoluble groups, § has a formation func-
tion f such that A(p — 1) C f(p) for any p € 7(F). Hence G/N = G/Cq(N) € A(p— 1) C f(p)
by |N| = p. Then by (1), we obtain that G € §. The proof is completed with the contradiction.

Corollary 3.1.1 Let G be a group and X a soluble normal subgroup of G. Then G is super-
soluble if and only if there exists a normal subgroup H of G such that G/H is supersoluble and
every maximal subgroup of any Sylow subgroup of H is X-s-permutable in G.

Theorem 3.2 Let § be a saturated formation containing all supersoluble groups and G a group.
Suppose that H < G and X is a soluble normal subgroup of G. If G/H € § and every maximal
subgroup of every Sylow subgroup of F(H) is X -s-permutable in G, then G € §.

Proof Suppose that the theorem is false and let G be a counterexample of minimal order. Then
we proceed with the proof by proving the following claims.

(1) Every minimal normal subgroup of G is contained in F(H).

Let N be a minimal normal subgroup of G. If N ¢ F(H), then NN H = 1. Obvi-
ously, (G/N)/(HN/N) 2 G/HN = (G/H)/(HN/H) € §. Since HN/N % H/HNN = H,
F(HN/N) = F(H) = F(H)N/N. Because F(H)N/N C F(HN/N), F(H)N/N = F(HN/N).
By Lemma 2.1, every maximal subgroup of any Sylow p-subgroup of F(HN/N) is X N/N-s-
permutable in G/N. Hence by induction, G/N € §. It follows that G = G/(H N N) € §. This
contradiction shows that (1) holds.

(2) If N is a minimal normal subgroup of G, then N is soluble.

Assume that N is not soluble. Then N ¢ X and NN X = 1. It follows that X C Cg(N).
Let P; be a maximal subgroup of some Sylow 2-subgroup of F (H) and @ be a Sylow g-subgroup
of N, where ¢ # 2 is a prime divisor of |[N|. If Py " N = 1, then 4 { |[N| and hence N is
soluble, a contradiction. Suppose PL N N # 1. Then we claim that P; N N permutes with
Q*, where Q% is a conjugate subgroup of @) in N. In fact, let G, be a Sylow g-subgroup of
G containing @Q®. Then by the hypothesis, there exists y € X such that PGy < G. Now
PG N NGY = (PPN NGY)GY = (P1 N N)GY is a subgroup of G and so (PL N N)GY NN =
(PANN)(GyNN) = (PLNN)Q™ = (PLNN)Q” since X C Cg(N) is a subgroup of G. Thus,
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PN N permutes with Q. If (P, N N)Q® = N, then by Burnside p®¢*-Theorem, N is soluble. If
(PANN)Q* # N, then by Lemma 2.3, N has a proper normal subgroup M such that P, NN < M
or Q* < M. If P NN < M, then 4 t |[N/M| and hence N/M is soluble, which is impossible
since N is a non-soluble minimal normal subgroup of G. If Q% < M, then M contains a Sylow
g-subgroup of N. This is also impossible since IV is a direct product of some isomorphic simple
groups. The contradiction shows that IV is soluble.

(3) ®(H)=1.

If ®(H) # 1, then there exists a minimal normal subgroup L of G, such that L C ®(H).
Obviously, F(H)/L = F(H/L). It is easy to see that G/ L satisfies the hypothesis. Thus G/L € §
by the choice of G. Then, since § is a saturated formation, G € §, a contradiction.

(4) H is soluble and F(H) = Soc(H) = F(H) = x;N;, where N; is any minimal normal
subgroup of H and |N;| = p.

Let R be a minimal normal subgroup of H. For any x € G, R” is still a minimal normal
subgroup of H. Hence R = R® or RN R* = 1. Tt follows that R® = R®* x R®> x --. x R* . If
R is non-soluble, then every minimal normal subgroup of G' contained in R% is also non-soluble
by Ref.[15, p46, Example 7.9]. This is contrary to that all minimal normal subgroups of G
is soluble. Thus, all minimal subgroups of H is soluble and hence F(H) = Soc(H) = F(H)
since ®(H) = 118 Theorem1.817] 1ot p(H) = Ny x Ny - - - xN,,, where N; is a minimal normal
subgroup of H, i = 1,2,...,n. We claim that |N;| is a prime. Assume that |N;| = p® for
some prime p and a positive integer .. Let P be a Sylow p-subgroup of H. Then by Lemma
2.2, N; ,CZ ®(P), hence there exists a maximal subgroup P; of P such that N; ;{ P;. Since
N; € F(H), P, N F(H) is a maximal subgroup of the Sylow p-subgroup of F(H). By the
hypothesis, P, N F(H) is X-s-permutable in G, that is, for any ¢ € 7(G) and G, € Syl,(G),
there exists z € X such that (P N F(H))Gg = Gg(F(H) NPy). If ¢ # p, then (P, N F(H))
is a Sylow p-subgroup of (P N F(H))(G; N H). Hence N;N P, = N;N (P, NEF(H)) = N; N
(PANF(H))H; S (PN F(H))HS. It follows that HY € Ng(N; N Py) for any q € w(H). Clearly
N; N Py < P. This shows that N; N Py < H and consequently N; N P, = 1. Thus |N;| = p
is a prime. It follows that H/Cy(F(H)) = H/(, Cu(N;) is abelian. Since ®(H) = 1, by [8,
Lemma 1.8.16 ], F/(H) has a complement M in H. Let C = Cy(F(H)). Since F(H) is abelian,
F(H)<C. Hence C =CN[F(H)|]M =F(H)(CNnM). Since CNM <M and [F(H),C] =1,
CNM<H=F(H)M. Since F(H) = Soc(H), CNM =1 and so C = F(H). This induces that
H/F(H) = H/Cyx(F(H)) is abelian. Therefore H is soluble and by Ref.[8, Theorem 1.8.17],
F(H)=Soc(H) = F(H).

(5) ®(G)=1.

Assume ®(G) # 1 and let N C ®(G) be a minimal normal subgroup of G. Since H is soluble,
by [8, Theorem 1.8.1 and Theorem 1.8.17), F(H)/N = F(H)/N = F(H/N) = F(H/N). By
Lemma 2.1, it is easy to see that the hypothesis still holds for the factor group G/N. Hence
G/N € § by the choice of G. Then, since § is a saturated formation, G € §, a contradiction.

(6) Final contradiction:

Let N be a minimal normal subgroup of G. Then by (1), (2), (3) and (4), we see that
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N C F(H) = F(H) and [N| = p® for some prime p and some positive integer a. Let P be a
Sylow p-subgroup of G. Then by Lemma 2.2, N ¢ ®(P). Hence there exists a maximal sub-
group P; of P such that N ¢ P;. Analogously to the above, we can see that N N P; < G. This
implies that N N Py = 1 and so |N| = p. Hence Soc(G) C Soc(H) = F(H) C F(G) = Soc(Q).
It follows that F(G) = Soc(G) = Soc(H) = F(H) = x;N; = Cg(F(H)) = (; Ca(N;), where
N; is any minimal normal subgroup of G. Since § is a saturated formation containing all su-
persoluble groups, § has a formation function f such that A(p — 1) C f(p) C F for every p.
Because |N;| = p, G/Cq(N;) € Up —1). Thus, G/Cc(N;) € f(p) C F. It follows that
G/F(G) = G/N;Ca(N;) € §. Now applying Theorem 3.1 leads to G € §. With the final

contradiction the proof is completed. O

Corollary 3.2.1 Let § be a saturated formation containing all supersoluble groups, let G be a
soluble group and X a normal subgroup of G. Then G € § if and only if there exists a normal
subgroup N of G such that G/N € § and every maximal subgroup of any Sylow subgroup of
F(N) is X-s-permutable in G.

Theorem 3.3 Let G be a group and p a prime divisor of |G| with (|G|,p —1) = 1. Then
G is p-nilpotent if and only if there exists a p-soluble normal subgroup X of G such that for
any non-Frattini pd-chief factor H/K of G, there exists a maximal subgroup P; of some Sylow
p-subgroup of G not covering H/K such that Py is X-s-permutable in G.

Proof The necessity part: If G is p-nilpotent and H/K is an arbitrary non-Frattini pd-chief
factor of G, then |H/K| = p and there exists a maximal subgroup M of G such that H ¢ M,
but K C M. Obviously |G : M| = p. Let P; be a Sylow p-subgroup of M. Then P; is a maximal
subgroup of some Sylow p-subgroup of G and H ¢ Py K. Since G is p-nilpotent and certainly is
p-soluble, we may choose X = . In order to prove that P; is X-s-permutable in G, by Sylow
theorem we need only to prove that there exists a Sylow g-subgroup @ of G such that P;Q is a
subgroup of G for any prime divisor ¢ of |G|. If ¢ = p, then P; C @ for some Slow ¢-subgroup
Q and so P1Q = @ is a subgroup of G. Now assume ¢ # p. Then M has a Hall {p, ¢}-subgroup
PQ = QP; by Lemma 2.5, where @ is a Sylow g-subgroup of M. Clearly, @ is also a Sylow
g-subgroup of G. Thus we also have P, (@ is a subgroup of G.

The sufficiency part: Suppose that it is false and let G be a counterexample of mini-
mal order. Let N be a minimal normal subgroup of G and (H/N)/(K/N) be a non-Frattini
pd-chief factor of G/N. Then H/K is a pd-chief factor of G/K. If H/K C ®(G/K) =
Nicre.c M/K, then H C gcpre.qg M. Tt follows that H/N C (\xcpo.q M/N and hence
(H/N)/(K/N) € Ngenre.c(M/N)/(K/N) = ®((G/N)/(K/N)), a contradiction. This shows
that H/K is also a non-Frattini chief pd-factor of G. Then, by the hypothesis, there exists
a maximal subgroup P; of some Sylow p-subgroup of G such that P; is X-s-permutable in
G and H/K ¢ PLK/K. By Lemma 2.1, P, N/N is X N/N-s-permutable in G/N and clearly
(H/N)/(K/N) ¢ (PiK/N)/(K/N). This shows that the hypothesis holds on G/N. Hence, by
the choice of G, G/N is p-nilpotent. Since the class of all p-nilpotent groups is a saturated
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formation, N is the unique minimal normal subgroup of G and ®(G) = 1. We claim that N is
p-soluble. Otherwise, we may suppose X = 1. Then, by the hypothesis, there exists a maximal
subgroup P; of some Sylow p-subgroup of G such that P; is 1-s-permutable in G, that is, P; is s-
quasinormal in G. Thus, P; is subnormal in G. If P, = 1, then p? { |G|. Since (|G|,p—1) =1, G
is p-nilpotent, which contradicts the choice of G. If Py # 1, then P; C Op,(G) and so O,(G) # 1.
Since N is the unique minimal normal subgroup of G, N C O,(G) and so N is soluble. Hence
our claim holds. This implies that Op(N) # 1 or Op(N) # 1. Hence N is a p-group or a
p’-group. If N is a p’-group, then obviously G is p-nilpotent since G/N is p-nilpotent. Hence we
may assume that N is a p-group. Since ®(G) = 1, N is a non-Frattini p-chief factor of G. By
the hypothesis, there exists a maximal subgroup P; of some Sylow p-subgroup of G such that
N ¢ Py and P; is X-s-permutable in G. Let ¢ € 7(G) and Q be a Sylow g-subgroup of G. If
q = p, then there exists € G such that P; < -Q®. Hence P, < Q% and so N N P; <@Q*. On the
other hand, if ¢ # p, then by the hypothesis, there exists x € X such that P,Q* = Q*P;. This
means that NN P,Q* = NNP, < PQ*. Thus NN P, <G. Since N ,CZ Py, NNP; = 1. But since
NP, is a Sylow p-subgroup of GG, we obtain that |[N| = p. It is easy to see that N = Cg(N).
Hence G/N = G/Cq(N) is isomorphic to some subgroup of Aut(N). Since |[Aut(N)| | p—1 and
(|IG),p — 1)=1, G/N = 1. It follows that G = N is abelian. This final contradiction completes
the proof. O

Theorem 3.4 Let G be a group, p the smallest prime divisor of |G| and X a p-soluble normal
subgroup of G. If G/H is p-nilpotent, G is Ay-free and every 2-maximal subgroup of any Sylow
p-subgroup of H is X-s-permutable in G, then G is p-nilpotent.

Proof Assume that the assertion is false and let G be a counterexample of minimal order. Then
we prove the theorem by following steps:

(1) O, (G)=1.

Suppose O, (G) # 1. Then by Lemma 2.1, the hypothesis still holds on G/O, (G). Thus,
G/O, (G) is p-nilpotent by the choice of G. It follows that G is p-nilpotent, a contradiction.

(2) G has a unique minimal normal subgroup L and G/L is p-nilpotent.

Let L be any minimal normal subgroup of G. Clearly, G/L satisfies the hypothesis of the
theorem. Hence G/L is p-nilpotent by the choice of G. Since the class of all p-nilpotent groups
is closed under subdirect product, clearly, G has a unique minimal normal subgroup, say, L.

(3) G is p-soluble.

Let H, be a Sylow p-subgroup of H and P; a 2-maximal subgroup of H,. If L is p-soluble,
then by (2) G is p-soluble. We may, therefore, assume that L is not p-soluble. Then clearly
X = 1. By the hypothesis, P; is permutable with every Sylow subgroup of GG, and consequently
Py is subnormal subgroup of G. This implies that Py C O,(G). If P, = 1, then |H,| = p?. It
follows from Lemma 2.4 that G is p-nilpotent. If P; # 1, then O,(G) # 1 and so L < O,(G), a
contradiction.

(4) L=0,(G) =F(G) =Cg(L) and &(G) = 1.

Since the class of all p-nilpotent groups is a saturated formation and G/L is p-nilpotent,
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®(G) = 1. Since G is p-soluble, L is p-soluble. Then by (1), we know that O,(G) # 1. Thus
L C O,(G) and consequently we have L = O,(G) = F(G) = Cg(L).

(5) G = [L]M, where p? | |L| and M is p-nilpotent.

By (4), L has a complement M in G. Then G = [L|M and M = G/L is p-nilpotent. If
p3 1 |L|, then G is p-nilpotent by Lemma 2.4 which contradicts the choice of G.

(6) Final contradiction.

Let M, be a Sylow p-subgroup of M and G}, a Sylow p-subgroup of G containing M,,. Clearly
|G, : Mp| = |L| > p3. So there exists a 2-maximal subgroup P; of G, such that M, < P;. Put
P =P NH. Since H, = G, N H is a Sylow p-subgroup of H, H N P, = H, N P,. Obviously
G, = LM, = LP, = H,P,. Hence |H, : P| = |H, : HN P| = |H, : H,N P| = |H,P, :
Pi| = |G, : Pi| = p?>. This means that P = P; N H is a 2-maximal subgroup of H,. By the
hypothesis, P is X-s-permutable in G. Thus, for arbitrary ¢ € 7(G) and g # p, there exists a
Sylow g-subgroup G, of G such that PG = G P for some z € X. Since LNP = LN(PLNH) =
LN(PNH)G; A(PINH)GY, Gy € Ng(LNP). On the other hand, since LNP = LN(PiNH) < Py
and LNP <L, LNP < LP = G,. This shows that LN P <G. If LNP =1, then |LP| > p3|P|
which is impossible since |H,| > |[LP| and |H, : P| = p?>. If LN P = L, then L C P and so
|Gp| = |LP1| = |P1| which is also impossible. Thus 1 # L N P # L. The contradiction completes
the proof. O

Theorem 3.5 Suppose that § is a saturated formation containing all supersoluble groups. Let
G be a group and X a soluble normal subgroup of G. Then G € § if and only if there exists a
normal subgroup H of G such that G/H € § and every primary cyclic subgroup of H is X-s-

permutable in G.

Proof We need only to prove the sufficiency part since the necessity part is clear.

Assume that the assertion is false and let G be a counterexample of minimal order. Then
obviously H # 1. We proceed with the proof by the following steps.

(1) For any non-trivial normal subgroup N of G, we have that G/N € §.

By isomorphic theorems, (G/N)/(HN/N) =2 G/HN = (G/H)/(HN/H) € §. Let T/N
be any primary cyclic subgroup of HN/N. Then there exists a cyclic subgroup (x) of T such
that T/N = (z)N/N. Suppose that T//N is a p-subgroup of HN/N, then there exists a Sylow
p-subgroup Hy, of H such that (z)N/N < H,N/N. Put x = hn, where h € H,, n € N. Then
(x)N = (hn)N = (h)N. Hence by the hypothesis and Lemma 2.1, T/N is X-s-permutable in
G/N. This shows that G/N satisfies the condition of the theorem and so G/N € § by the choice
of G.

(2) ®(G) =1 and G has a unique minimal normal subgroup L such that L = O,(G) = Cg(L).

Since § is a saturated formation, ®(G) = 1 and G has a unique minimal normal subgroup.
We need only to prove that L is soluble. If L C X, then L is soluble. If L ¢ X, then LN X =1
and hence X C Cg(L). Let M be a minimal subnormal subgroup of G contained in L. If M is
abelian. Then L is soluble. Assume M is a non-abelian simple group. Then |7 (M)| > 2. Let
p, q be two different prime divisors of |M| and (m) # 1 be a cyclic p-subgroup of M. We claim



X -s-permutable subgroups 265

that (m) permutes with any Sylow g-subgroup @ of M. Assume that G, is a Sylow g-subgroup
of G containing Q. Since H # 1, (m) C L C H. By the hypothesis, there exists z € X such that
(m)Gy = G (m). Hence (m)Gy N M = (m)(G§ N M) = (m)Q" is a subgroup of G. But since
X C Cq(L), Q% = Q. It follows that (m)Q = Q(m). Hence our claim holds. If (m)Q = M, then
by Burnside p®q®-Theorem, M is soluble, a contradiction. If (m)Q # M, then by Lemma 2.3,
M is not simple. The contraction shows that L is soluble.

3) Ll =p.

Let P be a Sylow p-subgroup of G. Then L N Z(P) # 1. Let Ly be a subgroup of LN Z(P)
with order p. Since L < H, by the hypothesis, L is X-s-permutable in G. Let ¢ € 7(G) and G4
be a Sylow g-subgroup of GG. Then there exists z € X such that L;Gf = GjL1. Assume that
p # q. Since L1 < L <G, Ly is a subnormal Hall subgroup of L1Gy. Hence Ly < LGy for any
q € m(G) and q # p. This means that Gj < Ng(L1). On the other hand, P < Ng(L1) since
Ly C LN Z(P). This induces that L1 <G and consequently L = Ly with order p.

(4) Final contradiction:

By (2) and (3), G/L = G/Cq(L) < Aut(L) is a cyclic subgroup of order p — 1. Then, since
G/L € §, we obtain that G € §. The proof is completed due to the final contradiction. |

Corollary 3.5.1 Let G be a soluble group, H < G and X be a normal subgroup of G. If
G/H is supersoluble and every primary cyclic subgroup of H is X-s-permutable in G, then G is

supersoluble.
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