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1. Introduction and definition

Modular Lie superalgebra W (m, n, t) was constructed in [1]. In this paper we construct modu-

lar Lie superalgebra W (m, n, l, t) that extends W (m, n, t), determine the derivation superalgebra

of W (m, n, l, t), and prove that W (m, n, l, t) has a new type of derivation called Θ-type derivation.

Consequently, W (m, n, l, t) is not isomorphic to the known Cartan-type modular Lie superalge-

bras. In this paper F always denotes a field of characteristic p > 2 and Π is the prime field of

F. Then Π = {0, 1, 2, . . . , p− 1} ∼= Zp , F is a linear space over Π. Set z1, . . . , zl ∈ F such that

z1, · · · , zl are linearly independent over Π. Put G = {λ1z1 + · · ·+ λlzl| 0 ≤ λi < p, i = 1, . . . , l}.

Then G is additive subgroup of F . We define a truncated polynomial algebra F [y1, y2, . . . , yl]

such that y
p
i = 1 (i = 1, . . . , l). If λ ∈ G, then λ can be expressed as λ = λ1z1 + · · · + λlzl . Let

yλ = yλ1
1 · · · yλl

l . It is easy to see

yλyη = yλ+η (∀λ , η ∈ G). (1.1)

Let Γ denote F [y1, y2, . . . , yl] for short. Then Γ = span
F
{yλ| λ ∈ G}. Let m and n be the positive

integers. Set Λ̃ = Λ(m, n, t) ⊗ Γ, where Λ(m, n, t) is defined in [1, P21]. Let Z2 = {0, 1} be the

residue ring of integers modulo 2. Then Λ̃ is an associative superalgebra with a Z2-gradation

induced by the trivial Z2-gradation of Γ and the Z2-gradation of Λ(m, n, t):

Λ̃0 = Λ(m, n, t)0 ⊗ Γ, Λ̃1 = Λ(m, n, t)1 ⊗ Γ.
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For f ∈ Λ(m, n, t), yλ ∈ Γ, we denote f ⊗ yλ which is the element of Λ̃ as fyλ for short. In Λ̃,

besides Equation (1.1), the following statements hold:

x(α)yλ = yλx(α) (∀ α ∈ Nm
0 , ∀ λ ∈ G),

yλxj = xjy
λ (∀ λ ∈ G, j = m + 1, . . . , s).

Then {x(α)xuyλ| α ∈ A(m, t), u ∈ B(n), λ ∈ G} is an F -basic of Λ̃. Let Λ̃i = span
F
{x(α)xuyλ|α ∈

A(m, t), u ∈ B(n), λ ∈ G, |α| + |u| = i}, where A(m, t) is defined in [1, p21]. Obviously,

Λ̃ =
⊕ξ

i=0 Λ̃i, where ξ =
∑n

i=1 πi + n, πi = pti − 1, (1 ≤ i ≤ m). Put Y0 = {1, 2, . . . , m},

Y1 = {m + 1, m + 2, . . . , s}, Y = Y0

⋃
Y1, J = Y \ {m}.

2. Theorem and proof

Lemma 2.1 Let D1, D2, . . . , Ds be the linear transformations of Λ̃ such that

Di(x
(α)xuyλ) =

{
x(α−εi)xuyλ , ∀ i ∈ Y0 ,

x(α)∂i(x
u)yλ , ∀ i ∈ Y1 ,

where ∂i = ∂
∂xi

are the partial derivations of Λ(n), ∀i ∈ Y1. Then Di ∈ Der0(Λ̃), ∀i ∈ Y0;

Di ∈ Der1(Λ̃), ∀i ∈ Y1.

Proof This proof is similar to the one in [1, Lemma 2.4, p11]. 2

D1, D2, . . . , Ds are called the partial derivations of Λ̃. Let A = A0 ⊕A1 be the superalgebra.

If x ∈ Aθ, where θ ∈ Z2, then we call x the Z2-homogeneous element and call θ the Z2-degree

of x, denoted by deg(x) = θ and written simply as d(x) = θ. By the Lemma 2.1, it is easy to

see d(Di) = τ(i), where τ(i) is defined in [1, p12]. If f ∈ Λ̃θ, D ∈ Derµ(Λ̃), where θ, µ ∈ Z2, let

(fD)(g) := fD(g), ∀g ∈ Λ̃. It is easy to see fD ∈ Derθ+µ(Λ̃) by the direct verification.

Lemma 2.2 Let
∑s

i=1 fiDi ∈ Derθ(Λ̃),
∑s

j=1 gjDj ∈ Derµ(Λ̃), where θ, µ ∈ Z2. Then

[

s∑

i=1

fiDi,

s∑

j=1

gjDj ] =

s∑

i,j=1

fiDi(gj)Dj − (−1)θµ

s∑

i,j=1

gjDj(fi)Di.

Proof This proof is similar to the one in [1, Lemma 2.5, p13]. 2

Put W (m, n, l, t) = {
∑s

i=1 fiDi|fi ∈ Λ̃, ∀i ∈ Y }.

Proposition 2.3 W (m, n, l, t) is a subalgebra of Der(Λ̃). In particular, it is a Lie superalgebra.

Proof This proof is similar to the one in [1, Lemma 2.6, p13]. 2

We denote Lie superalgebra W (m, n, l, t) by W . It is easy to see that W = ⊕ξ−1
i=−1Wi is a

Z-graded Lie superalgebra, where ξ :=
∑m

i=1 πi + n,

Wi = span
F
{x(α)xuyλDj | |α| + |u| = i + 1, j ∈ Y }.

Proposition 2.4 Let φ ∈ Dert(W ), t ≥ 0. Then there is z ∈ NorW (W ) := {x ∈ W |[x, W ] ⊆ W}

such that φ(Di) = adz(Di), i = 1, 2, . . . , s.

Proof Since factor yλ has no effect on the verification of this Proposition. By virtue of [1,
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Proposition 2.6, p33], the Proposition holds. 2

Lemma 2.5 Let φ ∈ Dert(W ) and t ∈ Z. If φ(Lj) = 0 for j = −1, 0, . . . , k, where k ≥ −1 and

k + t ≥ −1, then φ = 0.

Proof This proof is similar to the one in [1, Lemma 2.8, p34]. 2

Theorem 2.6 Let Θ = {h := (h1(y), h2(y), . . . , hl(y))| hj(y) ∈ Γ, 1 ≤ j ≤ l}. For ∀h ∈ Θ, we

define a linear transformation of W

Dh(x(α)xuyλDi) =
l∑

j=1

λjhj(y)x(α)xuyλDi. (2.2)

Then Dh ∈ Der0(W ).

Proof From

[x(α)xuyλDi, x
(β)xvyηDk]

= x(α)xuyλDi(x
(β)xvyη)Dk − (−1)d(xuDi)d(xvDk)x(β)xvyηDk(x(α)xuyλ)Di

= x(α)xuyλ+ηDi(x
(β)xv)Dk − (−1)d(xuDi)d(xvDk)x(β)xvyλ+ηDk(x(α)xu)Di

= yλ+η[x(α)xuDi , x(β)xvDk],

Dh([x(α)xuyλDi , x(β)xvyηDk]) =

l∑

j=1

(λ + η)jhj(y)[x(α)xuDi , x(β)xvDk]yλ+η

[Dh(x(α)xuyλDi) , x(β)xvyηDk] = [

l∑

j=1

λjhj(y)x(α)xuyλDi , x(β)xvyηDk]

=

l∑

j=1

λjhj(y)yλ+η[x(α)xuDi , x(β)xvDk],

[x(α)xuyλDi , Dh(x(β)xvyηDk)] = [x(α)xuyλDi ,

l∑

j=1

ηjhj(y)x(β)xvyηDk]

=
l∑

j=1

ηjhj(y)yλ+η[x(α)xuDi , x(β)xvDk],

and λj + ηj = (λ + η)j , it follows

Dh([x(α)xuyλDi , x(β)xvyηDk])

= [Dh(x(α)xuyλDi) , x(β)xvyηDk] + [x(α)xuyλDi , Dh(x(β)xvyηDk)].

That is, Dh ∈ Der0(W ). 2

Let h = (h1(y), h2(y), . . . , hl(y)) ∈ Θ. Then Dh is called Θ-type derivation.

Lemma 2.7 Let D ∈ Der(W ). If D(Di) = 0, ∀ i ∈ Y . Then there is (h1(y), h2(y), . . . , hl(y)) ∈ Θ

such that

D(yλDi) =
l∑

j=1

λjhj(y)yλDi, ∀λ ∈ G.
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Proof For ∀i, j ∈ Y , applying D to [yλDi, Dj ] = 0 gives

[D(yλDi), Dj] = 0. (2.3)

Since D(yλDi) ∈ W , we can suppose that

D(yλDi) =

s∑

k=1

gkiλDk. (2.4)

Applying Equation (2.4) to the Equation (2.3) yields

0 = [D(yλDi), Dj ] =

s∑

k=1

[gkiλDk, Dj ] = −

s∑

k=1

(−1)d(gkiλDk)τ(j)Dj(gkiλ)Dk.

Hence Dj(gkiλ) = 0, ∀j, k ∈ Y . Consequently, gkiλ ∈ Γ. We may assume that gkiλ = g(y)kiλ,

which yields D(yλDi) =
∑s

k=1 g(y)kiλDk. Let D(xiDi) =
∑s

j=1 gjDj , gj ∈ Λ̃. Since [Di, xiDi] =

Di, it follows that [Di, D(xiDi)] = 0, thus [Di,
∑s

j=1 gjDj ] = 0.

According to the above equation, we have
∑s

j=1 Di(gj)Dj = 0, therefore Di(gj) = 0, j =

1, 2, . . . , s. For [yλDi, xiDi] = yλDi, applying D to the above equation, we have

[D(yλDi), xiDi] + [yλDi, D(xiDi)] = D(yλDi),

[
s∑

k=1

g(y)kiλDk, xiDi] + [yλDi,

s∑

j=1

gjDj ] =
s∑

k=1

g(y)kiλDk,

and

g(y)iiλDi =

s∑

k=1

g(y)kiλDk.

Therefore, if k 6= i, then g(y)kiλ = 0, that is, D(yλDi) = g(y)iiλDi. We write g(y)iiλ as g(y)iλ

for short. Then

D(yλDi) = g(y)iλDi.

Let hiλ(y) = y−λg(y)iλ. Then g(y)iλ = yλhiλ(y) and

D(yλDi) = yλhiλ(y)Di. (2.5)

Suppose that D(xiy
ηDj) =

∑s
k=1 bkDk, bk ∈ Λ̃. Since

[Di, xiy
ηDj ] = yηDj ,

we obtain that

[Di, D(xiy
ηDj)] = D(yηDj), [Di,

s∑

k=1

bkDk] = yηhjη(y)Dj

and
s∑

k=1

Di(bk)Dk = yηhjη(y)Dj .

Hence if k 6= j, we have Di(bk) = 0 and Di(bj) = yηhjη(y), so bj = yηhjη(y)xi. From the above

content, we get

D(xiy
ηDj) = yηhjη(y)xiDj +

∑

k 6=j

bkDk. (2.6)
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For [yλDi, xiy
ηDj] = yλ+ηDj, we have

[D(yλDi), xiy
ηDj ] + [yλDi, D(xiy

ηDj)] = D(yλ+ηDj).

By virtue of Equations (2.5) and (2.6), we obtain that

[yλhiλ(y)Di, xiy
ηDj ] + [yλDi, y

ηhjη(y)xiDj +
∑

k 6=j

bkDk] = yλ+ηhj(λ+η)(y)Dj ,

yλ+ηhiλ(y)Dj + yλ+ηhjη(y)Dj = yλ+ηhj(λ+η)(y)Dj

and

hiλ(y) + hjη(y) = hj(λ+η)(y). (2.7)

From the randomicity of λ, η, i, j, we have

hiλ(y) + hjλ(y) = hj2λ(y) = hjλ(y) + hjλ(y).

Hence hiλ(y) = hjλ(y), and (2.5) can be written as

D(yλDi) = yλhλ(y)Di.

By virtue of Equation (2.7) we get

hλ(y) + hη(y) = hλ+η(y), ∀λ, η ∈ G. (2.8)

For arbitrary k = 1, 2, . . . , l, by definition of G, we obtain zk ∈ G. According to (2.8), we have

hzk
(y) + hzk

(y) = h2zk
(y) = 2hzk

(y)

and

h2zk
(y) + hzk

(y) = h3zk
(y) = 3hzk

(y).

By induction we have

hczk
(y) = chzk

(y), where c ∈ {0, 1, . . . , p − 1} = Zp.

For arbitrary k, j = 1, 2, . . . , l and arbitrary a, b ∈ Zp, we have

hazk
(y) + hbzj

(y) = hazk+bzj
(y) = ahzk

(y) + bhzj
(y).

For arbitrary λ =
∑l

i=1 λizi ∈ G, we obtain that

hλ(y) = h∑
l
j=1 λjzj

(y) =
l∑

j=1

λjhzj
(y).

Let hj(y) denote hzj
(y) for short. Then the above equation can be written as hλ(y) =

∑l
j=1 λjhj(y).

Therefore,

D(yλDi) =

l∑

j=1

λjhj(y)yλDi.

Lemma 2.8 Let φ ∈ Dert(W ), where t ≥ 0. Then there are z ∈ NorW (W ) and h ∈ Θ such that

(φ − adz − Dh)(W−1) = 0.
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Proof By virtue of Proposition 2.4, there exists z ∈ NorW (W ) such that φ(Di) = adz(Di) for

i = 1, 2, . . . , s. Let φ1 = φ− adz. Then φ1(Di) = φ(Di)− adz(Di) = 0. By virtue of Lemma 2.7,

there is (h1(y), h2(y), . . . , hl(y)) ∈ Θ such that

φ1(y
λDi) =

l∑

j=1

λjhj(y)yλDi, i ∈ Y, λ ∈ G.

Put φ2 = φ1 − Dh, then

φ2(y
λDi) = φ1(y

λDi) − Dh(yλDi) = 0.

Therefore, φ2(W−1) = 0, that is, (φ − adz − Dh)(W−1) = 0. 2

Proposition 2.9 Let i ∈ Y0 and r be an arbitrary positive integer. Then (adDi)
pr

∈ Der0̄(W ).

If r ≥ ti, then (adDi)
pr

= 0.

Proof This proof is similar to the one in [1, Proposition 2.9, p35]. 2

Proposition 2.10 Let φ ∈ Dert(W ), where t ≥ 0. Then there are f ∈ W and h ∈ Θ such that

φ = adf + Dh.

Proof This is a direct consequence of Lemmas 2.5 and 2.8. 2

Proposition 2.11 Der−1(W ) = adW−1.

Proof This proof is similar to the one in [1, Proposition 3.2, p35]. 2

Theorem 2.12 Let T := {x(kǫi)Dj |0 ≤ k ≤ πi, i ∈ Y0, j ∈ Y }, G(y) := {yλDi|λ ∈ G, i ∈ Y },

M := {xiDj |i ∈ Y1, j ∈ Y }. Then W is generated by T ∪ M ∪ G(y).

Proof Form [1], the subalgebra generated by T ∪ M is

{x(α)xuDi|α ∈ A(m, t), u ∈ B(n)} ⊆ Q,

where Q denotes the subalgebra of W generated by T ∪ M ∪ G(y).

(1) If α 6= π, we can suppose that α1 < π1. Consequently, x(α+ǫ1)xuDi ∈ Q, ∀u ∈ B(n), we

have

[yλD1, x
(α+ǫ1)xuDi] = x(α)xuyλDi ∈ Q.

(2) If α = π, u 6= E, then there exists j ∈ Y1 such that xjx
u 6= 0. Hence x(α)xjx

uDi ∈ Q,

therefore,

[yλDj , x
(α)xjx

uDi] = x(α)xuyλDi ∈ Q.

(3) If α = π, u = E, then

[x(π)yλD1, x1x
EDj] = x(π)xEyλDj ∈ Q, ∀j ∈ Y1.

[xEyλDs, xsx
(π)Dj ] = x(π)xEyλDj ∈ Q, ∀j ∈ Y0.

We conclude Q = W . 2
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Lemma 2.13 Let φ ∈ Der−t(W ), where t > 1. If φ(x(tǫi)Dj) = 0, ∀i ∈ Y0, j ∈ Y . Then φ = 0.

Proof This proof is similar to the one in [1, Lemma 3.4, p36]. 2

Proposition 2.14 Let t > 1. If there is not any positive integer k such that t = pk. Then

Der−t(W ) = 0.

Proof This proof is similar to the one of [1, Proposition 3.5, p36]. 2

Proposition 2.15 Let t = pr, r > 0. Then

Der−t(W ) = span
F
{yλi(adDi)

t|i ∈ Y0, λi ∈ G}.

Proof Let φ ∈ Der−t(W ). Since zd(φ(x(tǫi)Di)) = (−t) + (t − 1) = −1, we may suppose

φ(x(tǫi)Di) =

s∑

k=1

aikyλkDk, i ∈ Y0, λk ∈ G.

For j ∈ Y \ {i}, applying φ to the following equation

[x(tǫi)Di, xjDj ] = 0

gives aij = 0. Consequently, φ(x(tǫi)Di) = aiiy
λiDi, ∀i ∈ Y0. Direct verification by using the

equation

yλi(adDi)
t(x(α)xuyλDj) = yλi((adDi)

t(x(α)xuyλDj))

shows that yλi(adDi)
t is the derivation. Put ϕ = φ −

∑m
i=1 aiiy

λi(adDi)
t, for arbitrary j ∈ Y0,

we have

ϕ(x(tǫj)Dj) = φ(x(tǫj)Dj) −

m∑

i=1

aiiy
λi(adDi)

t(x(tǫj)Dj)

= ajjy
λj Dj − ajjy

λj Dj = 0.

Applying φ to the equation x(tǫi)Dj = [x(tǫi)Di, xiDj ] results in ϕ(x(tǫi)Dj) = 0 for j ∈ Y, j 6= i.

By virtue of Lemma 2.13, we have ϕ = 0. Consequently,

φ =

m∑

i=1

aiiy
λi(adDi)

t ∈ span
F
{yλi(adDi)

t|i ∈ Y0, λi ∈ G}.

Lemma 2.6 Let ∆ = {Dh|h ∈ Θ} and Ω = span
F
{yλi(adDi)

pki
|i ∈ Y0, 1 ≤ ki ≤ ti, λi ∈ G}.

Then

(1) ∆ ∩ Ω = {0}.

(2) (∆ ⊕ Ω) ∩ adW = {0}.

Proof (1) is obvious.

(2) Suppose that adf = Dh +
∑m

i=1

∑ti−1
j=1 aijy

λij (adDi)
pj

. Then adf(Di) = 0, ∀i ∈ Y .

Noting that f ∈ W , we may suppose that f =
∑

x(α)xuyλDj. Since

[f, Di] = [
∑

x(α)xuyλDj , Di]

=
∑

−(−1)τ(i)d(x(α)xuyλDj)Di(x
(α)xuyλ)Dj ,
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we obtain that Di(x
(α)xuyλ) = 0. Consequently, f =

∑s
j=1 gj(y)Dj . Since

adf(xp
vDk) = gv(y)xp−1

v Dk, 1 ≤ v ≤ s,

(Dh +

m∑

i=1

ti−1∑

j=1

aijy
λij (adDi)

pj

)(xp
vDk) = av1y

λv1Dk,

and

adf = Dh +

m∑

i=1

ti−1∑

j=1

aijy
λij (adDi)

pj

.

We obtain gv(y) = 0, namely, (∆ ⊕ Ω) ∩ adW = {0}. 2

By Propositions 2.10, 2.11, 2.14, 2.15 and 2.9 we obtain the following Theorem.

Theorem 2.17 Der(W ) = adW ⊕ ∆ ⊕ Ω.

Theorem 2.18 W (m, n, l, t) is not isomorphic to Cartan-type modular Lie superalgebras

W, S, H, HO, K.

Proof Since

W (m, n, l, t) = span
F
{x(α)xuyλDi|α ∈ A(m, t), u ∈ B(n), λ ∈ G, i ∈ Y },

we have dim(W (m, n, l, t)) = 2nspq, where q =
∑m

i=1 ti + l. From [1,2], we know that the

dimensions of modular Lie superalgeras S, H, HO are not divided by p. Therefore, W (m, n, l, t)

is not isomorphic to S, H, HO. From [3,4], we know that any outer derivation in W, K is nilpotent

linear transformation. But there is the Θ-type outer derivation Dh, which is not nilpotent linear

transformation in W (m, n, l, t), where h = (y1, 0, . . . , 0), y1 6= 0. Therefore, W (m, n, l, t) is not

isomorphic to W, K. 2

By Theorem 2.17, W (m, n, l, t) is not isomorphic to the known Cartan-type modular Lie

superalgebras.
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